
Heuristic Search Planner 2.0

Blai Bonet and Hector Geffner

Depto. de Computación

Universidad Simón Boĺıvar

Aptdo. 89000, Caracas 1080-A, Venezuela

{bonet,hector}@ldc.usb.ve

Abstract

We describe the HSP2.0 planning algorithm that entered the Second
Planning Contest held in AIPS2000. HSP2.0 is a domain independent
planning algorithm that implements the family of heuristic search planners
that are characterized by the state space that is searched (either progres-
sion or regression space), the search algorithm used, and the heuristic func-
tion that is used. This general planner implements a scheduler that tries
different variants in parallel with different (time) resource bounds. We
also describe how HSP2.0 can be used as an optimal (and near-optimal)
planning algorithm, and compare its performance with the other two op-
timal planners stan and blackbox.

1 Introduction

HSP2.0 is a new version of the Heuristic Search Planner (HSP), a domain-
independent planner that was entered into the first planning competition [14,
11]. These planners, as well as the regression planner HSPr [2] and the op-
timal planner HSPr* [6], are all based on the same idea: planning problems
are mapped into search problems in a suitable space, which is solved using an
heuristic function extracted automatically from the problem encoding. This
formulation of planning as heuristic search appears in [12] and [4] (yet see also
[9]). Other heuristic search planners in the AIPS2000 Contest are GRT [17], FF
[7], and AltAlt [16]. Planners such as MIPS [5] and STAN [10] also make use of
heuristic search ideas in certain contexts.

Pure heuristic search planners can be characterized along three main di-
mensions: the state space that is searched (either the progression or regres-
sion space), the search algorithm used (most often some version of best-first
or hill-climbing search), and the heuristic function extracted from the problem
representation. The original version of HSP, for example, searches the progres-
sion space with a hill-climbing algorithm, and a non-admissible heuristic derived
from a relaxation where delete lists are assumed empty and atoms are assumed

1

independent. FF searches the same progression space using a different hill-
climbing algorithm and a different non-admissible heuristic. Something similar
is done by GRT. AltAlt, on the other hand, derives the heuristic from the plan-
graph constructed by a Graphplan type of procedure and uses this heuristic to
drive a regression search from the goal. As a last example, HSPr* searches the
regression space using the IDA* algorithm and an admissible heuristic function
computed using a shortest-path algorithm.

Since no choice of the state space, search algorithm, and heuristic function
appears best across different domains, we developed the HSP2.0 planner as
a general platform for experimenting with different state spaces and different
heuristics. The search algorithm in HSP2.0 is currently fixed and implements
the WA* algorithm [15, 8], an A* algorithm in which the heuristic term h(n) of
the evaluation function f(n) = g(n)+h(n) is multiplied by a parameter W ≥ 1.
It is well known that the parameter W achieves a tradeoff between optimality
and speed. For W = 1, WA* becomes A* and is optimal as long as the heuristic
function is admissible (non-overestimating). For higher W , e.g., W = 2, WA*
finds solutions faster but these solutions are only guaranteed to be at most W

times away from optimal.
For a particular planning problem, the user of HSP2.0 can specify the state

space to be searched, the heuristic, and the W parameter.1 For example, the
invocation

hsp -d backward -h h2max -w 1.5 prob4.pddl domain.pddl

runs HSP over the regression space using the heuristic h2 and the parameter
W = 1.5, over the instance in file prob4.pddl with domain file domain.pddl.
The syntax for the instance and domain files is given by the PDDL standard
[13]. HSP2.0 deals with a fragment of PDDL that includes Strips, negation,
types, and conditional effects.

In HSP2.0, the search can be done either forward or backward, and the
heuristics can be the non-admissible heuristic hadd used in the original version of
HSP, the admissible heuristic hmax, and the more informed admissible heuristic
h2 formulated in [6]. By default, HSP2.0 searches in the forward direction with
h = hadd and W = 2. The user can also choose a schedule of options as done in
Blackbox. For example, it can tell HSP2.0 to use some direction and heuristic
for a fixed amount of time, and then switch to a different direction/heuristic
combination if no solution is found. In addition, the different options can be
run concurrently as threads. This was actually the way HSP2.0 was run in
the AIPS2000 Competition. HSP2.0 ran three options concurrently for three
minutes: forward/hadd, backward/hadd, and backward/h2, all with W = 2.
If no solution was reported by then, HSP2.0 continued with the forward/hadd

option only. The choice for the three minute threshold was empirical, following
the observation that the regression search most often solved problems quickly
or didn’t solve them at all. The curve for the forward/hadd combination is

1HSP2.0 is available at http://www.ldc.usb.ve/∼hector and

http://www.cs.ucla.edu/∼bonet.

2

smoother: more time, often means more problems solved. Some options clearly
dominated others in particular domains: for example, in the logistics domain,
most problems were solved by the backward/hadd option, while in the FreeCell
domain most problems were solved by forward/hadd.

In the rest of this note, we will make more precise the options supported by
the HSP2.0 planner, illustrate the optimality/speed tradeoff involved in the use
of the W parameter, and briefly discuss some results.

2 State Spaces

A Strips problem is a tuple P = 〈A,O, I,G〉 where A is a set of atoms, O is a set
of ground Strips operators, and I ⊆ A and G ⊆ A encode the initial and goal
situations. The state space determined by P is a tuple S = 〈S, s0, SG, A(·), f, c〉
where

S1. the states s ∈ S are collections of atoms from A,

S2. the initial state s0 is I,

S3. the goal states s ∈ SG are such that G ⊆ s,

S4. the actions a ∈ A(s) are the operators op ∈ O such that Prec(op) ⊆ s,

S5. the transition function f maps states s into states s′ = s−Del(a)+Add(a)
for a ∈ A(s),

S6. the action costs c(a) are all equal to 1.

We refer to this state space as the progression space, in contrast to the regression
space described below. When HSP is told to search in the forward direction, it
searches the progression space starting from the initial state s0.

The regression state-space associated with the same planning problem P can
be defined by the tuple R = 〈S, s0,SG,A(·), f, c〉 where

R1. the states s ∈ S are sets of atoms from A,

R2. the initial state s0 is the goal G,

R3. the goal states s ∈ SG are such that s ⊆ I,

R4. the set of actions A(s) applicable in s are the operators op ∈ O that are
relevant and consistent; namely, Add(op) ∩ s 6= ∅ and Del(op) ∩ s = ∅,

R5. the state s′ = f(a, s) that follows from the application of a = op in s, for
a ∈ A(s), is such that s’ = s−Add(op) + Prec(op),

R6. the action costs c(a) are all equal to 1.

This is the state space that HSP2.0 searches when told to search backward from
the goal. The regression search has the advantage that it makes it possible to
compute the bulk of the heuristic function only once [2]. In the progression
search, the heuristic values are computed from scratch in every new state. This
recomputation is expensive, yet in certain cases it pays off by providing useful

3

new information. Likewise, the regression search has the problem that it often
generates spurious states: states that are not reachable from the initial problem
situation such as those where one block is on top of two different blocks. Some of
such states are detected by a procedure that identifies pairs of mutually exclusive
propositions adapted from Graphplan [1]. Overall, the forward search is slower
than the regression search in certain domains, but in general, it appears to be
more robust [3].

3 Heuristics

The heuristics hadd and hmax in HSP are derived as approximations of the
optimal cost function of a ‘relaxed’ planning problem in which delete lists are
ignored. More precisely, the heuristics are obtained by combining the estimated
costs g(p; s) of achieving each of the goal atoms p from a state s. These estimates
are obtained by solving the functional equation

g(p; s)
def

=

{
0 if p ∈ s

mina∈O(p)[1 + g(Prec(a); s)] otherwise
(1)

for all atoms p by means of a Bellman-Ford type of algorithm. In this algorithm
the measures g(p; s) are updated as

g(p; s) := min
a∈O(p)

[g(p; s), 1 + g(Prec(a); s)] (2)

starting with g(p; s) = 0 if p ∈ s and g(p; s) = ∞ otherwise, until they do not
change. In these expressions, O(p) stands for the set of operators that ‘add’ p

and g(Prec(a); s) stands for the estimated cost of achieving the set of atoms
Prec(op) from s.

For the additive heuristic hadd, the cost g(C; s) of sets of atoms C is defined
as the sum of the costs g(r; s) of the individual atoms r in C. We denote such
additive costs as gadd(C; s):

gadd(C; s)
def

=
∑

r∈C

g(r; s) (additive costs) (3)

The heuristic hadd(s) is then defined as:

hadd(s)
def

= gadd(G; s) (4)

The definition of the cost of sets of atoms in (3) assumes that ‘subgoals’
are independent. This is not true in general and as a result the heuristic may
overestimate costs and is not admissible.

An admissible heuristic can be obtained by defining the costs g(C; s) of sets
of atoms as

gmax(C; s)
def

= max
r∈C

g(r; s) (max costs) (5)

4

The resulting ‘max’ heuristic hmax(s) = gmax(G; s) is admissible but it is not
very informative. Both heuristics hadd and hmax are supported in HSP2.0.

The last heuristic supported in HSP2.0 is an admissible heuristic h2 that
dominates hmax. Both h2 and hmax can be understood as instances of a general
family of polynomial and admissible heuristics hm for m = 1, 2, . . . [6]. The
higher the value of m, the more accurate the heuristic but the more expensive
its calculation. The idea underlying the heuristics hm is to approximate the
cost g(C; s) for achieving a set of atoms C from a state s by the cost gm(C; s)
of the most costly subset of size m in C. Thus, for m = 1, the cost g(C; s) is
approximated by the cost of the most costly atom in C, for m = 2, by the cost
of the most costly atom pair in C, etc. The costs gm(C; s) are characterized by
the equation

gm(C; s)
def

=





0 if C ⊆ s, else
minB∈R(C)[1 + gm(B; s)] if |C| ≤ m

maxD⊂C,|D|=m gm(D; s) otherwise
(6)

where B ∈ R(C) if B is the result of regressing the set of atoms C through some
action a. The heuristic function hm(s) is then defined as gm(G; s) where G is
the goal. HSP2.0 accommodates the heuristics hm for m = 1 and m = 2 only.
Both are obtained by solving equation (6) with a Bellman-Ford type of shortest
path algorithm.

4 Results

As mentioned above, in the competition, HSP2.0 was run with three concurrent
options for three minutes: forward/hadd, backward/hadd, and backward/h2.
If no solution was found by then, only the option forward/hadd was allowed
to continue. HSP2.0 solved all problems in most of the domains, except for
the scheduling domain in which it solved the smallest instances only, and
blocks-world, where it failed to solve some of the large instances. In many
cases, like in blocks-world, the plans generated were long and far from optimal.
Overall, the planner FF based on similar ideas did better and in certain cases
significantly better. This seems due mostly to three factors: the search direction
(forward search appears to be more robust than backward search), an heuristic
more accurate than hadd (the only heuristic used by HSP2.0 in the forward
direction), and a good rule for quickly discarding nodes without computing
their heuristic values. These features, and others, discussed at more length in the
article by Jörg Hoffmann, appear to make FF a more powerful planner than HSP.
A potential advantage of HSP is that it uses a more systematic search algorithm
and that it can be used to generate optimal or arbitrary close to optimal plans.
Optimal plans are obtained for the settings h = h2, dir = backward, and W = 1.
At the same time, if a value of W > 1 is used, the resulting plans are known
to be at most W times away from optimal and they are found much faster. As
an optimal planner, HSP2.0 appears to be competitive with optimal (parallel)
Graphplan and SAT planners such as STAN and Blackbox (see Table 1). At

5

hsp stan blackbox

problem length time length time length time

7-0 20 0.18 20 0.05 20 0.28
7-1 22 0.19 22 0.13 22 0.78
7-2 20 0.17 20 0.08 20 0.43
8-0 18 0.18 19 0.13 18 0.79
8-1 20 0.20 20 0.15 20 1.16
8-2 16 0.18 16 0.07 16 0.46
9-0 30 0.44 30 0.29 30 3.20
9-1 28 0.21 28 0.17 28 1.21
9-2 26 0.25 26 0.14 26 0.89
10-0 34 1.37 34 0.95 34 7.78
10-1 32 361.19 32 24.24 32 220.03
10-2 34 1.61 34 1.44 34 19.35
11-0 32 333.72 32 346.94 32 409.47
11-1 – – – – 30 504.61
11-2 34 38.65 34 89.96 34 114.42
12-0 34 3.99 34 15.98 34 50.30
12-1 34 1.00 34 2.39 34 24.52

Table 1: Optimal Planning: Results over block-world instances from com-
petition for some optimal planners. HSP2.0 results obtained with options
d = backward, h = h2, and W = 1. Time reported in seconds.

the same time, plans can be obtained much faster with a small degradation in
plan quality by using a value of W slightly higher than 1 (see Table 2). This
tradeoff is not so easily available in either Graphplan or SAT planners.

References

[1] A. Blum and M. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1–2):281–300, 1997.

[2] B. Bonet and H. Geffner. Planning as heuristic search: New results. In
Recent Advances in AI Planning: Proceedings of the Fifth European Con-
ference on Planning, pages 359–371. Springer, 1999. Lecture Notes in AI
1809.

[3] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelli-
gence. Special Issue on Heuristic Search. W. Zhang, R. Korf, and R. Dechter
(Eds). To appear, 2000.

[4] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection
mechanism for planning. In Proceedings of the Fourteenth National Con-
ference on Artificial Intelligence, pages 714–719, Menlo Park, CA, 1997.
AAAI Press.

6

hsp, W = 1 hsp, W = 1.25 hsp, W = 1.75
problem length time length time length time

7-0 20 0.18 20 0.17 22 0.17
7-1 22 0.19 22 0.18 22 0.21
7-2 20 0.17 20 0.17 20 0.18
8-0 18 0.18 18 0.18 18 0.17
8-1 20 0.20 20 0.21 20 0.18
8-2 16 0.18 16 0.22 16 0.18
9-0 30 0.44 32 0.36 32 0.35
9-1 28 0.21 28 0.25 30 0.21
9-2 26 0.25 26 0.24 26 0.19
10-0 34 1.37 36 0.57 40 0.53
10-1 32 361.19 32 18.48 34 0.37
10-2 34 1.61 34 0.59 38 0.23
11-0 32 333.72 32 2.60 34 0.28
11-1 – – – – – –
11-2 34 38.65 34 0.62 34 0.65
12-0 34 3.99 34 0.53 34 0.31
12-1 34 1.00 34 0.31 36 0.29

Table 2: Optimality/Speed Tradeoff. Results for HSP2.0 over same instances
but with different W values.

[5] S. Edelkamp and M. Helmert. On the implementation of MIPS. In Proc.
AIPS Workshop on Model-Theoretic Approaches to Planning, 2000.

[6] P. Haslum and H. Geffner. Admissible heuristics for optimal planning. In
Proceedings of the Fifth International Conference on AI Planning Systems,
pages 70–82, Menlo Park, CA, 2000. AAAI Press.

[7] J. Hoffmann. A heuristic for domain independent planning and its use
in an enforced hill-climbing algorithm. In Proceedings of the 12th Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS-00),
pages 216–227. Springer, October 2000.

[8] R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78,
1993.

[9] P. Laborie and M. Ghallab. Planning with sharable resources constraints.
In Proceedings of the Fourteenth International Conference on Artificial In-
telligence, pages 1643–1649, San Francisco, CA, 1995. Morgan Kaufmann.

[10] D. Long and M. Fox. The efficient implementation of the plan-graph in
STAN. Journal of Artificial Intelligence Research, 10:85–115, 1999.

[11] Derek Long. The AIPS-98 Planning Competition. Artificial Intelligence
Magazine, 21(2):13–34, 2000.

7

[12] D. McDermott. A heuristic estimator for means-ends analysis in planning.
In Proceedings of the Third International Conference on AI Planning Sys-
tems, pages 142–149, Menlo Park, CA, 1996. AAAI Press.

[13] D. McDermott. PDDL – the planning domain definition language. Avail-
able at http://www.cs.yale.edu/˜dvm, 1998.

[14] D. McDermott. The 1998 AI Planning Systems Competition. Artificial
Intelligence Magazine, 21(2):35–56, 2000.

[15] J. Pearl. Heuristics. Morgan Kaufmann, San Francisco, CA, 1983.

[16] Z. Nguyen R. Sanchez Nigenda and S. Kambhampati. AltAlt: Combining
the advantages of graphplan and heuristic state search. Technical report,
Arizona State University, 2000.

[17] I. Refanidis and I. Vlahavas. GRT: A domain independent heuristic for
Strips Worlds based on greedy regression tables. In Recent Advances in
AI Planning: Proceedings of the Fifth European Conference on Planning,
pages 346–358. Springer, 1999. Lecture Notes in AI 1809.

8

