Hyperbolic Weyl Groups

Alex Feingold ${ }^{1}$ Daniel Vallières ${ }^{1,2}$

${ }^{1}$ Department of Mathematical Sciences, State University of New York Binghamton, New York,
${ }^{2}$ Mathematics and Statistics Department, University of Maine Orono, Maine.

December 10, 2015

Information and Thanks To The Organizing Committee

A Talk by Alex Feingold

At the conference dedicated to Efim Zelmanov's 60th birthday:
"Lie and Jordan algebras, Their Representations and Applications-VI"
Organized by the University of São Paulo (São Paulo) and by The Federal University of Rio Grande do Sul (Porto Alegre)

At Bento Goncalves (Brazil), December 13-19, 2015

Thanks To The Local Organizing Committee:
Vyacheslav Futorny (USP) Henrique Guzzo (USP)
Lucia Ikemoto Murakami (USP)
Iryna Kashuba (USP)
Plamen Koshloukov (Unicamp)
Antonio Paques (UFRGS)
Ivan Shestakov (USP)

Definitions: Cartan Matrix, Bilinear Form, Weyl Group

Let $I=\{1, \cdots, n\}$.
Let $C=\left[c_{i j}\right]$ be an $n \times n$ symmetric hyperbolic generalized Cartan matrix, so C has signature $(n-1,1)$.
Let $V=\mathbb{Q}^{n}$ with basis $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$, symmetric bilinear form $S\left(\alpha_{i}, \alpha_{j}\right)=c_{i j}$ and quadratic form $q(\alpha)=S(\alpha, \alpha)$.
The simple reflections

$$
w_{i}\left(\alpha_{j}\right)=\alpha_{j}-c_{i j} \alpha_{i}, \quad i \in I
$$

generate the Weyl group $\mathcal{W}=\mathcal{W}(C)$, a subgroup of the orthogonal group $O(V)$.
\mathcal{W} acts on the integral lattice $\Lambda=\mathbb{Z}^{n}=\sum_{i=1}^{n} \mathbb{Z} \alpha_{i}$.

Weyl Group Relations

For $1 \leq i \neq j \leq n$, define

$$
m_{i j}=2,3,4,6, \infty \text { when } c_{i j} c_{j i}=0,1,2,3, \geq 4, \text { respectively. }
$$

Then the relations among the simple reflections are given by:

$$
\left|w_{i} w_{j}\right|=m_{i j} \text { for } 1 \leq i \neq j \leq n, \quad \text { and } \quad\left|w_{i}\right|=2 \text { for } 1 \leq i \leq n .
$$

Our goal is to understand these hyperbolic Weyl groups in a new way as explicit matrix groups, extending the work of Feingold-Frenkel [1983], and modifying the work of Feingold-Kleinschmidt-Nicolai [2009].
They used division algebras, but we will use Clifford algebras.

Weyl Groups as Matrix Groups

The hyperbolic Weyl group studied by Feingold-Frenkel is the hyperbolic triangle group

$$
\mathcal{W}=T(2,3, \infty) \cong P G L(2, \mathbb{Z})
$$

coming from the Cartan matrix

$$
\left[\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Realization of Weyl Group Action

The key point for understanding that first example was to use 2×2 real symmetric matrices,
$V=H_{2}(\mathbb{R})=\left\{\left.X=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}$
with quadratic form $q(X)=-2 \operatorname{det}(X)$, and the lattice

$$
\Lambda=H_{2}(\mathbb{Z})=\left\{\left.X=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}\right\}
$$

with the action of
$A \in P G L(2, \mathbb{Z})$ on X given by $A \cdot X=A X A^{t}$. In this case,

$$
\begin{gathered}
\alpha_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \alpha_{2}=\left[\begin{array}{cc}
-1 & -1 \\
-1 & 0
\end{array}\right], \quad \alpha_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \\
w_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad w_{2}=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right], \quad w_{3}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
\end{gathered}
$$

Division Algebra Realization of Hyperbolic Root Lattices

In [2] this was generalized to cover cases when $n=3,4,6,10$.
Let \mathbb{K} be a division algebra: \mathbb{R} (real), \mathbb{C} (complex), \mathbb{H} (quaternion)
or \mathbb{O} (octonian), each with a conjugation, $a \rightarrow \bar{a}$, and let

$$
H_{2}(\mathbb{K})=\left\{\left.X=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \right\rvert\, a, c \in \mathbb{R}, \quad b \in \mathbb{K}\right\}
$$

be the Hermitian matrices, $X=X^{\dagger}=\bar{X}^{t}$, with Lorentzian quadratic form $q(X)=-2 \operatorname{det}(X)$. They found a finite type root lattice Q of rank $n-2$ in \mathbb{K}, and obtained a hyperbolic root system $\Phi=\{X \in \Lambda(Q) \mid q(x) \leq 2\}$ in the root lattice

$$
\Lambda(Q)=\left\{\left.X=\left[\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right] \right\rvert\, a, c \in \mathbb{Z}, \quad b \in Q\right\}
$$

Realization of Hyperbolic Weyl Group Action

Using the index set $I=\{-1,0,1, \ldots, n\}$, simple roots of finite type a_{1}, \cdots, a_{n} in $Q \subset \mathbb{K}$, with highest root θ normalized so that $\theta \bar{\theta}=1$, they found hyperbolic simple roots
$\alpha_{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \alpha_{0}=\left[\begin{array}{cc}-1 & -\theta \\ -\bar{\theta} & 0\end{array}\right], \alpha_{i}=\left[\begin{array}{cc}0 & a_{i} \\ \bar{a}_{i} & 0\end{array}\right], 1 \leq i \leq n$,
and matrices
$M_{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad M_{0}=\left[\begin{array}{cc}-\theta & 1 \\ 0 & \bar{\theta}\end{array}\right], \quad M_{i}=\left[\begin{array}{cc}\varepsilon_{i} & 0 \\ 0 & -\bar{\varepsilon}_{i}\end{array}\right], 1 \leq i \leq n$,
where $\varepsilon_{i}=a_{i} / \sqrt{a_{i} \bar{a}_{i}}$, such that $w_{j}(X)=M_{j} \bar{X} M_{j}^{\dagger}$ for $-1 \leq j \leq n$.

Realization of Hyperbolic Weyl Groups

This enabled them to describe the even subgroup \mathcal{W}^{+}as a small degree extension of a matrix group $\operatorname{PSL}(2, Q)$ where Q is a ring of integers.
In the original example, $Q=\mathbb{Z}$, but when $\mathbb{K}=\mathbb{C}$ the ring Q could be either the Eisenstein or the Gaussian integers.

When $\mathbb{K}=\mathbb{H}$ the ring Q was the Hurwitz integers, and when $\mathbb{K}=\mathbb{O}$ the ring Q was the octavians.
The most challenging case to understand was when $\mathbb{K}=\mathbb{O}$, because of the non-associativity of \mathbb{O}.
Further work on that case was done by
Kleinschmidt-Nicolai-Palmqvist [3].

Clifford Algebra

Let $V=\mathbb{Q}^{n}$ with symmetric bilinear form $S(a, b)$ and quadratic form $q(a)=S(a, a)$.

Let $\mathcal{C}=\mathcal{C}(V, S)=\mathcal{C}(V, q)$ be the associated universal Clifford algebra with unit element $1_{\mathcal{C}}$.
Identify V as generators of \mathcal{C} with the relations $v^{2}=-q(v) 1_{\mathcal{C}}$, giving $v w+w v=-2 S(v, w) 1_{\mathcal{C}}$ for all $v, w \in V$.
Identify $\mathbb{Q}=\mathbb{Q} 1_{\mathcal{C}}$ as a subspace of \mathcal{C} so $v^{2}=-q(v)$.
For all $v \in V$, on \mathcal{C} define:
(1) The automorphism determined by $v^{\prime}=-v$,
(2) The anti-involution determined by $v^{*}=v$,
(3) The anti-involution determined by $\bar{v}=\left(v^{*}\right)^{\prime}=\left(v^{\prime}\right)^{*}=-v$.

The last one is called the Clifford conjugation.

Clifford Group

Define the (Atiyah-Bott-Shapiro) action of $x \in \mathcal{C}^{\times}$(invertibles) on $y \in \mathcal{C}$ by

$$
x * y=x y\left(x^{\prime}\right)^{-1}
$$

and define the Clifford group

$$
\Gamma(V)=\left\{x \in \mathcal{C}^{\times} \mid x * V \subseteq V\right\}
$$

For $v \in V, x \in \Gamma(V)$ we have

$$
x * v=-(x * v)^{\prime}=-x^{\prime} v^{\prime} x^{-1}=x^{\prime} v x^{-1}
$$

which implies

$$
S(x * v, x * w)=S(v, w)
$$

so $v \rightarrow x * v$ is an orthogonal transformation on V.

Clifford Group

For any non-isotropic $v \in V, v^{-1}=-v / q(v)$ so

$$
\begin{aligned}
v * w & =-v w v^{-1}=(w v+2 S(v, w)) v^{-1} \\
& =w-\frac{2 S(v, w)}{q(v)} v=r_{v}(w)
\end{aligned}
$$

is the reflection with respect to v.
Theorem: The map $\rho: \Gamma(V) \longrightarrow O(V)$ defined by $\rho(x)(v)=x * v$ for $x \in \Gamma(V), v \in V$, has $\operatorname{ker}(\rho)=\mathbb{Q}^{\times}$giving short exact sequence

$$
1 \longrightarrow \mathbb{Q}^{\times} \longrightarrow \Gamma(V) \xrightarrow{\rho} O(V) \longrightarrow 1
$$

Clifford group $\Gamma(V)$ is generated by the non-isotropic vectors in V.

Abstract Pin Groups

Suppose we are given:

1. Group G and a non-singular quadratic form on V over field F.
2. A short exact sequence of groups

$$
1 \longrightarrow F^{\times} \longrightarrow G \xrightarrow{\rho} O(V) \longrightarrow 1
$$

3. A group morphism $N: G \longrightarrow F^{\times}$satisfying $N(\lambda)=\lambda^{2}$ whenever $\lambda \in F^{\times}$.
Then, we get a commutative diagram

where $f: F^{\times} \rightarrow F^{\times 2}$ is given by $x \mapsto f(x)=x^{2}$ and ϑ is induced from N so that if $\rho(g)=\sigma$, then $\vartheta(\sigma)=N(g) \cdot F^{\times 2}$.

Define the group $\operatorname{Pin}^{+}(\rho, N)=\operatorname{ker}(N)$.
Further diagram chasing gives the following exact sequence:

$$
\begin{equation*}
1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Pin}^{+}(\rho, N) \xrightarrow{\rho} O(V) \xrightarrow{\vartheta} F^{\times} / F^{\times 2} . \tag{1}
\end{equation*}
$$

ϑ is called the spinor norm morphism.

$\operatorname{Pin}^{+}(V)$

Let $V=\mathbb{Q}^{n}$ have non-singular quadratic form q, let $\mathcal{C}=\mathcal{C}(V, q)$, and let $\rho: G=\Gamma(V) \rightarrow O(V)$ as before.
For $x \in \Gamma(V)$ write $x=v_{1} \cdot \ldots \cdot v_{m}$ for $v_{i} \in V$ with $q\left(v_{i}\right) \neq 0$, so

$$
\begin{aligned}
x \bar{x} & =v_{1} \cdot \ldots \cdot v_{m} \cdot \overline{v_{1} \cdot \ldots \cdot v_{m}} \\
& =v_{1} \cdot \ldots \cdot v_{m} \bar{v}_{m} \cdot \ldots \cdot \bar{v}_{1} \\
& =q\left(v_{1}\right) \cdot \ldots \cdot q\left(v_{m}\right) \in \mathbb{Q}^{\times} .
\end{aligned}
$$

Define $N: \Gamma(V) \rightarrow \mathbb{Q}^{\times}$by $N(x)=x \bar{x}=\bar{x} x$, so $N(\lambda)=\lambda^{2}$ if $\lambda \in \mathbb{Q}^{\times}$.
Applying the abstract construction, we let

$$
\operatorname{Pin}^{+}(V)=\operatorname{Pin}^{+}(\rho, N)
$$

and

$$
O^{+}(V)=\rho\left(\operatorname{Pin}^{+}(V)\right)
$$

Vahlen Groups

Let $P=\mathbb{Q}^{2}$ have bilinear form S_{2} and isotropic basis $\left\{f_{1}, f_{2}\right\}$ such that $S_{2}\left(f_{1}, f_{2}\right)=-\frac{1}{2}$. Let $V=\mathbb{Q}^{n}$ have positive definite bilinear form S_{1} and let $W=V \perp P$ be the orthogonal direct sum with bilinear form S. For $w=v+\lambda_{1} f_{1}+\lambda_{2} f_{2} \in W$, the quadratic form $q(w)=q_{1}(v)-\lambda_{1} \lambda_{2}$. Define linear $\operatorname{map} \phi: W \rightarrow M_{2}(\mathcal{C}(V))$ by

$$
\phi(w)=\left(\begin{array}{cc}
v & \lambda_{1} \\
\lambda_{2} & \bar{v}
\end{array}\right)
$$

so that $\phi(w)^{2}=-q(w) I_{2}$. By the universal property of $\mathcal{C}(W)$, we get a \mathbb{Q}-algebra isomorphism

$$
\phi: \mathcal{C}(W) \rightarrow M_{2}(\mathcal{C}(V))
$$

so $\phi\left(\mathcal{C}(W)^{\times}\right)=M_{2}(\mathcal{C}(V))^{\times}$.

Define the Vahlen group of

$$
\mathcal{V}(V)=\phi(\Gamma(W)) \leq M_{2}(\mathcal{C}(V))^{\times} .
$$

The three (anti) involutions ',*, ' of $\mathcal{C}(W)$ correspond to (anti)
involutions α, β, γ of $M_{2}(\mathcal{C}(V))$. For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{C}(V))$ we have:
$\alpha(A)=\left(\begin{array}{cc}a^{\prime} & -b^{\prime} \\ -c^{\prime} & d^{\prime}\end{array}\right), \quad \beta(A)=\left(\begin{array}{cc}\bar{d} & \bar{b} \\ \bar{c} & \bar{a}\end{array}\right), \quad \gamma(A)=\left(\begin{array}{cc}d^{*} & -b^{*} \\ -c^{*} & a^{*}\end{array}\right)$.
Then for all $x \in \mathcal{C}(W)$ we have

$$
\phi\left(x^{\prime}\right)=\alpha(\phi(x)), \quad \phi\left(x^{*}\right)=\beta(\phi(x)), \quad \phi(\bar{x})=\gamma(\phi(x))
$$

Conditions for $A \in \mathcal{V}(V)$

Theorem $\mathrm{A}: A \in \mathcal{V}(V)$ if and only if the following are satisfied:

1. $a d^{*}-b c^{*}=d^{*} a-b^{*} c=\lambda \in \mathbb{Q}^{\times}$,
2. $b a^{*}-a b^{*}=c d^{*}-d c^{*}=0$,
3. $a^{*} c-c^{*} a=d^{*} b-b^{*} d=0$,
4. $a \bar{a}, b \bar{b}, c \bar{c}, d \bar{d} \in \mathbb{Q}$,
5. $b \bar{d}, a \bar{c} \in V$,
6. $a v \bar{b}+b \bar{v} \bar{a}, c v \bar{d}+d \bar{v} \bar{c} \in \mathbb{Q}$ for all $v \in V$,
7. $a v \bar{d}+b \bar{v} \bar{c} \in V$ for all $v \in V$.

$$
\text { Let } H_{2}(V)=\phi(W)=\left\{\left.X=\left(\begin{array}{cc}
v & \lambda_{1} \\
\lambda_{2} & \bar{v}
\end{array}\right) \right\rvert\, v \in V \text { and } \lambda_{1}, \lambda_{2} \in \mathbb{Q}\right\}
$$

with non-singular quadratic form

$$
q(X)=v \bar{v}-\lambda_{1} \lambda_{2}
$$

and S the corresponding symmetric \mathbb{Q}-bilinear form.

$$
\text { Let } A^{\sharp}=\alpha(A)^{-1}=\frac{1}{\lambda}\left(\begin{array}{ll}
\bar{d} & \bar{b} \\
\bar{c} & \bar{a}
\end{array}\right)=\frac{1}{\lambda} \beta(A) \text { for } \lambda=a d^{*}-b c^{*} \text {. }
$$

The Vahlen group $\mathcal{V}(V)$ acts on $H_{2}(V)$ by

$$
A \cdot X=A X A^{\sharp} \quad \text { for } \quad A \in \mathcal{V}(V) \quad \text { and } \quad X \in H_{2}(V) .
$$

We then get a representation $\eta: \mathcal{V}(V) \rightarrow O\left(H_{2}(V)\right)$. Since ϕ restricted to W gives us an isometry $W \xrightarrow{\simeq} H_{2}(V)$, we get an isomorphism of groups $\hat{\phi}: O(W) \longrightarrow O\left(H_{2}(V)\right)$ given by

$$
\hat{\phi}(\sigma)=\phi \circ \sigma \circ \phi^{-1} \text { for } \sigma \in O(W)
$$

In the following commutative diagram the two vertical maps are isomorphisms, and the rows are exact:

If $X \in H_{2}(V)$ is non-isotropic then $\eta(X)=r_{X}$.

Define a spinor norm for Vahlen groups, $N: \mathcal{V}(V) \rightarrow \mathbb{Q}^{\times}$by $N(A)=A \cdot \gamma(A)$. Applying the abstract definition of Pin $^{+}$, we get

$$
\mathcal{V}^{+}(V)=\operatorname{Pin}^{+}(\eta, N)=\operatorname{ker}(N)=\phi\left(\operatorname{Pin}^{+}(W)\right)
$$

For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{C}(V))$ we have:
$A \in \mathcal{V}^{+}(V)$ if and only if all conditions of Theorem A are satisfied with (1) replaced by: $a d^{*}-b c^{*}=d^{*} a-b^{*} c=1$

Canonical Double Extensions

Let $C=\left[c_{i j}\right]$ be a finite type T_{n} irreducible symmetric Cartan matrix, $V=\mathbb{Q}^{n}$ with basis $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ and rescaled symmetric bilinear form $S_{1}\left(\alpha_{i}, \alpha_{j}\right)=c_{i j} / 2$.
The root system Φ of type T_{n} has highest root $\theta=\sum_{i=1}^{n} a_{i} \alpha_{i}$ for which $S_{1}(\theta, \theta)=1$.
Let P and $W=V \perp P$ be as before.
Letting

$$
\alpha_{-1}=f_{1}-f_{2} \quad \text { and } \quad \alpha_{0}=-f_{1}-\theta
$$

we find that $\Pi=\left\{\alpha_{-1}, \alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}\right\}$ determines a symmetric $(n+2) \times(n+2)$ Lorentzian Cartan matrix $C^{++}=\left[2 S\left(\alpha_{i}, \alpha_{j}\right)\right]$, whose type we denote by T_{n}^{++}.
This class of Cartan matrix we call a "canonical double extension".

Apply the previous Vahlen group construction to this W. Recall

$$
\phi: \mathcal{C}(W) \xrightarrow{\simeq} M_{2}(\mathcal{C}(V))
$$

induced by $\phi\left(v+\lambda_{1} f_{1}+\lambda_{2} f_{2}\right)=\left(\begin{array}{cc}v & \lambda_{1} \\ \lambda_{2} & \bar{v}\end{array}\right) \in M_{2}(\mathcal{C}(V))$. We have $\phi\left(\alpha_{i}\right)=X_{i}$ for $\alpha_{i} \in \Pi$ where:
$X_{-1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad X_{0}=\left(\begin{array}{cc}-\theta & -1 \\ 0 & -\bar{\theta}\end{array}\right), \quad X_{i}=\left(\begin{array}{cc}\alpha_{i} & 0 \\ 0 & \bar{\alpha}_{i}\end{array}\right)$ for $1 \leq i \leq n$.
We have the finite and Lorentzian lattices, respectively,

$$
\begin{gathered}
\Lambda=\sum_{i=1}^{n} \mathbb{Z} \alpha_{i} \subseteq V \quad \text { and } \quad \Lambda^{++}=\sum_{i=-1}^{n} \mathbb{Z} \alpha_{i} \subseteq W \\
\phi\left(\Lambda^{++}\right)= \\
H_{2}(\Lambda)=\left\{\left.\left(\begin{array}{cc}
v & n_{1} \\
n_{2} & \bar{v}
\end{array}\right) \right\rvert\, v \in \Lambda \text { and } n_{1}, n_{2} \in \mathbb{Z}\right\} \subseteq M_{2}(\mathcal{C}(V)) .
\end{gathered}
$$

Lattice Structures

Let

$$
O\left(H_{2}(\Lambda)\right)=\left\{\sigma \in O\left(H_{2}(V)\right) \mid \sigma\left(H_{2}(\Lambda)\right)=H_{2}(\Lambda)\right\}
$$

be the group of units of this lattice, and let

$$
O^{+}\left(H_{2}(\Lambda)\right)=O\left(H_{2}(\Lambda)\right) \cap O^{+}\left(H_{2}(V)\right)
$$

Let $\mathcal{O}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}\right] \subseteq \mathcal{C}(V)$ be the ring generated by the α_{i}.
Note that \mathcal{O} is closed under the (anti) involutions ${ }^{\prime},{ }^{*}$, and ${ }^{-}$.
Define

$$
\mathcal{V}(\mathcal{O})=\mathcal{V}(V) \cap M_{2}(\mathcal{O})^{\times} \quad \text { and } \quad \mathcal{V}^{+}(\mathcal{O})=\mathcal{V}^{+}(V) \cap M_{2}(\mathcal{O})^{\times}
$$

Conditions for $A \in \mathcal{V}(\mathcal{O})$

Theorem: Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathcal{O})$. Then $A \in \mathcal{V}(\mathcal{O})$ when:

1. $a d^{*}-b c^{*}=d^{*} a-b^{*} c= \pm 1$,
2. $b a^{*}-a b^{*}=c d^{*}-d c^{*}=0$,
3. $a^{*} c-c^{*} a=d^{*} b-b^{*} d=0$,
4. $a \bar{a}, b \bar{b}, c \bar{c}, d \bar{d} \in \mathbb{Z}$,
5. $b \bar{d}, a \bar{c} \in \Lambda$,
6. $a v \bar{b}+b \bar{v} \bar{a}, c v \bar{d}+d \bar{v} \bar{c} \in \mathbb{Z}$ for all $v \in \Lambda$,
7. $a v \bar{d}+b \bar{v} \bar{c} \in \Lambda$ for all $v \in \Lambda$.

Proposition: With the notation as above, we have

1. $\eta(\mathcal{V}(\mathcal{O})) \subseteq O\left(H_{2}(\Lambda)\right)$,
2. $\eta\left(\mathcal{V}^{+}(\mathcal{O})\right) \subseteq O^{+}\left(H_{2}(\Lambda)\right)$

Since $q\left(X_{i}\right)=1$ for $-1 \leq i \leq n$, the Weyl group $\mathcal{W}\left(C^{++}\right)$is a subgroup of $\mathrm{O}^{+}\left(\mathrm{H}_{2}(\Lambda)\right)$. Letting

$$
\Gamma=\left\langle X_{i} \mid-1 \leq i \leq n\right\rangle \leq \mathcal{V}^{+}(\mathcal{O})
$$

we have $\eta(\Gamma)=\mathcal{W}\left(C^{++}\right)$because $\eta(X)=r_{X}$. Therefore, we have

$$
\mathcal{W}\left(C^{++}\right) \subseteq \eta\left(\mathcal{V}^{+}(\mathcal{O})\right) \subseteq O^{+}\left(H_{2}(\Lambda)\right)
$$

Let

$$
\mathcal{P V}(\mathcal{O})=\mathcal{V}(\mathcal{O}) /\{ \pm 1\} \quad \text { and } \quad \mathcal{P} \mathcal{V}^{+}(\mathcal{O})=\mathcal{V}^{+}(\mathcal{O}) /\{ \pm 1\}
$$

We finally come to our main result!
Details will appear in Feingold-Vallières [5].

Main Result

Theorem: With the notation as above, η induces an isomorphism of groups

$$
\eta: \mathcal{P} \mathcal{V}^{+}(\mathcal{O}) \xrightarrow{\simeq} \mathcal{W}\left(C^{++}\right)
$$

for the following hyperbolic canonical double extensions:

1. A_{n}^{++}for $n=1,2,3,4,5,6$,
2. D_{n}^{++}for $n=5,6,7,8$,
3. E_{n}^{++}for $n=6,7,8$.

Proof of Main Result

Corollary 5.10 of Kac [4] shows that for each hyperbolic canonical double extension with symmetric Cartan matrix, one has

$$
O\left(H_{2}(\Lambda)\right)= \pm \operatorname{Aut}\left(C^{++}\right) \ltimes \mathcal{W}\left(C^{++}\right)
$$

where $\operatorname{Aut}\left(\mathrm{C}^{++}\right)$is the group of outer automorphisms of the corresponding Dynkin diagram. It is clear that -id $\notin O^{+}\left(H_{2}(\Lambda)\right)$. For each of the hyperbolic canonical double extensions with a symmetric Cartan matrix, we computed the spinor norm of $\pm a$, for each outer automorphism a. These spinor norms are non-trivial exactly in the cases listed in the theorem. Thus, in those cases, the chain of subgroups above induces the following equalities

$$
\mathcal{W}\left(\mathrm{C}^{++}\right)=\eta\left(\mathcal{V}^{+}(\mathcal{O})\right)=O^{+}\left(H_{2}(\Lambda)\right)
$$

References

[1] A.J. Feingold and I.B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263 (1983), 87-144.
[2] A.J. Feingold, A. Kleinschmidt and H. Nicolai, Hyperbolic Weyl groups and the four normed division algebras, Journal of Algebra 322 (2009), 1295-1339.
[3] A. Kleinschmidt and H. Nicolai, J. Palmqvist, Modular realizations of hyperbolic Weyl groups, arXiv:1010.2212. [4] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, 1990.
[5] A. J. Feingold, D. Vallières, Weyl groups of some hyperbolic Kac-Moody algebras, in preparation.

Thank you for your kind attention!

