The problem

open question: is $C^{\infty}(X, SU(n))$ amenable, where X is a smooth closed manifold, $n \ge 2$ (A. Carey, H. Grundling)?

"Yes" \Rightarrow exists a "gauge-invariant vacuum state".

Abstract harmonic analysis + infinite dimensional Lie theory Surely, not a "natural question"...

* * *

thm. $C^1(\mathbb{I}, SU(n))$ is amenable.

(Here I = [0, 1].)

Vladimir Pestov Manaus, 09-07-2009 - p

Amenability

A topological group G is *amenable* if any 1 of:

- if *G* acts continuously on a compact space *X*, there is an invariant probability measure μ on *X*, i.e. $\mu(A) = \mu(qA)$ for all Borel $A \subset X$, all $q \in G$;

 $\mu(\Omega) = \mu(g\Omega)$ for all borol $\Omega \subseteq \Omega$, all $g \in G$, - \exists left-invariant mean m on the space BLCB (G) α

 $- \exists$ left-invariant mean m on the space RUCB (G) of all right uniformly continuous bounded functions on G:

$$\begin{split} f \colon G \to \mathbb{C} \text{ is RUC if} \\ \forall \varepsilon > 0, \ \exists V \ni e, \ xy^{-1} \in V \Rightarrow |f(x) - f(y)| < \varepsilon. \end{split}$$

An invariant mean: ϕ : RUCB $(G) \rightarrow \mathbb{C}$, linear, positive, $\phi(1) = 1$, $\phi(f) = \phi(\text{any left translate of } f)$.

Amenability of path groups

Vladimir Pestov

vpest283@uottawa.ca

http://aix1.uottawa.ca/~vpest283

Department of Mathematics and Statistics University of Ottawa

Why one needs amenability

thm. (André Weil) If a Polish (= separable completely metrizable) topological group admits an invariant sigma-additive measure, then it is locally compact.

Amenability = poor man's version of invariant integration with finite total volume.

aus 09-07-2009 - n

Some observations

If G is locally compact, the list is much longer.

Abelian top. groups, compact groups are amenable ...

Amenability is closed under extensions.

 F_2 with discrete topology is non-amenable.

A closed subgroup of amenable LC group is amenable.

Even for discrete countable groups, determining (non)amenability can be a hard task

(Thompson's group (F) ...)

Difficulties in infinite dimensions

Unlike in LC case, amenability is not inherited by closed subgroups:

ex.: S_{∞} contains F_2 as a closed discrete subgroup.

therefore, non-amenability is even harder to show.

- $U(\ell^2)_{uniform}$ is non-amenable (de la Harpe).
- $\operatorname{Aut}(X,\mu)$ with topology given by the the *uniform* metric

 $d_{unif}(\sigma,\tau) = \mu\{x \in X \colon \sigma(x) \neq \tau(x)\}$

is non-amenable (Giordano-VP).

Some infinite dimensional examples

Unions of chains of amenable groups are amenable. If $\operatorname{cl} H = G$, then *G* is amenable $\iff H$ is amenable.

ex. $U(\ell^2)_{sot} = \operatorname{cl} \cup_{n=1}^{\infty} U(n)$, or of SU(n), \Rightarrow amenable.

ex. $S_{\infty} = \operatorname{cl} \cup_{n=1}^{\infty} S_n$, \Rightarrow amenable.

ex. Aut $(X, \mu) = \bigcup_{n=1}^{\infty} S_n$ ("interval exchange transformations"), by Rokhlin Lemma, \Rightarrow amenable.

ex. $L^0(X, \mu; SU(n))$, with the topology of convergence in measure, is the union of groups of simple functions of the form \mathbb{T}^k , \Rightarrow amenable. Etc.

* * *

ex. Homeo +[0,1]: no compact subgroups (yet amenable...)

What was known about groups of maps

An obvious observation (J. Baez): with the *pointwise* convergence topology, C(X, SU(n)) is amenable: it is precompact: $\hookrightarrow SU(n)^X$.

With the *relative weak topology* induced from $C(X, \mathbb{C}^{n^2})$, the group C(X, SU(n)) is amenable: a consequence of deep results of A. Connes (noted by T. Giordano - VP).

Gaussian measure and amenability of ${\mathbb R}$

Gaussian measure with mean zero and variance t > 0:

Gaussian measure and amenability of $\ensuremath{\mathbb{R}}$

Gaussian measure and amenability of ${\mathbb R}$

Main result

thm. $C^1(\mathbb{I}, SU(n))$ is amenable.

Enough to prove for group $G=C^1_e(\mathbb{I},SU(n))$ of paths p(0)=e.

 $C_e^1(\mathbb{I}, SU(n))$ is a Banach-Lie group, contractible. Isomorphic to $C(\mathbb{I}, su(n))$ with the group operation $u * v(t) = u(t) + Ad\left(\prod_0^t \exp u(\tau) d\tau\right) v(t)$, where \prod is the product integral inside SU(n).

 \prod is the inverse to the left logarithmic derivative:

 $u(t)\mapsto u'(t)u(t)^{-1}$, curve in $SU(n)\mapsto$ curve in su(n).

Manaus 09-07-2009 - n 10

Classical Wiener measure

The <u>Wiener measure</u> w_t with mean zero and variance t > 0on the space $C_0(\mathbb{I}, \ell^2(N))$.

Here $\ell^2(N) = su(n)$ with an Ad-invariant inner product.

Was used to construct representations of path groups (Albeverio—Høegh-Krohn).

It turns out that for every $f \in \text{RUCB}(G)$ and each $k \in G$, $\int f(u) dw_t(u) - \int f(ku) dw_t(u) \to 0 \text{ as } t \to \infty.$

A weak^{*} cluster point of the family (w_t) , t > 0 gives an inariant mean on the path group.

Vladimir Pestov Manaus, 09-07-2009 – p.