
A Mobile Agent Infrastructure for

QoS Negotiation of

Adaptive Distributed Applications?

Roberto Speicys Cardoso and Fabio Kon

Department of Computer Science
University of São Paulo

{speicys,kon}@ime.usp.br
http://gsd.ime.usp.br

Abstract. QoS-aware distributed applications such as certain Multime-
dia and Ubiquitous Computing applications can benefit greatly from the
provision of QoS guarantees from the underlying system and middleware
infrastructure. They must avoid execution glitches that affect the user’s
perception of the application output.
Most research in QoS support for distributed systems focuses on three
aspects of QoS management: admission control, resource reservation, and
scheduling. However, in highly dynamic distributed environments, effec-
tive means for QoS negotiation and re-negotiation are also essential.
We believe that mobile agents, due to its inherent flexibility and agility,
can play an important role in this scenario, specially during the appli-
cation adaptation process. We designed a mobile-agent-based infrastruc-
ture that provides services such as resource monitoring, QoS brokering,
and QoS enforcement. Furthermore, our infrastructure offers a powerful
mechanism for QoS negotiation.
In this paper, we describe the architecture and prototype implementation
of this infrastructure. First, we discuss the motivations and related works.
We, then, present the architectural design and discuss implementation
issues concerning the infrastructure prototype. Finally, we introduce a
sample application called ReflectorAglet – a QoS-aware adaptive audio
reflector – and present preliminary experimental results.

1 Motivation

Multimedia applications (such as video and audio streaming) and Ubiquitous
Computing services are examples of distributed applications that have a clear
need for quality of service guarantees. The success of this class of applications is
tightly related to the user’s level of satisfaction. These systems must avoid, at all
costs, performance losses that might affect the user’s perception of the applica-
tion output. As a consequence, QoS-related services have become an important
part of the infrastructure of distributed systems to enable the development of
applications such as the ones described above.

? This work is supported by a grant from CNPq-Brasil, process #552028/02-9



Ongoing research in QoS management focuses mainly on problems related to
admission control, resource reservation, and QoS scheduling. However, in highly
dynamic distributed environments such as ubiquitous computing, active spaces1,
or mobile multimedia, these services are not sufficient to achieve an effective
QoS management infrastructure. In such systems, issues associated with QoS
negotiation become very important, therefore demanding a special treatment
from the part of the underlying middleware.

QoS negotiation mechanisms are a fundamental requirement for highly dy-
namic distributed environments. On such environments, resource availability and
end-user QoS needs vary greatly along time. Therefore, QoS-enabled applications
may need to negotiate and re-negotiate their QoS requirements to keep the qual-
ity of its output. For instance, an Ubiquitous Computing Location Service must
respond quickly to client requests to avoid unresponsiveness of the whole system.
Its resource requirements may change according to the quantity of clients, the
number of entities and the overall resource availability. The underlying system
must provide mechanisms to allow the Location Service to negotiate its QoS
requirements and to adapt to changing conditions.

The QoS negotiation process in a distributed system comprises the exchange
of several messages among negotiating hosts. The traditional client/server ap-
proach for QoS negotiation is problematic in highly dynamic distributed environ-
ments for many reasons. A client/server based QoS negotiation would impose
a heavy traffic over the network, impacting the distributed environment as a
whole. Furthermore, because of the high number of possibilities for QoS config-
urations on a highly distributed environment, the client/server model could lead
to a very inefficient system.

The inherent characteristics of mobile agents [LA99] make them a suitable
technique to solve many problems related to QoS management in dynamic dis-
tributed systems, particularly the ones associated with QoS negotiation. Mobile
agents are programs that can suspend their execution and migrate to other hosts
in the network, resuming their execution from the point in which they were inter-
rupted [KG99]. The architecture presented in this paper leverages the properties
of mobile agents to provide efficient mechanisms for adaptation and QoS nego-
tiation to applications. It also provides additional QoS-related services, namely
QoS specification, QoS brokering, and QoS enforcement.

2 Related Work

Nahrstedt et al. [NXWL01] describe a powerful architecture for a QoS-aware
middleware for Ubiquitous Computing. Their work focuses on four key aspects
of such a system: QoS specification, QoS translation, QoS setup, and QoS adap-
tation. Our approach differs from theirs on a few central points. They propose
a QoS compilation phase that generates a QoS profile based on the application
QoS specification. The application then uses this QoS profile at run-time for QoS

1 Active spaces are physical spaces augmented with digital devices that extend the
user perception and interaction with the surrounding environment



setup. As a consequence, the application requires a new QoS profile whenever its
QoS specification changes. We propose an interpreted-oriented approach, which
enables the application to change its QoS specifications at run-time without
service interruption. Furthermore, we extend their approach to QoS adaptation
introducing a mobile-agent-based QoS negotiation mechanism. This enables the
application not only to change its behavior according to the fluctuation of the
QoS levels provided by the middleware, but also to search for another host on
the distributed system that is able to satisfy its QoS requirements when the
current host QoS level becomes unacceptable.

Hafid and Fischer proposed an agent architecture for QoS management [HF98].
Even though their motivations are similar to ours, their approach is somewhat
different. Their work is focused mainly on the network aspects of QoS man-
agement. Their infrastructure rely on the existence of agents in routing points
of the distributed environment to provide QoS management services to users
and applications. Our work, on the contrary, faced the issues related to QoS
guarantees to resources such as CPU and memory, which are host-related more
than network-related. Furthermore, their architecture relies on agents running
at routing points of the system, such as network routers, which may be hard to
deploy.

Cavanaugh et al. [CWS+00] describe a QoS negotiation architecture for real-
time distributed applications. In their work, a QoS Manager is responsible for
maintaining the QoS levels agreed with the applications and a Resource Manager
is responsible for controlling the environment resource usage. If a QoS violation
is detected, the QoS Manager and the Resource Manager negotiate a repairing
action that is executed without the knowledge of the applications. This approach
suffers from two drawbacks. In highly dynamic distributed environments, the list
of repairing actions might be very large. This would demand a long negotiation
process between the QoS Manager and the Resource Manager, imposing unnec-
essary high traffic over the network. Besides, negotiation and adaptation are
carried out without application acquiescence. This technique prevents the ap-
plications to adapt themselves to changes in the environment and to select the
best adaptation method with regard to their particular purpose.

QuO [VZL+98,LSZB98] is a framework for the development of applications
that adapt to different QoS levels provided by the underlying system. It adds
a new layer to the CORBA architecture both on client and server sides. This
layer is responsible for managing QoS contracts before sending requests among
the distributed objects. QuO supports negotiation and adaptation, changing the
application QoS level according to conditions detected in the environment. We
extend this concept by providing middleware support to allow applications not
only to change its QoS levels but also to maintain it by migrating to other
hosts. The negotiation process is not only local as in QuO, but system-wide.
Furthermore, QuO’s Description Language (QDL) for QoS specification works
much in the same way as CORBA IDL, generating code stubs at compilation
time. Our interpreter-based solution for QoS specification does not require a
compilation process, thus allowing modifications at run time.



3 Architecture

The overall objective of the architecture presented in this paper is to be a solid
QoS management infrastructure for the development of QoS-aware adaptive dis-
tributed applications. To assess the effectiveness of the proposed architecture, we
developed a sample application capable of evaluating all of the services provided
by the infrastructure. In the following subsections we discuss the requirements
for the architecture and its conceptual design.

3.1 Architectural Requirements

Our focus was to design a QoS management solution for highly dynamic dis-
tributed environments. This class of systems present many unique challenges. We
designed our infrastructure based on three fundamental requirements, namely
scalability, flexibility, and completeness. Our infrastructure must be scalable
because new generation distributed systems, such as active spaces, are highly
dynamic and distributed. On such systems, hundreds or even thousands of com-
puters are connected by channels with unpredictable behavior. The infrastruc-
ture therefore must support a great number of connected devices and must be
able to include all of them on the QoS management process.

The infrastructure must also be very flexible. Applications with different
purposes and distinct adaptation mechanisms should be able to use the QoS
management services in the most suitable way. The process of integrating ap-
plications to the infrastructure should not cause major architectural changes to
neither of the systems involved. Previous work [VZL+98] and our experience on
developing distributed systems suggests that to broaden the range of applica-
tions able to use the infrastructure and to increase its flexibility, it is necessary
that environmental changes that may trigger adaptation actions be known to ap-
plications. Having full control of the adaptation process, applications can decide
the best adaptation strategy to use. This decision is strictly related to the appli-
cation purpose and the infrastructure cannot take the responsibility of choosing
the best adaptation method on behalf of the application.

Finally, our infrastructure should provide a complete solution for QoS man-
agement. Our vision of a complete solution is similar to the ones presented in
[VZL+98,NXWL01]: applications should be able to specify QoS requirements,
monitor the provided QoS level, and adapt to QoS changes. The infrastructure,
thus, must provide the means for QoS specification, enforcement, monitoring,
and adaptation. Ideally, this solution should also provide mechanisms for end-
to-end QoS enforcement, covering network-related QoS guarantees as well. This
subject, however, is too broad and a lot of quality research [GP99,CC97] has
already been made concerning this topic. We decided, therefore, to focus our
work on host-related QoS issues only.

There are also additional requirements specific to each service provided by
the infrastructure:



– QoS monitoring must not cause a heavy load on network resources. Net-
working is one of the most energy consuming resources of a mobile com-
puter. Also, the monitoring process must not affect application performance
by consuming resources intended to applications.

– QoS specification must be separate from application source code, allowing
for QoS specification changes at run-time without service interruption.

– An admission control mechanism must be part of the QoS enforcement sys-
tem to inform applications when their QoS level request cannot be met by
the node, and to propose alternative QoS contracts for application review.

– The QoS adaptation system must provide means for QoS negotiation and
re-negotiation. Applications supporting multiple QoS levels can use QoS ne-
gotiation to define the best QoS level available to work with. Besides, in
case of environmental changes, the re-negotiation mechanism can be used to
define a new QoS level which might be better or worse than the previous
one.

– The QoS negotiation mechanism must be effective and flexible. Applications
will use this system in multiple ways to negotiate QoS requirements with
several nodes of the distributed environment. The QoS negotiation system,
thus, cannot waste resources such as networking and processing time.

Security is also a concern whenever mobile agents are used. However, on this
particular work, the security level provided by mobile agents is comparable to
the one provided by related technologies such as RPC calls. This subject has
been already widely studied, and an extensive discussion is out of the scope of
this paper. More details concerning security with mobile agents can be found in
[SV98].

To accomplish the goal of designing an infrastructure compliant with the
requirements described above, we decided to use, whenever possible, systems
already developed filling the gaps with novel work. We now describe the design
of the infrastructure. In the next section we introduce the architecture overall
design and in Sect. 4 we present the systems used and the original contributions
developed during this research.

3.2 Architectural Design

A QoS management infrastructure for highly dynamic distributed systems faces
many challenges that are not appropriately solved with traditional client/server
techniques. Mobile agents can help overcome those issues in a number of ways
with flexibility and agility benefits. Mobile agents [LA99] can encapsulate pro-
tocols, hiding from the application implementation issues of the infrastructure;
may execute asynchronously, avoiding long periods of connected activity and
thus reducing network load; and are composed of code and data, so applica-
tions can easily send agents throughout the distributed environment to perform
complex actions on their behalf.

Our architecture relies on mobile agents to perform various tasks related to
QoS negotiation and adaptation. The architectural design is better summarized



in Fig. 1. A central monitoring management node, which may be replicated,
is responsible for concentrating monitoring data from networked hosts. Using
the publisher/subscriber pattern, applications receive event notifications from
this node with information about the status of entities spread throughout the
distributed system (such as CPU utilization on host A, memory utilization on
host B, etc.). The monitoring system allows applications to keep track of system-
level QoS and provides hooks to trigger application adaptation. Changes in the
QoS level might be caused by a host being unable to fulfill application resource
needs or by an increase in service demand. In both cases, the system monitors
resources to detect these conditions and notifies the interested parties so they
can change their behavior to recover or enhance their QoS level.

If proper care is not taken, the central monitoring management node can
become both a bottleneck and a single point of failure. In previous work, we
have addressed these issues in a similar system, showing how this node could
be replicated for fault-tolerance with little performance penalty [KYH+01]. In
addition, previous experiments with that system showed that each monitoring
management node could easily manage up to 100 networked hosts [MK02] and
we are currently investigating new protocols for scaling this up to thousands of
nodes. Thus, we believe that the relevant issues of fault tolerance and scalability
can be resolved; however, they are out of the scope of this paper. We here focus
on describing our new results in the area of QoS management and mobile agents,
which were not present in our previous works.

Monitoring
Management

Monitoring
Component

Node

Monitoring
Component

Mobile
Agent
Server

Application

QoS
Enforcement

QoS
Broker

QoS
Negotiation

Node

Monitoring
Component

Mobile
Agent
Server

QoS
Enforcement

QoS
Broker

QoS
Negotiation

Node

Monitoring
Component

Mobile
Agent
Server

QoS
Enforcement

QoS
Broker

QoS
Negotiation

Fig. 1. Architectural design

Each node capable of hosting applications must be able to accept QoS reser-
vation requests and mobile agents. They must also be able to offer QoS guaran-
tees to hosted services. Note that not every node of the distributed system must



comply with these requirements. Mobile nodes with low and expensive compu-
tational power will not be used to host services. Hence, they might not need to
offer QoS guarantees or receive mobile agents, although, if desirable, they may.

A QoS broker is also required on each host to mediate reservation requests
between concurrent applications. It acts as a single point of negotiation for all
programs that require QoS guarantees from that host. As such, it can perform
admission control tasks refusing QoS contracts that it cannot honor. A dead-
lock prevention mechanism must also exist to avoid situations where a single
application requests resources from every node in the system, denying to other
applications the possibility of using these resources.

The QoS negotiation process is completely based on mobile agents. Whenever
an application requests a QoS negotiation, a mobile agent reads the application
QoS specification file and sends other agents across the network, according to the
negotiation strategy selected by the application. These agents negotiate locally
on each host and send the results back to the application, which, in turn, analyzes
the results received and chooses the best adaptation strategy to use, according
to its operational requirements.

To benefit fully from the services provided by the infrastructure, applications
should also be designed using the mobile agent paradigm. This would increase
their flexibility, since they would be able to adapt easily to changes in the envi-
ronment using migration and cloning strategies. These two techniques combined
with already existing application adaptation mechanisms can encourage the de-
velopment of QoS-aware services enabled with multiple sophisticated forms of
seamless adaptation. Legacy applications can also be wrapped into mobile agents
and achieve the same benefits. Actually, during the course of our research we
wrapped the JacORB2 Naming Server and a multimedia reflector into mobile
agents.

4 Prototype Implementation

Our approach to implement this architecture was to reuse, whenever possible,
systems and tools already developed by our another research groups. Our focus
was to identify possible shortcomings of existing technologies when applied to
highly dynamic and distributed environments such as typical ubiquitous com-
puting scenarios. The implementation of the proposed architecture required an
extensive search for systems to support adaptation and QoS management for
distributed systems. We evaluated these systems in terms of flexibility, ease of
use, documentation, and stability.

We decided to use Aglets [LA99] as our mobile agent platform. It is an
already established technology, with plenty of documentation available. Further-
more, unlike systems that use a modified virtual machine to obtain access to the
memory stack, the aglets platform uses the native Java Virtual Machine, what
increases its stability. It is also an open-source platform, allowing easier integra-
tion with other technologies. The monitoring mechanism we employed is part

2 http://www.jacorb.org.



of the Framework for Dynamic Adaptation of Distributed Systems developed
earlier in our research group. We discuss it with further details in Sect. 4.1.

To provide QoS enforcement features on hosting nodes, we used the Dynamic
Soft Real Time Scheduler - DSRT3 [NCN97]. This system offers soft real-time
guarantees to applications without modifications to the original operating sys-
tem kernel. More details regarding DSRT are presented in Sect. 4.2. The QoS
definition language used for this prototype was the QoS Modeling Language -
QML [FK98]. The reasons that led us to use this language along with specifics
of the language are presented in Sect. 4.3.

4.1 Performance Monitoring

QoS-aware applications must have knowledge of the system-level QoS provided
by the underlying infrastructure and also the application-level QoS provided
to their clients. This kind of feedback helps applications to find out whether
it is working according to what is expected. Applications use this information
to identify environmental changes that might affect their performance, such as
resource shortages or request bursts.

However, the monitoring process itself can be resource consuming. It is unde-
sirable that it use a great amount of shared resources affecting application per-
formance. Hence, it is important to find the correct balance between monitoring
granularity and the imposed overhead. The Framework described in [SEK02] is
a very flexible and highly configurable system whose focus is to ease the develop-
ment of distributed applications providing efficient monitoring mechanisms and
adaptation hooks.

A specific node is responsible for managing monitoring data. This node con-
tains the entity repository, which defines the monitored nodes of the distributed
system, the node resources subject to monitoring and the ranges of operation
for each resource. Applications subscribe to simple events (e.g., notify me if
CPU usage is greater than 60% for 15 sec.) or compound events (e.g., notify me
if CPU usage is between 70% and 80% and memory usage is over 90% for 30
sec.). Monitored entities do not send their status periodically to the management
node. Instead, information regarding monitored resources and subscribed events
are sent to monitored hosts, responsible for evaluating this information and for
contacting the central node only when an event of interest happens. After that,
the central node sends the event to the subscribers, allowing applications to take
adaptation actions.

This framework can be extended easily to monitor many different kinds of
distributed resources. It is also very flexible, providing simple and yet powerful
hooks for application to use. More importantly, applications have full control
over the adaptation process, since the framework only notifies the application of
changes on the environment, leaving the adaptation strategy to the application
itself.

3 http://cairo.cs.uiuc.edu/software/DSRT-2/dsrt-2.html



4.2 QoS Enforcement

To provide QoS guarantees to distributed applications using the infrastructure,
a QoS enforcement system is needed. It is responsible for accepting application
descriptions of resource requirements and managing the use of shared resources
so that reserved resources are always available to applications.

To build our prototype we used DSRT, which supports processing time guar-
antees via its CPU Server and memory use guarantees via its Memory Server. It
also features a Resource Broker to mediate QoS negotiations between the appli-
cation and the system, supports advanced reservation scheduling, and provides
QoS re-negotiation mechanisms. DSRT runs on top of several operating systems,
including SunOS, IRIX, Linux, and Windows.

DSRT does not use a language for QoS definition. The application specifies
its QoS requirements directly in its source code issuing calls to the DSRT APIs.
It is an open-source system, what increases its flexibility allowing developers to
change its behavior to better adapt to their necessities. In fact, we actually had
to perform a few source code modifications so that DSRT could support Linux
kernel 2.4, since it previously supported only kernel 2.2.

Even though we used DSRT to provide QoS enforcement services, our infras-
tructure was designed to be decoupled from the QoS enforcement system, and to
support integration with other QoS systems. As we will show in the following sec-
tions, applications do not interact directly with the underlying QoS enforcement
system, they communicate only with our infrastructure via high-level interfaces.
The same application could work with a different QoS enforcement system, if the
proper infrastructure support is developed. Even if the QoS enforcement features
provided by a given system are different from the ones provided by DSRT, the
application would only need to adjust its QoS specification file.

4.3 QoS Definition

Application QoS requirements may change across time. A program under demon-
stration usually requires less resources than when it is on a production environ-
ment, for example. It is important that QoS specifications be separate from the
source code, otherwise any change in the requirements would require a recompi-
lation of the whole application, which is undesired in terms of productivity and
flexibility.

A DSRT shortcoming with regard to our architectural requirements con-
cerns its QoS specification mechanism. The only mechanism for QoS specifi-
cation provided by DSRT is API calls performed by the application source
code. To overcome this weakness, we decided to use QML [FK98] as a high-
level QoS specification language and used JFlex4 to develop an interpreter that
translates QML definitions into DSRT API calls. An example of a simple QML
specification for a DSRT contract is shown in Fig. 2. It creates a type of con-
tract called CPU RT PCPT composed of two dimensions: processing period and

4 http://jflex.de



peakProcessing per period, used to define at most how much processor time
the application will require in each period. The decreasing qualifier means that
lower values are stronger guarantees while increasing means that higher values
are stronger. After that, an instance of this contract, called idealProcessing,
is created. Finally, this instance is associated with the mpeg player application.

type CPU_RT_PCPT = contract {

period: decreasing numeric usec;

peakProcessing_per_period: increasing numeric;

};

idealProcessing = CPU_RT_PCPT contract {

period = 40;

peakProcessing_per_period = 30;

};

idealProfile for mpeg_player = profile {

require idealProcessing;

};

Fig. 2. Example of a QML definition for a DSRT contract

The QML Parser is called at run time by the negotiation agents to interpret
the specification file and to use those definitions during negotiation. This file can
be modified during application execution. The following negotiation process will
then use the new definitions provided.

The choice of QML was a hard decision. QuO’s Definition Language [LSZB98]
also provides rich means for QoS specification. However, QDL is very tied to
QuO’s mechanisms for QoS management. It would be difficult to use QDL to
specify a generic QoS contract, since its keywords are strictly related to QuO’s
internals such as callback functions. We also considered using XML for QoS
contract specification. As a general purpose language, XML would allow us to
define contracts irrespective of any specific QoS enforcement system. Parsing an
XML file would also be easier since it is widespread and many languages have
libraries that support XML processing. Unfortunately, the generality of XML
was actually a drawback. The text files we created were excessively verbose
and hard to understand by humans comparing to similar files in QML. XML
specifications would be difficult to write by developers, hard to read (e.g. for
debugging purposes), and demanding to maintain.

4.4 QoS Negotiation

Applications working in highly dynamic distributed environments must adapt
gracefully to constant availability changes of system resources to continuously
deliver services with acceptable QoS levels to their clients. Peaks of utilization,
failures of system components, and resource sharing can significantly affect the



performance of Multimedia and Ubiquitous Computing applications. QoS guar-
antees are fundamental for those applications, since their outputs are strictly
related to human senses and users can easily perceive glitches in their operation.

This class of applications require effective means for QoS negotiation. Hosts
might not honor QoS contracts due to unpredictable events and applications
may have to re-negotiate their QoS contract to adapt to this situation. Peaks
of utilization may cause applications to adapt by increasing their QoS require-
ments, using QoS negotiation mechanisms. Applications capable of working with
multiple QoS levels must use some form of QoS negotiation to define on which
level of QoS they will operate.

We designed an efficient mechanism for QoS negotiation using mobile agents.
The whole negotiation process is described below:

1. The application subscribes to resource usage events with the monitoring
system.

2. The monitoring system notifies the application when an event of interest has
occurred.

3. The application requests a QoS negotiation to the Negotiator agent.
4. The Negotiator agent reads the application QoS specification file, defines the

negotiation strategy to use, and creates ProxyNegotiator agents.
5. ProxyNegotiator agents travel to remote hosts to carry out the negotiation

process locally. When the negotiation is over, they send back the results to
the Negotiator agent.

6. The Negotiator agent collects the results and passes them to the application.
7. Finally, the application receives the QoS offers and determines which one is

the best according to its specific criteria.

Applications can receive negotiation results in two different ways. They can
wait for results of all hosts visited during the negotiation process and choose the
best offer among all hosts. Or they can wait for an application-defined negotia-
tion timeout, request the results obtained by the Negotiation system up to that
moment, and choose the best offer among the ones received until then.

This mechanism frees the application from the complicated process of QoS ne-
gotiation. The tasks of searching for a suitable host, negotiating the best contract
according to the application multi-level QoS specification, and collecting the re-
sults are solely the responsibility of the Negotiation system. The application
developer must only specify QoS requirements, ask for a negotiation whenever
an adaptation is required, and select the best offer among the ones received.

Figure 3 shows the messages exchanged during a negotiation. The monitoring
system notifies the application that an adaptation should take place. The ap-
plication then creates an object containing its adaptation strategy (the strategy
will be responsible for receiving negotiation results and selecting the best of-
fer according to application functional requirements). The application then asks
the Negotiator agent to start a QoS negotiation. This system creates agents and
dispatches them to the network to carry on the negotiation process on remote
hosts. When this process is over, the agents send back the results to the Ne-
gotiator agent. It compiles the received results and passes to the application a



ApplicationMigrateStrategy Negotiator

Application
Aglet

Negotiation System

adapt()
«create»

sendMessage("startNegotiation")

Negotiator
Proxy

«create»
dispatch()

sendMessage("result")
sendMessage("negotiationResults")

chooseBest(results)
dispatch(bestHost)

dispose()

Fig. 3. Messages exchanged during a negotiation

list of available offers. The application adaptation strategy analyzes the received
results, selects the best option and and takes the proper actions.

The QoS negotiation mechanism also supports application-defined roaming
strategies. Currently, Negotiator Proxies can search for the best QoS offer using
two different strategies, described in Fig. 4. With the linear strategy, a single
ProxyNegotiator will visit each host of the environment, sending results back
to the Negotiator agent. The parallel strategy, on the other hand, will send a
different ProxyNegotiator to each host of the distributed system, and each agent
will return its result to the Negotiator agent. One could also imagine a peer-to-
peer strategy, in which a ProxyNegotiator would leave its original host knowing
only its first destination. According to negotiation results in each node, the agent
could select its next hop, and so on.

RoamingStrategy
#hostsToVisit: Vector
#reservations: Vector
-defineHosts(): void
+definePath(): Vector

LinearRoamingStrategy

+definePath(): Vector

ParallelRoamingStrategy

+definePath(): Vector

Fig. 4. Linear and parallel QoS negotiation strategies

The parallel strategy provides a better response time for negotiation results,
since the process is carried on simultaneously on all hosts of the distributed
system. However, this strategy also causes greater network traffic, since an agent
is sent to each host. Conversely, the linear strategy generates less network traffic



(a single agent is sent), but also takes longer to provide negotiation results (the
negotiation is performed sequentially).

This mechanism could be extended to support multiple application QoS ne-
gotiation. The existing design requires that each application trigger a separate
negotiation process. If two or more applications on the same host request a
QoS negotiation, this would trigger multiple simultaneous negotiation processes,
which is unnecessary. A single agent could negotiate QoS requirements on be-
half of multiple applications, thus reducing network load and increasing effi-
ciency. Furthermore, negotiation results for an application could eliminate the
re-negotiation necessity of other applications.

4.5 QoS Brokering

The architecture allows for application-initiated QoS negotiation. As such, sev-
eral applications may negotiate with the same host at the same time. To avoid
concurrency reservation issues, each node must have a single process responsible
for coordinating the QoS negotiation for multiple applications that may request
resources from that node.

Particularly, this coordinator process must avoid starvation of resources on
the distributed system while searching for the best offer. An application may
negotiate QoS contracts with many different hosts of the environment, but will
actually request a reservation from a single node. The resources negotiated but
not used by the application must be freed so that other applications may use
them during their QoS negotiation process.

DSRT’s original broker design [KN00] does not distinguish negotiation re-
quests from reservation requests. Hence, when an application demands reser-
vation of available resources during its negotiation phase, the broker actually
executes the reservation. If the application does not plan to use the resources
negotiated, it must explicitly contact the broker of each host and release the
resources obtained during the negotiation process. This would cause an unnec-
essary network overhead, affecting the infrastructure performance.

To avoid this issue, we have designed a CORBA QoS Broker that applies
the leasing pattern [KJ04] for reservation tickets. Whenever a QoS reservation
request is accepted, a ticket is created with a predefined validation timeout.
If the application will not use the reservation ticket received (because another
host made a better offer e.g.), no further action is required, since the resources
will be released as soon as the ticket expires, typically in a few seconds. If the
application tries to use an expired reservation ticket for a resource reservation,
the QoS Broker denies the request and the application must apply for a new
ticket.

We designed the QoS Broker as a CORBA object to ease the interaction
between negotiation agents and broker. Agents can easily locate the QoS Broker
in each host using the CORBA Naming Service. Agents interact locally with a
QoS Broker via broker method calls.



4.6 Adaptation Support

Self adaptive software monitors its behavior and changes it whenever required
by external conditions or when performance and functionality improvements are
possible. Adaptive software is specially useful in highly dynamic distributed envi-
ronments, since changing availability of resources demand a myriad of adaptation
techniques from applications.

To increase application flexibility and adaptability on such environments,
they should also use the mobile agents paradigm. Mobile agents reduce net-
work load, overcome network latency, can be easily integrated to heterogeneous
systems and are fault-tolerant [LA99]. These features can enhance application
adaptation strategies allowing for functionality and performance benefits.

With our infrastructure, applications developed using the mobile agents paradigm
can profit from two adaptation techniques, as shown in Fig. 5.

AdaptationStrategy
#proxy: AgletProxy
#negotiator: AgletProxy
#negotiate(): Vector
+run(): void

MigratingStrategy

+run(): void

CloningStrategy

+run(): void

Fig. 5. Migrating and cloning adaptation strategies

As explained on Sect. 4.4, the outcome of a QoS negotiation, according to
the application point of view, is a list with QoS offers received from hosts of
the environment. After reviewing those offers, an application may conclude that
the best adaptation alternative is to migrate to one of the hosts and accept its
QoS offer. Using the migrating strategy, an application can easily change its
execution to another host on the distributed system. This approach may help
applications to improve its QoS contracts or simply to continue its execution in
case of a host deactivation.

Similarly, using the cloning strategy an application can create a copy of itself
and send it to another host when suitable. This technique enables applications
to adapt gracefully to service usage bursts and valleys, consuming and freeing
resources according to client requests.

In this work we do not discuss issues that arises when an application changes
from host, such as client reference updates. This is a much broader research field
and numerous qualified works exist concerning this subject. Moreover, we believe
that even though the middleware may offer mechanisms to help applications to
overcome these difficulties, each application may require a different particular
solution.



5 Experimental Results

To assess the flexibility and usefulness of our proposed architecture, we developed
a basic sample application. The application purpose was to evaluate all services
provided by the infrastructure, namely QoS definition, QoS enforcement, QoS
negotiation, admission control, and dynamic adaptation. In this section we intro-
duce our sample application, discuss implementation details and present some
preliminary experimental results.

5.1 Sample Application: ReflectorAglet

Multimedia broadcast over the Internet is often a processing and networking
consuming operation. Servers must capture audio and video signals, convert
them to a suitable format using compression algorithms, and send large amounts
of data to their clients. When the number of clients increases, this approach
becomes not efficient.

The typical architecture for scalable real-time multimedia streaming over
the Internet is shown at the left-hand side of Fig. 6. It uses multimedia reflec-
tors to decrease processing and network loads generated by multimedia streams
[KCN01].

Media
Server

ReflectorReflector

Reflector

Clients

Reflector

NodeNode

Darwin
Streaming
Server

Resource
Monitor

XMMS

Fig. 6. Typical Internet multimedia broadcast architecture and our testing environ-
ment

Clients connect to multimedia reflectors instead of connecting directly to
media servers. Reflectors are light-weight processes in terms of CPU usage, as
they connect to media servers and simply forward the traffic received to other
reflectors or application clients. This architecture unloads media servers and
improves overall performance.

We developed a multimedia reflector, called ReflectorAglet, using the mobile
agent paradigm. This aglet specifies its QoS requirements, detects processing



shortages, and uses the QoS Negotiation system to find a host capable of fulfilling
its QoS requirements. The ReflectorAglet and the infrastructure source code can
be found at http://gsd.ime.usp.br/software/QoSNegotiation. Our testing
environment is presented at the right-hand side of Fig. 6.

For testing purposes, we used Apple’s Darwin Streaming Server 5 to stream
MPEG Layer 3 (MP3) files. Reflectors were responsible for connecting to the
Darwin Streaming Server and forwarding the stream to XMMS 6 clients, in
charge of playing the audio stream. The ReflectorAglet monitored its host pro-
cessing usage. When high CPU utilization was detected, the reflector requested
a negotiation to find another host able to accept its QoS requirements. The re-
flector then migrated to this host using its new QoS contract. We used a process-
consuming application to cause high CPU utilization at the reflector host. All
hosts used for our tests had AMD Athlon XP 1700 processors and 512MB of
RAM memory. We used a QoS requirement file including the QML specification
for three different QoS levels in which our test application could operate.

Our tests consisted in evaluating the negotiation process scalability when it
included up to four hosts. The focus was to estimate the increase in execution
time of a typical QoS negotiation in our infrastructure. We compared the per-
formance of both negotiation roaming strategies: linear and parallel. The results
are presented in Fig. 7.

0

200

400

600

800

1000

1 2 3 4

T
im

e 
(m

s)

Number of hosts to negotiate

Negotiation Time

Parallel
Linear

Fig. 7. Testing results

Each test was performed five times; each point in the graph represents the
arithmetic mean of five runs of the experiment and the vertical error bars repre-
sent the standard deviation of the mean. We first measured the time of an aglet
migration without QoS negotiation (which corresponded to negotiating with zero
hosts), which was equal to 8.6 ms. After that, we measured the time overhead

5 http://developer.apple.com/darwin/projects/streaming
6 http://www.xmms.org/



caused by a negotiation with one to four hosts. We considered the time elapsed
between the instant in which the application receives the event notification (that
triggers the negotiation) and the instant in which it departs from its original host
to its new host (after the result of the negotiation is known and a final decision
is made).

The negotiation time for the parallel strategy remained almost the same
on every run of the experiment, since the negotiation agent clones visited all
hosts concurrently. The time overhead of including another host to the process
is minimal but, on the other hand, the network load increase is noticeable.

Conversely, the overall negotiation time for the linear strategy increased lin-
early. In a linear negotiation, a single agent must travel to all target hosts. As
a consequence, for each new node added to the negotiation process, the total
negotiation time also increased accordingly. Even though this strategy proved
slower in most cases, it could still be useful if modified to interrupt the nego-
tiation process when an optimal (or near-optimal) QoS contract is found. This
would shorten the negotiation process and unload the network when compared
to the parallel strategy.

6 Conclusions

In this article we presented a mobile-agent-based infrastructure for QoS Negoti-
ation, which is part of an entire QoS management architecture. Its goal is to be
an effective mechanism for QoS negotiation of adaptive distributed applications,
unloading them from the complexity of QoS negotiations on highly dynamic dis-
tributed environments. As a consequence of using multi-platform technologies
such as DSRT and Java, it is also portable and deployable in heterogeneous
environments.

Our first results are promising. The QoS negotiation process scaled up well
when we considered one to four hosts. We are now carrying out more experiments
to evaluate the QoS negotiation system performance in larger environments as
well as the whole infrastructure. Future work includes further evaluation of the
infrastructure using other distributed applications, the development of more so-
phisticated QoS negotiation algorithms and an evaluation of the infrastructure
usage, defining in which scenarios it is worth to use this infrastructure and in
which scenarios a simpler solution would suffice.

We think that mobile agents present many potential advantages not yet ex-
tensively explored. Even though the mobile agent concept was introduced nearly
ten years ago, the related technologies are not yet widespread among distributed
systems developers. We should note that other now well-established technologies
such as object-orientation took over twenty years to become mainstream. We be-
lieve that more research and experience with mobile agents are necessary before
this technology can become widely used by a large number of system developers.



References

[CC97] A. T. Campbell and G. Coulson. QoS Adaptive Transports: Delivering
Scalable Media to the Desktop. IEEE Network, 11(2):18–27, March 1997.

[CWS+00] C. D. Cavanaugh, L. R. Welch, B. A. Shirazi, E. Huh, and S. Anwar.
Quality of Service Negotiation for Distributed, Dynamic Real-time Sys-
tems. In Workshop on Bio-Inspired Solutions to Parallel Processing Prob-
lems (BioSP3) at IDPDS Workshops, pages 757–765. Springer, 2000.

[FK98] S. Frølund and J. Koistinen. Quality of service specification in distributed
object systems design. Proceedings of the 4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS), April 1998.

[GP99] R. Guérin and V. Peris. Quality-of-service in Packet Networks: Basic Mech-
anisms and Directions. Computer Networks, 31(3):169–179, February 1999.

[HF98] A. Hafid and S. Fischer. A multi-agent architecture for Cooperative QoS
Management. In Management of Multimedia Networks and Services, pages
41–54. Chapman & Hall, 1998.

[KCN01] F. Kon, R. Campbell, and K. Nahrstedt. Using Dynamic Configuration to
Manage a Scalable Multimedia Distribution System. In Computer Commu-
nication Journal, volume 24, pages 105–123, 2001.

[KG99] D. Kotz and R. S. Gray. Mobile agents and the future of the Internet. ACM
Operating Systems Review, pages 7–13, 1999.

[KJ04] M. Kircher and P. Jain. Pattern Oriented Software Architecture, Volume
3: Patterns for Resource Management. Wiley, 2004.

[KN00] K. Kim and K. Nahrstedt. A Resource Broker Model with Integrated Reser-
vation Scheme. In Proceedings of IEEE ICME’2000, 2000.

[KYH+01] F. Kon, T. Yamane, C. Hess, R. Campbell, and M. D. Mickunas. Dy-
namic Resource Management and Automatic Configuration of Distributed
Component Systems. In Proc. 6th USENIX COOTS, February 2001.

[LA99] D. B. Lange and M. Ashima. Seven Good Reasons for Mobile Agents.
Communications of the ACM, 42(3):88–89, March 1999.

[LSZB98] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying and
Measuring Quality of Service in Distributed Object Systems. In Proceedings
of ISORC ’98, April 1998.

[MK02] J. R. Marques and F. Kon. Gerenciamento de Recursos Distribúıdos em
Sistemas de Grande Escala. In Proceedings of the 20th Brazilian Symposium
on Computer Networks, pages 800–813, May 2002.

[NCN97] K. Nahrstedt, H. Chu, and S. Narayan. QoS-Aware resource management
for distributed multimedia applications. Journal on High-Speed Networking,
December 1997.

[NXWL01] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS-Aware Middleware
for Ubiquitous Computing. In IEEE Communications Magazine, volume
39, Issue 11, pages 140–148, November 2001.

[SEK02] F. J. S. Silva, M. Endler, and F. Kon. Dynamic adaptation of distributed
systems. 12th ECOOP Workshop for PhD Students in OO Systems, June
2002.

[SV98] Springer-Verlag, editor. Mobile Agents and Security, number 1419 in Lec-
ture Notes in Computer Science, 1998.

[VZL+98] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and D. E.
Bakken. QuO’s Runtime Support for Quality of Service in Distributed
Objects. In Proceedings of Middleware’98, September 1998.


