Hyperbolic Weyl Groups

Alex Feingold ¹ Daniel Vallières ^{1,2}

¹Department of Mathematical Sciences, State University of New York Binghamton, New York,

²Mathematics and Statistics Department, University of Maine Orono, Maine.

December 10, 2015

Information and Thanks To The Organizing Committee

A Talk by Alex Feingold

At the conference dedicated to Efim Zelmanov's 60th birthday: "Lie and Jordan algebras, Their Representations and Applications-VI" Organized by the University of São Paulo (São Paulo) and by The Federal University of Rio Grande do Sul (Porto Alegre) At Bento Goncalves (Brazil), December 13-19, 2015

> Thanks To The Local Organizing Committee: Vyacheslav Futorny (USP) Henrique Guzzo (USP) Lucia Ikemoto Murakami (USP) Iryna Kashuba (USP) Plamen Koshloukov (Unicamp) Antonio Paques (UFRGS) Ivan Shestakov (USP)

Definitions: Cartan Matrix, Bilinear Form, Weyl Group

Let $I = \{1, \dots, n\}$. Let $C = [c_{ij}]$ be an $n \times n$ symmetric hyperbolic generalized Cartan matrix, so C has signature (n - 1, 1). Let $V = \mathbb{Q}^n$ with basis $\Pi = \{\alpha_1, \dots, \alpha_n\}$, symmetric bilinear form $S(\alpha_i, \alpha_j) = c_{ij}$ and quadratic form $q(\alpha) = S(\alpha, \alpha)$. The simple reflections

$$w_i(\alpha_j) = \alpha_j - c_{ij}\alpha_i, \qquad i \in I,$$

◆□▼▲□▼▲□▼▲□▼▲□▼

generate the Weyl group W = W(C), a subgroup of the orthogonal group O(V). W acts on the integral lattice $\Lambda = \mathbb{Z}^n = \sum_{i=1}^n \mathbb{Z}\alpha_i$.

Weyl Group Relations

For $1 \le i \ne j \le n$, define

 $m_{ij} = 2, 3, 4, 6, \infty$ when $c_{ij}c_{ji} = 0, 1, 2, 3, \ge 4$, respectively.

Then the relations among the simple reflections are given by:

$$|w_iw_j| = m_{ij}$$
 for $1 \le i \ne j \le n$, and $|w_i| = 2$ for $1 \le i \le n$.

Our goal is to understand these hyperbolic Weyl groups in a new way as explicit matrix groups, extending the work of Feingold-Frenkel [1983], and modifying the work of Feingold-Kleinschmidt-Nicolai [2009].

They used division algebras, but we will use Clifford algebras.

Weyl Groups as Matrix Groups

The hyperbolic Weyl group studied by Feingold-Frenkel is the hyperbolic triangle group

$$\mathcal{W} = T(2,3,\infty) \cong PGL(2,\mathbb{Z})$$

coming from the Cartan matrix

$$\begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

٠

・ロト・西ト・ヨト・ヨト ・ヨー うへぐ

Realization of Weyl Group Action

The key point for understanding that first example was to use 2×2 real symmetric matrices,

$$V = H_2(\mathbb{R}) = \left\{ X = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

with quadratic form $q(X) = -2 \det(X)$, and the lattice

$$\Lambda = H_2(\mathbb{Z}) = \left\{ X = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}$$

with the action of

 $A\in \textit{PGL}(2,\mathbb{Z})$ on X given by $A\cdot X=AXA^t.$ In this case,

$$\alpha_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \alpha_2 = \begin{bmatrix} -1 & -1 \\ -1 & 0 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$
$$w_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad w_2 = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}, \quad w_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Division Algebra Realization of Hyperbolic Root Lattices

In [2] this was generalized to cover cases when n = 3, 4, 6, 10. Let \mathbb{K} be a division algebra: \mathbb{R} (real), \mathbb{C} (complex), \mathbb{H} (quaternion) or \mathbb{O} (octonian), each with a conjugation, $a \to \bar{a}$, and let

$$H_2(\mathbb{K}) = \left\{ X = \begin{bmatrix} a & b \\ ar{b} & c \end{bmatrix} \mid a, c \in \mathbb{R}, \quad b \in \mathbb{K}
ight\}$$

be the Hermitian matrices, $X = X^{\dagger} = \overline{X}^{t}$, with Lorentzian quadratic form $q(X) = -2 \det(X)$. They found a finite type root lattice Q of rank n-2 in \mathbb{K} , and obtained a hyperbolic root system $\Phi = \{X \in \Lambda(Q) \mid q(x) \le 2\}$ in the root lattice

$$\Lambda(Q) = \left\{ X = \begin{bmatrix} a & b \\ \overline{b} & c \end{bmatrix} \mid a, c \in \mathbb{Z}, \quad b \in Q \right\}.$$

◆□▼▲□▼▲□▼▲□▼▲□▼

Realization of Hyperbolic Weyl Group Action

Using the index set $I = \{-1, 0, 1, ..., n\}$, simple roots of finite type a_1, \dots, a_n in $Q \subset \mathbb{K}$, with highest root θ normalized so that $\theta \overline{\theta} = 1$, they found hyperbolic simple roots

$$\alpha_{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \ \alpha_{0} = \begin{bmatrix} -1 & -\theta \\ -\overline{\theta} & 0 \end{bmatrix}, \ \alpha_{i} = \begin{bmatrix} 0 & a_{i} \\ \overline{a}_{i} & 0 \end{bmatrix}, \ 1 \le i \le n,$$

and matrices

$$M_{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ M_0 = \begin{bmatrix} -\theta & 1 \\ 0 & \overline{\theta} \end{bmatrix}, \ M_i = \begin{bmatrix} \varepsilon_i & 0 \\ 0 & -\overline{\varepsilon}_i \end{bmatrix}, \ 1 \le i \le n,$$

◆□▼▲□▼▲□▼▲□▼▲□▼

where $\varepsilon_i = a_i / \sqrt{a_i \bar{a}_i}$, such that $w_j(X) = M_j \bar{X} M_j^{\dagger}$ for $-1 \le j \le n$.

Realization of Hyperbolic Weyl Groups

This enabled them to describe the even subgroup W^+ as a small degree extension of a matrix group PSL(2, Q) where Q is a ring of integers.

In the original example, $Q = \mathbb{Z}$, but when $\mathbb{K} = \mathbb{C}$ the ring Q could be either the Eisenstein or the Gaussian integers.

When $\mathbb{K} = \mathbb{H}$ the ring Q was the Hurwitz integers, and when $\mathbb{K} = \mathbb{O}$ the ring Q was the octavians.

The most challenging case to understand was when $\mathbb{K} = \mathbb{O}$, because of the non-associativity of \mathbb{O} .

Further work on that case was done by Kleinschmidt-Nicolai-Palmqvist [3].

Clifford Algebra

Let $V = \mathbb{Q}^n$ with symmetric bilinear form S(a, b) and quadratic form q(a) = S(a, a).

Let C = C(V, S) = C(V, q) be the associated universal Clifford algebra with unit element 1_C .

Identify V as generators of C with the relations $v^2 = -q(v)\mathbf{1}_C$, giving $vw + wv = -2S(v, w)\mathbf{1}_C$ for all $v, w \in V$.

Identify $\mathbb{Q} = \mathbb{Q} \mathbb{1}_{\mathcal{C}}$ as a subspace of \mathcal{C} so $v^2 = -q(v)$.

For all $v \in V$, on C define:

(1) The automorphism determined by v' = -v,

(2) The anti-involution determined by $v^* = v$,

(3) The anti-involution determined by $\bar{v} = (v^*)' = (v')^* = -v$. The last one is called the *Clifford conjugation*.

Clifford Group

Define the (Atiyah-Bott-Shapiro) action of $x \in \mathcal{C}^{\times}$ (invertibles) on $y \in \mathcal{C}$ by

$$x * y = xy(x')^{-1}$$

and define the Clifford group

$$\Gamma(V) = \{x \in \mathcal{C}^{ imes} \mid x * V \subseteq V\}.$$

For $v \in V$, $x \in \Gamma(V)$ we have

$$x * v = -(x * v)' = -x'v'x^{-1} = x'vx^{-1}$$

which implies

$$S(x * v, x * w) = S(v, w)$$

・ロト・西ト・ヨト・ヨト ・ヨー うへぐ

so $v \to x * v$ is an orthogonal transformation on V.

Clifford Group

For any non-isotropic $v \in V$, $v^{-1} = -v/q(v)$ so

$$v * w = -vwv^{-1} = (wv + 2S(v, w))v^{-1}$$

= $w - \frac{2S(v, w)}{q(v)}v = r_v(w)$

is the reflection with respect to v.

Theorem: The map $\rho : \Gamma(V) \longrightarrow O(V)$ defined by $\rho(x)(v) = x * v$ for $x \in \Gamma(V)$, $v \in V$, has $\ker(\rho) = \mathbb{Q}^{\times}$ giving short exact sequence

$$1 \longrightarrow \mathbb{Q}^{\times} \longrightarrow \Gamma(V) \stackrel{\rho}{\longrightarrow} O(V) \longrightarrow 1.$$

Clifford group $\Gamma(V)$ is generated by the non-isotropic vectors in V.

Abstract Pin Groups

Suppose we are given:

- 1. Group G and a non-singular quadratic form on V over field F.
- 2. A short exact sequence of groups

$$1 \longrightarrow F^{\times} \longrightarrow G \stackrel{\rho}{\longrightarrow} O(V) \longrightarrow 1.$$

3. A group morphism $N : G \longrightarrow F^{\times}$ satisfying $N(\lambda) = \lambda^2$ whenever $\lambda \in F^{\times}$.

Then, we get a commutative diagram

where $f: F^{\times} \to F^{\times 2}$ is given by $x \mapsto f(x) = x^2$ and ϑ is induced from N so that if $\rho(g) = \sigma$, then $\vartheta(\sigma) = N(g) \cdot F^{\times 2}$.

Define the group $Pin^+(\rho, N) = \ker(N)$.

Further diagram chasing gives the following exact sequence:

$$1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Pin}^+(\rho, \mathsf{N}) \stackrel{\rho}{\longrightarrow} O(\mathsf{V}) \stackrel{\vartheta}{\longrightarrow} \mathsf{F}^{\times}/\mathsf{F}^{\times 2}.$$
(1)

・ロト・西ト・ヨト・ヨト・ 日・ つへぐ

 ϑ is called the spinor norm morphism.

$Pin^+(V)$

Let $V = \mathbb{Q}^n$ have non-singular quadratic form q, let C = C(V, q), and let $\rho : G = \Gamma(V) \to O(V)$ as before. For $x \in \Gamma(V)$ write $x = v_1 \cdot \ldots \cdot v_m$ for $v_i \in V$ with $q(v_i) \neq 0$, so $x\overline{x} = v_1 \cdot \ldots \cdot v_m \cdot \overline{v_1 \cdot \ldots \cdot v_m}$ $= v_1 \cdot \ldots \cdot v_m \overline{v_m \cdot \ldots \cdot v_m}$ $= q(v_1) \cdot \ldots \cdot q(v_m) \in \mathbb{Q}^{\times}$. Define $N : \Gamma(V) \to \mathbb{Q}^{\times}$ by $N(x) = x\overline{x} = \overline{x}x$, so $N(\lambda) = \lambda^2$ if $\lambda \in \mathbb{Q}^{\times}$.

Applying the abstract construction, we let

$$\mathsf{Pin}^+(\mathsf{V})=\mathsf{Pin}^+(
ho,\mathsf{N})$$

and

$$O^+(V) = \rho(Pin^+(V)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○

Vahlen Groups

Let $P = \mathbb{Q}^2$ have bilinear form S_2 and isotropic basis $\{f_1, f_2\}$ such that $S_2(f_1, f_2) = -\frac{1}{2}$. Let $V = \mathbb{Q}^n$ have positive definite bilinear form S_1 and let $W = V \perp P$ be the orthogonal direct sum with bilinear form S. For $w = v + \lambda_1 f_1 + \lambda_2 f_2 \in W$, the quadratic form $q(w) = q_1(v) - \lambda_1 \lambda_2$. Define linear map $\phi : W \to M_2(\mathcal{C}(V))$ by

$$\phi(w) = egin{pmatrix} v & \lambda_1 \ \lambda_2 & ar v \end{pmatrix}$$

so that $\phi(w)^2 = -q(w)I_2$. By the universal property of $\mathcal{C}(W)$, we get a \mathbb{Q} -algebra isomorphism

$$\phi:\mathcal{C}(W) o M_2(\mathcal{C}(V))$$

・ロト・日本・日本・日本・日本・日本

so $\phi(\mathcal{C}(W)^{\times}) = M_2(\mathcal{C}(V))^{\times}$.

Define the Vahlen group of

$$\mathcal{V}(V) = \phi(\Gamma(W)) \leq M_2(\mathcal{C}(V))^{\times}.$$

The three (anti) involutions ',*, \neg of $\mathcal{C}(W)$ correspond to (anti) involutions α , β , γ of $M_2(\mathcal{C}(V))$. For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathcal{C}(V))$ we have:

$$\alpha(A) = \begin{pmatrix} a' & -b' \\ -c' & d' \end{pmatrix}, \quad \beta(A) = \begin{pmatrix} \overline{d} & \overline{b} \\ \overline{c} & \overline{a} \end{pmatrix}, \quad \gamma(A) = \begin{pmatrix} d^* & -b^* \\ -c^* & a^* \end{pmatrix}$$

Then for all $x \in \mathcal{C}(W)$ we have

$$\phi(x')=lpha(\phi(x)), \quad \phi(x^*)=eta(\phi(x)), \quad \phi(ar x)=\gamma(\phi(x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

Conditions for $A \in \mathcal{V}(V)$

Theorem A: $A \in \mathcal{V}(V)$ if and only if the following are satisfied:

1.
$$ad^* - bc^* = d^*a - b^*c = \lambda \in \mathbb{Q}^{\times}$$
,
2. $ba^* - ab^* = cd^* - dc^* = 0$,
3. $a^*c - c^*a = d^*b - b^*d = 0$,
4. $a\bar{a}, b\bar{b}, c\bar{c}, d\bar{d} \in \mathbb{Q}$,
5. $b\bar{d}, a\bar{c} \in V$,
6. $av\bar{b} + b\bar{v}\bar{a}, cv\bar{d} + d\bar{v}\bar{c} \in \mathbb{Q}$ for all $v \in V$,
7. $av\bar{d} + b\bar{v}\bar{c} \in V$ for all $v \in V$.

Let
$$H_2(V) = \phi(W) = \left\{ X = \begin{pmatrix} v & \lambda_1 \\ \lambda_2 & \overline{v} \end{pmatrix} \middle| v \in V \text{ and } \lambda_1, \lambda_2 \in \mathbb{Q} \right\}$$

with non-singular quadratic form

$$q(X) = v \bar{v} - \lambda_1 \lambda_2$$

and S the corresponding symmetric \mathbb{Q} -bilinear form.

Let
$$A^{\sharp} = \alpha(A)^{-1} = \frac{1}{\lambda} \begin{pmatrix} \overline{d} & \overline{b} \\ \overline{c} & \overline{a} \end{pmatrix} = \frac{1}{\lambda} \beta(A)$$
 for $\lambda = ad^* - bc^*$.

The Vahlen group $\mathcal{V}(V)$ acts on $H_2(V)$ by

$$A \cdot X = AXA^{\sharp}$$
 for $A \in \mathcal{V}(V)$ and $X \in H_2(V)$.

We then get a representation $\eta : \mathcal{V}(V) \to O(H_2(V))$. Since ϕ restricted to W gives us an isometry $W \xrightarrow{\simeq} H_2(V)$, we get an isomorphism of groups $\hat{\phi} : O(W) \longrightarrow O(H_2(V))$ given by

$$\hat{\phi}(\sigma) = \phi \circ \sigma \circ \phi^{-1}$$
 for $\sigma \in O(W)$.

In the following commutative diagram the two vertical maps are isomorphisms, and the rows are exact:

・ロト・日本・日本・日本・日本・日本

If $X \in H_2(V)$ is non-isotropic then $\eta(X) = r_X$.

Define a spinor norm for Vahlen groups, $N : \mathcal{V}(V) \to \mathbb{Q}^{\times}$ by $N(A) = A \cdot \gamma(A)$. Applying the abstract definition of Pin^+ , we get

$$\mathcal{V}^+(V) = Pin^+(\eta, N) = ker(N) = \phi(Pin^+(W)).$$

For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathcal{C}(V))$ we have:

 $A \in \mathcal{V}^+(V)$ if and only if all conditions of Theorem A are satisfied with (1) replaced by: $ad^* - bc^* = d^*a - b^*c = 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Canonical Double Extensions

Let $C = [c_{ij}]$ be a finite type T_n irreducible symmetric Cartan matrix, $V = \mathbb{Q}^n$ with basis $\{\alpha_1, \dots, \alpha_n\}$ and rescaled symmetric bilinear form $S_1(\alpha_i, \alpha_j) = c_{ij}/2$.

The root system Φ of type T_n has highest root $\theta = \sum_{i=1}^n a_i \alpha_i$ for which $S_1(\theta, \theta) = 1$.

Let *P* and $W = V \perp P$ be as before.

Letting

$$\alpha_{-1} = f_1 - f_2 \quad \text{and} \quad \alpha_0 = -f_1 - \theta,$$

we find that $\Pi = \{\alpha_{-1}, \alpha_0, \alpha_1, \cdots, \alpha_n\}$ determines a symmetric $(n+2) \times (n+2)$ Lorentzian Cartan matrix $C^{++} = [2S(\alpha_i, \alpha_j)]$, whose type we denote by T_n^{++} .

This class of Cartan matrix we call a "canonical double extension".

Apply the previous Vahlen group construction to this W. Recall

$$\phi: \mathcal{C}(W) \xrightarrow{\simeq} M_2(\mathcal{C}(V))$$

induced by $\phi(v + \lambda_1 f_1 + \lambda_2 f_2) = \begin{pmatrix} v & \lambda_1 \\ \lambda_2 & \overline{v} \end{pmatrix} \in M_2(\mathcal{C}(V))$. We have
 $\phi(\alpha_i) = X_i \text{ for } \alpha_i \in \Pi \text{ where:}$
 $X_{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ X_0 = \begin{pmatrix} -\theta & -1 \\ 0 & -\overline{\theta} \end{pmatrix}, \ X_i = \begin{pmatrix} \alpha_i & 0 \\ 0 & \overline{\alpha}_i \end{pmatrix} \text{ for } 1 \leq i \leq n$

We have the finite and Lorentzian lattices, respectively,

$$\Lambda = \sum_{i=1}^{n} \mathbb{Z}\alpha_{i} \subseteq V \quad \text{and} \quad \Lambda^{++} = \sum_{i=-1}^{n} \mathbb{Z}\alpha_{i} \subseteq W.$$
$$\phi(\Lambda^{++}) = H_{2}(\Lambda) = \left\{ \begin{pmatrix} v & n_{1} \\ n_{2} & \bar{v} \end{pmatrix} \middle| v \in \Lambda \text{ and } n_{1}, n_{2} \in \mathbb{Z} \right\} \subseteq M_{2}(\mathcal{C}(V)).$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Lattice Structures

Let

$$O(H_2(\Lambda)) = \{ \sigma \in O(H_2(V)) \mid \sigma(H_2(\Lambda)) = H_2(\Lambda) \}$$

be the group of units of this lattice, and let

$$O^+(H_2(\Lambda)) = O(H_2(\Lambda)) \cap O^+(H_2(V)).$$

Let $\mathcal{O} = \mathbb{Z}[\alpha_1, \ldots, \alpha_n] \subseteq \mathcal{C}(V)$ be the ring generated by the α_i . Note that \mathcal{O} is closed under the (anti) involutions ',*, and ⁻. Define

$$\mathcal{V}(\mathcal{O}) = \mathcal{V}(V) \cap M_2(\mathcal{O})^{ imes} ext{ and } \mathcal{V}^+(\mathcal{O}) = \mathcal{V}^+(V) \cap M_2(\mathcal{O})^{ imes}.$$

Conditions for $A \in \mathcal{V}(\mathcal{O})$

Theorem: Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathcal{O})$$
. Then $A \in \mathcal{V}(\mathcal{O})$ when:
1. $ad^* - bc^* = d^*a - b^*c = \pm 1$,
2. $ba^* - ab^* = cd^* - dc^* = 0$,
3. $a^*c - c^*a = d^*b - b^*d = 0$,
4. $a\bar{a}, b\bar{b}, c\bar{c}, d\bar{d} \in \mathbb{Z}$,
5. $b\bar{d}, a\bar{c} \in \Lambda$,
6. $av\bar{b} + b\bar{v}\bar{a}, cv\bar{d} + d\bar{v}\bar{c} \in \mathbb{Z}$ for all $v \in \Lambda$,
7. $av\bar{d} + b\bar{v}\bar{c} \in \Lambda$ for all $v \in \Lambda$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへで

Proposition: With the notation as above, we have

1.
$$\eta(\mathcal{V}(\mathcal{O})) \subseteq O(H_2(\Lambda)),$$

2. $\eta(\mathcal{V}^+(\mathcal{O})) \subseteq O^+(H_2(\Lambda))$

Since $q(X_i) = 1$ for $-1 \le i \le n$, the Weyl group $\mathcal{W}(C^{++})$ is a subgroup of $O^+(H_2(\Lambda))$. Letting

$$\Gamma = \langle X_i \mid -1 \leq i \leq n \rangle \leq \mathcal{V}^+(\mathcal{O})$$

we have $\eta(\Gamma) = \mathcal{W}(C^{++})$ because $\eta(X) = r_X$. Therefore, we have $\mathcal{W}(C^{++}) \subseteq \eta \ (\mathcal{V}^+(\mathcal{O})) \subseteq O^+(H_2(\Lambda)).$

Let

$$\mathcal{PV}(\mathcal{O}) = \mathcal{V}(\mathcal{O})/\{\pm 1\}$$
 and $\mathcal{PV}^+(\mathcal{O}) = \mathcal{V}^+(\mathcal{O})/\{\pm 1\}.$

・ロト・日本・日本・日本・日本・日本

We finally come to our main result! Details will appear in Feingold-Vallières [5].

Main Result

Theorem: With the notation as above, $\boldsymbol{\eta}$ induces an isomorphism of groups

$$\eta: \mathcal{PV}^+(\mathcal{O}) \stackrel{\simeq}{\longrightarrow} \mathcal{W}(\mathcal{C}^{++})$$

for the following hyperbolic canonical double extensions:

1.
$$A_n^{++}$$
 for $n = 1, 2, 3, 4, 5, 6$,
2. D_n^{++} for $n = 5, 6, 7, 8$,
3. E_n^{++} for $n = 6, 7, 8$.

Proof of Main Result

Corollary 5.10 of Kac [4] shows that for each hyperbolic canonical double extension with symmetric Cartan matrix, one has

$$O(H_2(\Lambda)) = \pm \operatorname{Aut}(C^{++}) \ltimes \mathcal{W}(C^{++}),$$

where $\operatorname{Aut}(C^{++})$ is the group of outer automorphisms of the corresponding Dynkin diagram. It is clear that $-id \notin O^+(H_2(\Lambda))$. For each of the hyperbolic canonical double extensions with a symmetric Cartan matrix, we computed the spinor norm of $\pm a$, for each outer automorphism a. These spinor norms are non-trivial exactly in the cases listed in the theorem. Thus, in those cases, the chain of subgroups above induces the following equalities

$$\mathcal{W}(\mathcal{C}^{++}) = \eta \left(\mathcal{V}^+(\mathcal{O}) \right) = \mathcal{O}^+(\mathcal{H}_2(\Lambda)).$$

References

[1] A.J. Feingold and I.B. Frenkel, *A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus 2*, Math. Ann. **263** (1983), 87-144.

[2] A.J. Feingold, A. Kleinschmidt and H. Nicolai, *Hyperbolic Weyl* groups and the four normed division algebras, Journal of Algebra **322** (2009), 1295-1339.

[3] A. Kleinschmidt and H. Nicolai, J. Palmqvist, *Modular realizations of hyperbolic Weyl groups*, arXiv:1010.2212.

[4] V. Kac, **Infinite dimensional Lie algebras**, Cambridge University Press, Cambridge, 1990.

[5] A. J. Feingold, D. Vallières, *Weyl groups of some hyperbolic Kac-Moody algebras*, in preparation.

Thank you for your kind attention!