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Abstract. Semantic mapping employs explicit labels to deal with sensor
data in robotic mapping processes. In this paper we present a method for
boosting performance of spatial mapping, through the use of a probabilis-
tic ontology, expressed with a probabilistic description logic. Reasoning
with this ontology allows segmentation and tagging of sensor data ac-
quired by a robot during navigation; hence a robot can construct metric
maps topologically. We report experiments with a real robot to validate
our approach, thus moving closer to the goal of integrating mapping and
semantic labeling processes.

1 Introduction

Until a few years ago, robotic mapping tasks were restricted to 2D reconstruc-
tion of environments [1]. With recent improvements in sensors and algorithms,
researches are now aiming at 3D maps of large environments with ever increased
detail, using both laser sensors and images of vision systems [2].

There is current interest in annotating measured structures with semantically
meaningful labels such as “building” or “tree” [3]. The classification of data in
such categories allows dimensionality reduction in mapping related problems
[4], as well as the construction of maps that are useful beyond navigation (for
instance, useful for task planning [5]). Work on this topic is grouped under the
name of semantic mapping. As stated by Hertzberg and Saffiotti [6], two points
must be present in applications to fully use semantic knowledge in robotics:

1. an explicit representation of knowledge available to the robot; that is, an
ontology for the domain of interest;

2. the need for grounding the symbols used in this representation in physical
objects that can be detected by robot sensors.

Even though several proposals claim to be using semantics in robotics when
automatically classifying sensor data in categories, if those categories are not
related to each other, there is no semantic reasoning involved.

Galindo et al [5] have presented one of the few proposals that really explore se-
mantics in depth. They provide an ontology for indoor environments and use it to
reason during task planning. Two ways of exploiting semantics are investigated:
deduction of new information, and improvement in task planning efficiency. They
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combine a spatial hierarchy with a conceptual hierarchy expressed with a descrip-
tion logic. One hierarchy is related to the another through anchoring [7].

Limketkai et al [8] propose a more integrated mapping process, although they
only explore semantics to construct a map from laser data. They use a first-
order probabilistic model based on Relational Markov Networks [9] to classify
lines processed from laser sensor data, so as to identify doors and corridors in
the environment. Spatial and relational information between the objects in scene
are used to facilitate the discrimination. Wang and Domingos [10] apply Markov
Logic networks (with extensions to handle continuous variables) to that same
domain.

Regarding only sensor data classification, some authors propose different
methods to cluster sensor data with the objective of creating a topological map
of the environment. Posner et al [11] consider as a scene whatever data a robot
acquires with its sensors, and shows how to classify outdoor scenes (they use
odometry information to provide continuity in the classification). Zivkovic et al
[12] use omnidirectional images of indoor environments and propose a method
that identifies images that composes different rooms, constructing thus a topo-
logical map.

Vasudevan et al [13] use identification of certain objects and their spatial
position in the environment to create a map of objects. They detect doors with
a laser sensor and use SIFT [14] to detect other objects from images.

In this paper, we propose a combination of traditional methods in robotics to
find known objects in images and to register 3D points, while using a probabilistic
description logic to relate datasets with different areas of the environment. This
way we can split sensor data in small clusters, map them separately, and them
assemble them together on a topologic semantic map. Thus moving towards the
goal of adding high-level abilities to robotic navigation.

2 Representing Environments in CRALC

This paper introduces a method for boosting spatial mapping through reasoning
over objects contained in the environment. To achieve that, relationships between
the environment and the objects in it should be first modeled. We resort to a
description logic for such modeling [15]. Description logics are largely used to
build ontologies, as they usually contain a fragment of first-order logic and can
organize concepts into hierarchies. Such a logic seems to be the right tool in the
present context, as we need a language to describe high-level labels; for instance,
an “office” must be described as a set of “chairs”, “tables” and “computers” in some
structured manner.

The challenge is that there is usually uncertainty attached to descriptions of
contexts in robotics; in particular, there is always uncertainty associated with
sensor data. Besides, in practice two instances of the same label are often distinct;
that is, two different offices contain chairs and tables, but the quantity of this
objects is unique to each office; moreover one of them may have vending machines
for its employees while the other may not. As another example, two parks may
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have completely different vegetation but both still need to be labeled by a single
concept “park”. Standard description logics cannot model alone these matters.
We thus resort to a probabilistic description logic; that is, a description logic that
allows probabilities to be attached to its formulae.

2.1 Credal crRALC

Cozman and Polastro have recently proposed a probabilistic description logic,
called cRALC [16,17], that adopts an interpretation-based semantics and resorts
to graph-theoretical tools so as to allow judgements of stochastic independence
to be expressed. This logic was chosen over other probabilistic description logics
[18,19,20,21,22,23,24] as it is based in the popular ALC logic and attends to our
needs.

The vocabulary of CRALC contains individuals, concepts, and roles [15]. Con-
cepts and roles are combined to form new concepts using a set of constructors
from ALC [25]. These constructors are conjunction (CMND), disjunction (C' D),
negation (—C), existential restriction (Ir.C') and value restriction (Vr.C'). A con-
cept inclusion is denoted by C' C D and a concept definition is denoted by C'= D,
where C' and D are concepts.

CRALC also supports probabilistic inclusions. A probability inclusion reads
P(C|D) = «, where D is a concept and C' is a concept name. The semantics of
such a probabilistic inclusion is:

Ve : P(C(@)|D(x)) = o, (1)

where it is understood that probabilities are over the set of all interpretation
mappings Z for a domain D. If D is the "true" concept T, then we simply write
P(C) = «. Probabilistic inclusions are required to only have concept names in
their conditioned concept (that is, inclusions such as P(¥r.C|D) are not allowed).

We also allow assessments such as P(r) = ( to be made for roles, with se-
mantics

Yo,y : P(r(z,y)) = 6, (2)

where again the probabilities are over the set of all interpretation mappings.

We assume that every terminology is acyclic; that is, a concept does not
use itself. Under some additional restrictions (unique-name assumption, preci-
sion of probability assessments, known and finite domain), any terminology in
CRALCcan be grounded into a Bayesian network [16,17]. For better understand-
ing of the grounding, consider the concepts A, B, C' and the role r, and suppose
P(A) =0.7, BC A, P(B|A) =04, P(r) =0.5 and C = AN 3r.B. In Figure 1
we have: a) ontology graph; b) the grounded network for 2 individuals.

2.2 An Ontology for the Domain of Spatial Mapping

To characterize the status of a robot’s location with the information of its sensors,
we contribute proposing a probabilistic ontology as follows. We start with two
primitive concepts Object (x) and Environment (z). As CRALC requires that a
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(a) Ontology graph. (b) Grounding.

Fig. 1. Graph for a simple ontology and its grounding for a domain with 2 individuals

priori probabilities must be specified for primitive concepts; as there is no prior
information on objects, we assign relatively neutral probabilities as follows:

P(Object) = 0.5,
P(Environment) = 0.5.

We introduce two roles, one to express that an environment contains an object,
and the other to express that two objects are near. We leave the probabilities
for these roles rather neutral, using the same probabilities:

P(contains) = 0.5,
P(near) = 0.5.

We propose the following object hierarchy, using resources in CRALC:

InteriorObject C Object,
ExteriorObject C Object,
OfficeObject C Object,

Table C InteriorObject,
Chair C InteriorObject,

Cabinet C InteriorObject M OfficeObject,
Monitor C InteriorObject M OfficeObject,
Printer C InteriorObject M OfficeObject,

Sign C ExteriorObject,
Extinguisher C ExteriorObject,
Switchbox C ExteriorObject,
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Door C Object,
Board C Object.
Note that B C A implies P(B|—A) = 0 but it implies nothing about P(B|A) re-
maining P(BJ|A) € [0, 1]; whenever this happens we adopt a uniform distribution
over possible objects.
Composite objects can now be described:
Desk = Table M dnear.Chair,

Entrance = Door M dnear.Sign.
Finally, the whole environment can be described as:

Room = Environment
M dcontains.Door
M dcontains. Table
M Jdcontains.Chair
M —dcontains.ExteriorObjects
Office = Room
M dcontains.Desk
M dcontains.Cabinet
M dcontains.Monitor
Classroom = Room
M dcontains.Board
M —3contains.OfficeObjects
Hallway = Environment
dcontains.Entrance
M dcontains.Extinguisher
M dcontains.Switchbox

M —dcontains.InteriorObjects

The graph representing this ontology is presented in Figure 2.

The network generated by this ontology is relatively dense due to the presence
of quantifiers, and the computational effort needed to calculate probabilities is
not trivial. Although exact inference is theoretically possible, there are reliable
algorithms for approximate inference that seem more adequate in practice. In
particular, Loopy Propagation “breaks” the network connections, replacing local
probability distribution with more convenient functions.

3 Semantic Mapping

Mapping larger environments requires dealing with huge amounts of data. An-
other difficulty in mapping, particularly in 3D mapping, is data association; that
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Fig. 2. Graph for the proposed ontology

is, sensor readings from two different positions must be registered into a com-
mon coordinate system. It is desirable to separate all the data in various groups,
labeled as ceiling, wall, or perhaps kitchen or office.

Our proposed scheme for semantic mapping is an offline process. The robot
navigates through the environment, collecting images, laser and odometry data
in several positions, and then the data are processed at once. The idea is to
identify objects in the images collected by a robot, and to classify the loca-
tions in which those images were taken. Then, we use the laser and odome-
try data related to those images to map smaller areas of the environment. For
instance, data of an office let us reconstruct spatially only the office; using odom-
etry information it becomes possible to determine a topology of the environ-
ment, and then to unify all metric maps in a single one through the detected
doors.

The classification of objects in images is done using a previous set of features,
robustly extracted using the SIFT algorithm. The objects present in the ontology
have a SIFT descriptor previously computed. Figure 3 shows two templates of
objects in the matching with scenes acquired by the robot, and the robot Pioneer
3-AT mounted with a SICK laser to obtain 3d data and a camera to recognize
objects in images, used in the experiments.

As the objects in the images are identified, the probabilistic description logic
model is used to label sensor data. Inferences are conducted in the probabilistic
graph instantiated by the ¢RALC model, thus producing probabilities for the
types of environments. Not all sensor are labeled as some images may contain
objects not matched against SIFT descriptors. But using the principle of conti-
nuity, sensor data not labelled between two or more with identical labels received
the same label.
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(a) Desk.

(b) Monitor. (c) Pioneer AT-3.

Fig. 3. Correspondence between template objects and scenes acquired by a mobile
robot

4 Experiments

Our primary goal in doing these experiments is to evaluate the ontology and the
reasoning procedure with CRALC. Both must be appropriate to deal with real
robotic problems and sensor data.

We provide some results of an experiment consisting in the robot navigating
through three different areas of an indoor environment: two labs and a hallway
connecting both. In this experiment, we gathered some images, 3D points from
a laser sensor, and the estimated pose in each data gathering location given by
odometry and a gyroscope. We determine a priori a set of objects that could be
easily identified through SIFT features and used them to characterize different
areas.

Following the path of the robot, that goes from a laboratory to the other,
passing by the hallway, we picked sequentially 6 points to gather data from the
laser and camera, two in each area. Each point was then classified as Office,
Classroom or Hallway, accordingly to the identified objects in the images using
SIFT; the result of the reasoning can be seen in Table 1. Whenever two sequential
points have different labels, the data are split into a new area. In this case, we
found 3 different areas. Table 1 shows the inferred values for each point. Note
that in the ontology the possible environments were not set as mutually exclusive;
hence the probabilities are for individual objects and are not required to add to
one across objects.
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Table 1. Identified ambients

Datapoints
Location [ 1 | 2 ] 3 | 4 5 6
Observations
3 chairs | 2 chairs 3 doors 2 doors 2 chairs | 2 chairs
1 table | 2 tables 2 signs 2 signs 1 table 1 table
Objects 1 monitor|1 monitor|l extinguisher|l extinguisher|2 monitors|1 monitor
1 cabinet |1 cabinet| 1 switchbox | 1 switchbox | 1 cabinet |2 cabinets
1 door 1 door 1 board 1 door 1 door
Inferred Probability for Each Label
P (Office) 0.4278 | 0.4258 0.0000 0.0000 0.4280 | 0.4280
P(Classroom)|| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P(Hallway) 0.0000 0.0000 0.1578 0.1619 0.0000 0.0000
Area 1 2 3

(a) Top-view. (b) View from inside

Fig. 4. An example of a 3d metric map of a given area

Mapping each identified area alone, we could map the 3 environments. Figure
4 shows the 3d map from one of the areas, a laboratory. Figure 4(a) is a top-view
from the laboratory and Figure 4(b) is a view from inside the laboratory.

5 Conclusion and Future Work

Semantic knowledge can have a significant impact in robotics. In this paper, we
show how to model a robotic mapping task with a probabilistic description logic,
and we show how to process sensor data so as to reason about the identity of
specific areas in an indoor environment. The main objective of this process is
to automatically segment the data acquired by a robot, so that the map could
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be constructed topologically, thus providing a way of scale the mapping process
to larger environments. This objective is said to be achieved, once we managed
to automatically split the data in convenient smaller and tagged sets, each one
being mapped alone.

Instead of using a SIFT algorithm to provide labels, we might have used an
SVM classifier, or perhaps a Conditional Random Field, with better accuracy
and generalization. We plan to integrate the image labeling process with the
probabilistic description logic in the near future.
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