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Definitions: Cartan Matrix, Bilinear Form, Weyl Group

Let I = {1, · · · , n}.
Let C = [cij ] be an n × n symmetric hyperbolic generalized Cartan
matrix, so C has signature (n − 1, 1).
Let V = Qn with basis Π = {α1, · · · , αn}, symmetric bilinear form
S(αi , αj) = cij and quadratic form q(α) = S(α, α).
The simple reflections

wi (αj) = αj − cijαi , i ∈ I,

generate the Weyl group W =W(C), a subgroup of the
orthogonal group O(V ).
W acts on the integral lattice Λ = Zn =

∑n
i=1 Zαi .



Weyl Group Relations

For 1 ≤ i 6= j ≤ n, define

mij = 2, 3, 4, 6,∞ when cijcji = 0, 1, 2, 3,≥ 4, respectively.

Then the relations among the simple reflections are given by:

|wi wj | = mij for 1 ≤ i 6= j ≤ n, and |wi | = 2 for 1 ≤ i ≤ n.

Our goal is to understand these hyperbolic Weyl groups in a new
way as explicit matrix groups, extending the work of
Feingold-Frenkel [1983], and modifying the work of
Feingold-Kleinschmidt-Nicolai [2009].
They used division algebras, but we will use Clifford algebras.



Weyl Groups as Matrix Groups

The hyperbolic Weyl group studied by Feingold-Frenkel is the
hyperbolic triangle group

W = T (2, 3,∞) ∼= PGL(2,Z)

coming from the Cartan matrix 2 −2 0
−2 2 −1
0 −1 2

 .



Realization of Weyl Group Action
The key point for understanding that first example was to use
2× 2 real symmetric matrices,

V = H2(R) =
{

X =
[

a b
b c

]
| a, b, c ∈ R

}
with quadratic form q(X ) = −2 det(X ), and the lattice

Λ = H2(Z) =
{

X =
[

a b
b c

]
| a, b, c ∈ Z

}
with the action of
A ∈ PGL(2,Z) on X given by A · X = AXAt . In this case,

α1 =
[

0 1
1 0

]
, α2 =

[
−1 −1
−1 0

]
, α3 =

[
1 0
0 −1

]
,

w1 =
[

1 0
0 −1

]
, w2 =

[
−1 1
0 1

]
, w3 =

[
0 1
1 0

]
.



Division Algebra Realization of Hyperbolic Root Lattices

In [2] this was generalized to cover cases when n = 3, 4, 6, 10.
Let K be a division algebra: R (real), C (complex), H (quaternion)
or O (octonian), each with a conjugation, a→ ā, and let

H2(K) =
{

X =
[

a b
b̄ c

] ∣∣∣∣ a, c ∈ R, b ∈ K
}

be the Hermitian matrices, X = X † = X̄ t , with Lorentzian
quadratic form q(X ) = −2 det(X ). They found a finite type root
lattice Q of rank n − 2 in K, and obtained a hyperbolic root
system Φ = {X ∈ Λ(Q) | q(x) ≤ 2} in the root lattice

Λ(Q) =
{

X =
[

a b
b̄ c

] ∣∣∣∣ a, c ∈ Z, b ∈ Q
}
.



Realization of Hyperbolic Weyl Group Action

Using the index set I = {−1, 0, 1, ..., n}, simple roots of finite type
a1, · · · , an in Q ⊂ K, with highest root θ normalized so that
θθ̄ = 1, they found hyperbolic simple roots

α−1 =
[

1 0
0 −1

]
, α0 =

[
−1 −θ
−θ̄ 0

]
, αi =

[
0 ai
āi 0

]
, 1 ≤ i ≤ n,

and matrices

M−1 =
[

0 1
1 0

]
, M0 =

[
−θ 1
0 θ̄

]
, Mi =

[
εi 0
0 −ε̄i

]
, 1 ≤ i ≤ n,

where εi = ai/
√

ai āi , such that wj(X ) = Mj X̄M†j for −1 ≤ j ≤ n.



Realization of Hyperbolic Weyl Groups

This enabled them to describe the even subgroup W+ as a small
degree extension of a matrix group PSL(2,Q) where Q is a ring of
integers.
In the original example, Q = Z, but when K = C the ring Q could
be either the Eisenstein or the Gaussian integers.
When K = H the ring Q was the Hurwitz integers, and when
K = O the ring Q was the octavians.
The most challenging case to understand was when K = O,
because of the non-associativity of O.
Further work on that case was done by
Kleinschmidt-Nicolai-Palmqvist [3].



Clifford Algebra

Let V = Qn with symmetric bilinear form S(a, b) and quadratic
form q(a) = S(a, a).
Let C = C(V , S) = C(V , q) be the associated universal Clifford
algebra with unit element 1C .
Identify V as generators of C with the relations v2 = −q(v)1C ,
giving vw + wv = −2S(v ,w)1C for all v ,w ∈ V .
Identify Q = Q1C as a subspace of C so v2 = −q(v).
For all v ∈ V , on C define:
(1) The automorphism determined by v ′ = −v ,
(2) The anti-involution determined by v∗ = v ,
(3) The anti-involution determined by v̄ = (v∗)′ = (v ′)∗ = −v .
The last one is called the Clifford conjugation.



Clifford Group

Define the (Atiyah-Bott-Shapiro) action of x ∈ C× (invertibles) on
y ∈ C by

x ∗ y = xy(x ′)−1

and define the Clifford group

Γ(V ) = {x ∈ C× | x ∗ V ⊆ V }.

For v ∈ V , x ∈ Γ(V ) we have

x ∗ v = −(x ∗ v)′ = −x ′v ′x−1 = x ′vx−1

which implies
S(x ∗ v , x ∗ w) = S(v ,w)

so v → x ∗ v is an orthogonal transformation on V .



Clifford Group

For any non-isotropic v ∈ V , v−1 = −v/q(v) so

v ∗ w = −vwv−1 = (wv + 2S(v ,w))v−1

= w − 2S(v ,w)
q(v) v = rv (w)

is the reflection with respect to v .
Theorem: The map ρ : Γ(V ) −→ O(V ) defined by ρ(x)(v) = x ∗ v
for x ∈ Γ(V ), v ∈ V , has ker(ρ) = Q× giving short exact sequence

1 −→ Q× −→ Γ(V ) ρ−→ O(V ) −→ 1.

Clifford group Γ(V ) is generated by the non-isotropic vectors in V .



Abstract Pin Groups

Suppose we are given:
1. Group G and a non-singular quadratic form on V over field F .
2. A short exact sequence of groups

1 −→ F× −→ G ρ−→ O(V ) −→ 1.

3. A group morphism N : G −→ F× satisfying N(λ) = λ2

whenever λ ∈ F×.
Then, we get a commutative diagram

1 −−−−→ F× −−−−→ G ρ−−−−→ O(V ) −−−−→ 1yf
yN

yϑ
1 −−−−→ F×2 −−−−→ F× −−−−→ F×/F×2 −−−−→ 1,

where f : F× → F×2 is given by x 7→ f (x) = x2 and ϑ is induced
from N so that if ρ(g) = σ, then ϑ(σ) = N(g) · F×2.



Define the group Pin+(ρ,N) = ker(N).
Further diagram chasing gives the following exact sequence:

1 −→ {±1} −→ Pin+(ρ,N) ρ−→ O(V ) ϑ−→ F×/F×2. (1)

ϑ is called the spinor norm morphism.



Pin+(V )

Let V = Qn have non-singular quadratic form q, let C = C(V , q),
and let ρ : G = Γ(V )→ O(V ) as before.
For x ∈ Γ(V ) write x = v1 · . . . · vm for vi ∈ V with q(vi ) 6= 0, so

xx = v1 · . . . · vm · v1 · . . . · vm

= v1 · . . . · vmvm · . . . · v1

= q(v1) · . . . · q(vm) ∈ Q×.
Define N : Γ(V )→ Q× by N(x) = xx = xx , so N(λ) = λ2 if
λ ∈ Q×.
Applying the abstract construction, we let

Pin+(V ) = Pin+(ρ,N)

and
O+(V ) = ρ(Pin+(V )).



Vahlen Groups

Let P = Q2 have bilinear form S2 and isotropic basis {f1, f2} such
that S2(f1, f2) = −1

2 . Let V = Qn have positive definite bilinear
form S1 and let W = V ⊥ P be the orthogonal direct sum with
bilinear form S. For w = v + λ1f1 + λ2f2 ∈W , the quadratic form
q(w) = q1(v)− λ1λ2. Define linear map φ : W → M2(C(V )) by

φ(w) =
(

v λ1
λ2 v̄

)

so that φ(w)2 = −q(w)I2. By the universal property of C(W ), we
get a Q-algebra isomorphism

φ : C(W )→ M2(C(V ))

so φ(C(W )×) = M2(C(V ))×.



Define the Vahlen group of

V(V ) = φ(Γ(W )) ≤ M2(C(V ))×.

The three (anti) involutions ′,∗,¯of C(W ) correspond to (anti)

involutions α, β, γ of M2(C(V )). For A =
(

a b
c d

)
∈ M2(C(V ))

we have:

α(A) =
(

a′ −b′
−c ′ d ′

)
, β(A) =

(
d̄ b̄
c̄ ā

)
, γ(A) =

(
d∗ −b∗
−c∗ a∗

)
.

Then for all x ∈ C(W ) we have

φ(x ′) = α(φ(x)), φ(x∗) = β(φ(x)), φ(x̄) = γ(φ(x)).



Conditions for A ∈ V(V )

Theorem A: A ∈ V(V ) if and only if the following are satisfied:
1. ad∗ − bc∗ = d∗a − b∗c = λ ∈ Q×,
2. ba∗ − ab∗ = cd∗ − dc∗ = 0,
3. a∗c − c∗a = d∗b − b∗d = 0,
4. aā, bb̄, cc̄, dd̄ ∈ Q,
5. bd̄ , ac̄ ∈ V ,
6. avb̄ + bv̄ ā, cvd̄ + dv̄ c̄ ∈ Q for all v ∈ V ,
7. avd̄ + bv̄ c̄ ∈ V for all v ∈ V .



Let H2(V ) = φ(W ) =
{

X =
(

v λ1
λ2 v̄

)∣∣∣∣∣ v ∈ V and λ1, λ2 ∈ Q
}

with non-singular quadratic form

q(X ) = v v̄ − λ1λ2

and S the corresponding symmetric Q-bilinear form.

Let A] = α(A)−1 = 1
λ

(
d̄ b̄
c̄ ā

)
= 1
λ
β(A) for λ = ad∗ − bc∗.

The Vahlen group V(V ) acts on H2(V ) by

A · X = AXA] for A ∈ V(V ) and X ∈ H2(V ).



We then get a representation η : V(V )→ O(H2(V )). Since φ
restricted to W gives us an isometry W '−→ H2(V ), we get an
isomorphism of groups φ̂ : O(W ) −→ O(H2(V )) given by

φ̂(σ) = φ ◦ σ ◦ φ−1 for σ ∈ O(W ).

In the following commutative diagram the two vertical maps are
isomorphisms, and the rows are exact:

1 −−−−→ F× −−−−→ Γ(W ) ρ−−−−→ O(W ) −−−−→ 1∥∥∥ yφ yφ̂
1 −−−−→ F× −−−−→ V(V ) η−−−−→ O(H2(V )) −−−−→ 1,

If X ∈ H2(V ) is non-isotropic then η(X ) = rX .



Define a spinor norm for Vahlen groups, N : V(V )→ Q× by
N(A) = A · γ(A). Applying the abstract definition of Pin+, we get

V+(V ) = Pin+(η,N) = ker(N) = φ(Pin+(W )).

For A =
(

a b
c d

)
∈ M2(C(V )) we have:

A ∈ V+(V ) if and only if all conditions of Theorem A are satisfied
with (1) replaced by: ad∗ − bc∗ = d∗a − b∗c = 1



Canonical Double Extensions

Let C = [cij ] be a finite type Tn irreducible symmetric Cartan
matrix, V = Qn with basis {α1, · · · , αn} and rescaled symmetric
bilinear form S1(αi , αj) = cij/2.
The root system Φ of type Tn has highest root θ =

∑n
i=1 aiαi for

which S1(θ, θ) = 1.
Let P and W = V ⊥ P be as before.
Letting

α−1 = f1 − f2 and α0 = −f1 − θ,

we find that Π = {α−1, α0, α1, · · · , αn} determines a symmetric
(n + 2)× (n + 2) Lorentzian Cartan matrix C++ = [2S(αi , αj)],
whose type we denote by T ++

n .
This class of Cartan matrix we call a “canonical double extension”.



Apply the previous Vahlen group construction to this W . Recall

φ : C(W ) '−→ M2(C(V ))

induced by φ(v + λ1f1 + λ2f2) =
(

v λ1
λ2 v̄

)
∈ M2(C(V )). We have

φ(αi ) = Xi for αi ∈ Π where:

X−1 =
(

0 1
−1 0

)
, X0 =

(
−θ −1
0 −θ̄

)
, Xi =

(
αi 0
0 ᾱi

)
for 1 ≤ i ≤ n.

We have the finite and Lorentzian lattices, respectively,

Λ =
n∑

i=1
Zαi ⊆ V and Λ++ =

n∑
i=−1

Zαi ⊆W .

φ(Λ++) = H2(Λ) =
{(

v n1
n2 v̄

)∣∣∣∣∣ v ∈ Λ and n1, n2 ∈ Z
}
⊆ M2(C(V )).



Lattice Structures

Let
O(H2(Λ)) = {σ ∈ O(H2(V )) |σ (H2(Λ)) = H2(Λ)}

be the group of units of this lattice, and let

O+(H2(Λ)) = O(H2(Λ)) ∩ O+(H2(V )).

Let O = Z[α1, . . . , αn] ⊆ C(V ) be the ring generated by the αi .
Note that O is closed under the (anti) involutions ′,∗, and .̄
Define

V(O) = V(V ) ∩M2(O)× and V+(O) = V+(V ) ∩M2(O)×.



Conditions for A ∈ V(O)

Theorem: Let A =
(

a b
c d

)
∈ M2(O). Then A ∈ V(O) when:

1. ad∗ − bc∗ = d∗a − b∗c = ±1,
2. ba∗ − ab∗ = cd∗ − dc∗ = 0,
3. a∗c − c∗a = d∗b − b∗d = 0,
4. aā, bb̄, cc̄, dd̄ ∈ Z,
5. bd̄ , ac̄ ∈ Λ,
6. avb̄ + bv̄ ā, cvd̄ + dv̄ c̄ ∈ Z for all v ∈ Λ,
7. avd̄ + bv̄ c̄ ∈ Λ for all v ∈ Λ.

Proposition: With the notation as above, we have
1. η (V(O)) ⊆ O(H2(Λ)),
2. η (V+(O)) ⊆ O+(H2(Λ))



Since q(Xi ) = 1 for −1 ≤ i ≤ n, the Weyl group W(C++) is a
subgroup of O+(H2(Λ)). Letting

Γ = 〈Xi | − 1 ≤ i ≤ n〉 ≤ V+(O)

we have η(Γ) =W(C++) because η(X ) = rX . Therefore, we have

W(C++) ⊆ η
(
V+(O)

)
⊆ O+(H2(Λ)).

Let

PV(O) = V(O)/{±1} and PV+(O) = V+(O)/{±1}.

We finally come to our main result!
Details will appear in Feingold-Vallières [5].



Main Result

Theorem: With the notation as above, η induces an isomorphism
of groups

η : PV+(O) '−→W(C++)

for the following hyperbolic canonical double extensions:
1. A++

n for n = 1, 2, 3, 4, 5, 6,
2. D++

n for n = 5, 6, 7, 8,
3. E ++

n for n = 6, 7, 8.



Proof of Main Result

Corollary 5.10 of Kac [4] shows that for each hyperbolic canonical
double extension with symmetric Cartan matrix, one has

O(H2(Λ)) = ±Aut(C++) nW(C++),

where Aut(C++) is the group of outer automorphisms of the
corresponding Dynkin diagram. It is clear that −id /∈ O+(H2(Λ)).
For each of the hyperbolic canonical double extensions with a
symmetric Cartan matrix, we computed the spinor norm of ±a, for
each outer automorphism a. These spinor norms are non-trivial
exactly in the cases listed in the theorem. Thus, in those cases, the
chain of subgroups above induces the following equalities

W(C++) = η
(
V+(O)

)
= O+(H2(Λ)).



References

[1] A.J. Feingold and I.B. Frenkel, A hyperbolic Kac–Moody
algebra and the theory of Siegel modular forms of genus 2, Math.
Ann. 263 (1983), 87-144.
[2] A.J. Feingold, A. Kleinschmidt and H. Nicolai, Hyperbolic Weyl
groups and the four normed division algebras, Journal of Algebra
322 (2009), 1295-1339.
[3] A. Kleinschmidt and H. Nicolai, J. Palmqvist, Modular
realizations of hyperbolic Weyl groups, arXiv:1010.2212.
[4] V. Kac, Infinite dimensional Lie algebras, Cambridge
University Press, Cambridge, 1990.
[5] A. J. Feingold, D. Vallières, Weyl groups of some hyperbolic
Kac-Moody algebras, in preparation.

Thank you for your kind attention!


