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Abstract. We present a Bayesian treatment of non-negative matrix fac-
torization (NMF), based on a normal likelihood and exponential priors,
and derive an efficient Gibbs sampler to approximate the posterior den-
sity of the NMF factors. On a chemical brain imaging data set, we show
that this improves interpretability by providing uncertainty estimates.
We discuss how the Gibbs sampler can be used for model order selection
by estimating the marginal likelihood, and compare with the Bayesian
information criterion. For computing the maximum a posteriori estimate
we present an iterated conditional modes algorithm that rivals existing
state-of-the-art NMF algorithms on an image feature extraction problem.

1 Introduction

Non-negative matrix factorization (NMF) [1, 2] has recently received much atten-
tion as an unsupervised learning method for finding meaningful and physically
interpretable latent variable decompositions. The constraint of non-negativity is
natural for a wide range of natural signals, such as pixel intensities, amplitude
spectra, and occurence counts. NMF has found widespread application in many
areas, and has for example been used in environmetrics [1] and chemometrics [3]
to find underlying explanatory sources in series of chemical concentration mea-
surements; in image processing [2] to find useful features in image databases; in
text processing [4] to find groups of words that constitute latent topics in sets
of documents; and in audio processing [5] to separate mixtures of audio sources.

In this paper, we discuss NMF in a Bayesian framework. Most NMF algo-
rithms can be seen as computing a maximum likelihood (ML) or maximum a
posteriori (MAP) estimate of the non-negative factorizing matrices under some
assumptions on the distribution of the data and the factors. Here, we derive
an efficient Markov chain Monte Carlo (MCMC) method for estimating their
posterior density, based on a Gibbs sampling procedure. This gives not only an
estimate of the factors, but also an estimate of their marginal posterior density,
which is valuable for interpreting the factorization, computing uncertainty esti-
mates, etc. This work is related to the Bayesian spectral decomposition (BSD)
method of Ochs et al. [6], that uses a (computationally expensive) atomic point-
mass prior and is implemented in a modified commercial MCMC toolbox; and
to the Bayesian non-negative source separation method of Moussaoui et al. [7]
that incorporates a hybrid Gibbs-Metropolis-Hastings sampling procedure. The
contributions of this paper are three-fold: 1) We present a fast and direct Gibbs



sampling procedure for the NMF problem that, compared with BSD, reduces
computation time by more than an order of magnitude on the same data. 2) We
present a marginal-likelihood estimation-method based on the Gibbs sampler,
which leads to a novel model order selection method for NMF. 3) We propose
an iterated conditional modes algorithm for computing the MAP estimate of the
Bayesian NMF, and show that this algorithm rivals current state-of-the-art NMF
algorithms. Matlab implementations of the presented algorithms are available at
http://www.mikkelschmidt.dk/ica2009.

2 Bayesian non-negative matrix factorization

The non-negative matrix factorization problem can be stated as X = AB + E,
where X ∈ R

I×J is a data matrix that is factorized as the product of two
element-wise non-negative matrices, A ∈ R

I×N
+ and B ∈ R

N×J
+ (R+ denotes

the non-negative reals), and E ∈ R
I×J is a residual matrix. In the Bayesian

framework, we state our knowledge of the distribution of the residual in terms
of a likelihood function, and the parameters in terms of prior densities. The
priors are chosen in accordance with our beliefs about the distribution of the
parameters; however, to allow efficient inference in the model it is desirable
to choose prior densities with a convenient parametric form. In this paper, we
choose a normal likelihood and exponential priors, which are suitable for a wide
range of problems, while permitting an efficient Gibbs sampling procedure. We
assume that the residuals, Ei,j , are i.i.d. zero mean normal with variance σ2,
which gives rise to the likelihood,

p(X|θ) =
∏

i,j

N
(

Xi,j ; (AB)i,j , σ
2
)

, (1)

where θ = {A, B, σ2} denotes all parameters in the model and N (x; µ, σ2) =
(2πσ2)−1/2 exp(−(x − µ)2/(2σ2)) is the normal density. We assume A and B

are independently exponentially distributed with scales αi,n and βn,j ,

p(A) =
∏

i,n

E (Ai,n; αi,n) , p(B) =
∏

n,j

E (Bn,j; βn,j) , (2)

where E(x; λ) = λ exp(−λx)u(x) is the exponential density, and u(x) is the unit
step function. The prior for the noise variance is chosen as an inverse gamma
density with shape k and scale θ,

p(σ2) = G−1
(

σ2; k, θ
)

=
θk

Γ (k)
(σ2)

−k−1
exp

(

−
θ

σ2

)

. (3)

Using Bayes rule, the posterior is proportaional to the product of Equations
(1–3), and it can be maximized to yield an estimate of A and B; however, we
are interested in estimating the marginal density of the factors, and because we
cannot directly compute marginals by integrating the posterior, we proceed in
the next section by deriving an MCMC sampling method.



2.1 Gibbs sampling

In Gibbs sampling, a sequence of samples is drawn from the conditional posterior
densities of the model parameters, and this converges to a sample from the joint
posterior. We first consider the conditional densities of A and B which are
proportional to a normal multiplied by an exponential, i.e., a rectified normal
density, which we denote by R

(

x; µ, σ2, λ
)

∝ N (x; µ, σ2)E(x; λ). The conditional
density of Ai,n is

p(Ai,n|X, A\(i,n), B, σ2) = R
(

Ai,n; µAi,n
, σ2

Ai,n
, αi,n

)

, (4)

µAi,n
=

∑

j(Xi,j−
∑

n′ 6=n
Ai,n′Bn′,j)Bn,j

∑

j
B2

n,j

, σ2
Ai,n

= σ2

∑

j
B2

n,j

, (5)

where A\(i,n) denotes all elements of A except Ai,n, and due to symmetry, the
similar expression for Bn,j can easily be derived. The conditional density of σ2

is an inverse-gamma

p(σ2|X , A, B) = G−1(σ2; kσ2 , θσ2) (6)

kσ2 = IJ
2 + 1 + k, θσ2 = 1

2

∑

i,j(X − AB)2i,j + θ. (7)

The posterior can now be approximated by sequentially sampling from these
conditional densities.

A few remarks on the implementation: Since the elements in each column of
A (row of B) are conditionally independent, we can samples an entire column
of A (row of B) simultaneously. When I × J ≫ (I + J)×N it advantageous to
implement equations (5) and (7) in a way that avoids explicitly computing large
matrix products of size I × J . The bulk of the computation is then comprised
of computing the matrix products XB⊤ and A⊤X that can be precomputed
in each iteration. Based on this, an efficient NMF Gibbs sampler is given as
Algorithm 1, where R and G−1 denotes drawing a random sample from the
rectified normal and inverse-gamma densities, and the notation A:,\n is used to
denote the submatrix of A that consists of all colums except the n’th.

2.2 Estimating the marginal likelihood

An important problem in NMF is to choose the number of factors, N , for a given
data set (when this is not evident from the nature of the data). In the Bayesian
framework, model selection can be performed by evaluating the marginal like-
lihood, p(X), which involves an intractable integral over the posterior. Several
methods exist for estimating the marginal likelihood, including annealed impor-
tance sampling, bridge sampling, path sampling, and Chib’s method [8]. The
latter is of particular interest here since it requires only posterior draws, and
can thus be implemented directly using the described Gibbs sampler.

Chib’s method is based on the relation p(X) = p(X|θ)p(θ)
p(θ|X) . The numer-

ator can easily be evaluated for any θ, so the problem is to evaluate the



denominator, i.e., the the posterior density at the point θ. If the parame-
ters are segmented into K blocks, {θ1, . . . , θK}, using the chain rule we may
write the denominator as the product of K terms, p(θ|X) = p(θ1|X) ×
p(θ2|θ1, X) × · · · × p(θK |θ1, . . . , θK−1, X). If these K parameter blocks are
chosen such that they are amenable to Gibbs sampling, each term can be ap-
proximated by averaging over the conditional density p(θk|θ1, . . . , θk−1, X) ≈
1
M

∑M
m=1 p(θk|θ1, . . . , θk−1, θ

(m)
k+1, . . . , θ

(m)
K , X), where θ

(m)
k+1, . . . , θ

(m)
K are Gibbs

samples from p(θk+1, . . . , θK |θ1, . . . , θk−1, X). Thus, the marginal likelihood
can be evaluated by K runs of the Gibbs sampler. This procedure is valid for
any value of θ, but the estimation is most accurate when θ is chosen as a high
density point, e.g., the posterior mode.

In the NMF problem, the columns of A and rows of B can be used as the
parameter blocks, and the marginal likelihood can thus be estimated by 2N runs
of the Gibbs sampler, which makes this method attractive especially for NMF
models with a small number of components.

2.3 An iterated conditional modes algorithm

With the conditional densities of the parameters in the NMF model in place,
an efficient iterated conditional modes (ICM) [9] algorithm can be derived for
computing the MAP estimate. In this approach, we iterate over the parameters
of the model, but instead of drawing random samples from the conditionals, as
in the Gibbs sampler, we set each parameter equal to the conditional mode,
and after a number of iterations the algorithm converges to a local maximum of
the joint posterior density. This forms a block coordinate ascent type algorithm
with the benefit that the optimum is computed for each block of parameters
in each iteration. Since the modes of the conditional densities have closed-form
expressions, the ICM algorithm has a low computational cost per iteration. The
ICM NMF is given as Algorithm 2. In the algorithm, P+ sets negative elements
of its argument to zero.

3 Experimental evaluations

3.1 Analysis of chemical shift brain imaging data

We demonstrate the proposed bayesian NMF method on a chemical shift imaging
(CSI) data set [6], that consists of 369-dimensional spectra measured at 256 posi-
tions in a human head. The measured spectra are mixtures of different underlying
spectra, and the NMF decomposition finds these as the columns of A and the
corresponding active positions in the head as the rows of B. Ochs et al. [6] demon-
strate that the data is well described by two components that correspond to brain
tissue and muscle tissue, and present a bilinear MCMC method that provides
physically meaningful results but takes several hours to compute. Sajda et al. [10,
3] demonstrate, on the same data set, that a constrained NMF method provides
meaningful results, and Schmidt and Laurberg [11] extend the NMF approach
by including advanced prior densities.



In our experiments, the priors for A and B were chosen as αi,n = 1 and
βn,j = 10−6 to match the amplitude of the data. For the noise variance we used
an uninformative prior, k = θ = 0. We sampled 40, 000 points from the posterior
and discarded the first half to allow for the sampler to burn in. The computations
took 80 seconds on a 2 Ghz Pentium 4 computer. Since the samples were not
guaranteed to correspond to the same permutation of the factors, we used the
area around 0 ppm to identify the two unique sources. We then computed the
mean and the 5’th and 95’th percentile of the marginal distributions of the
resolved spectra, and for comparison we computed the MAP estimate using
the ICM algorithm, that provides a solutions almost identical to the results of
Sajda et al. [3] (see Figure 1).

Uncertainty in NMF can be caused by noise in the data, but since NMF
in general is not unique multiple competing solutions may also be reflected in
the posterior. Also, because of the bilinear structure of NMF, uncertainties may
be correlated between A and B, which can not be seen in plots of marginal
distributions, but can be assesed through further analysis of the posterior density.

3.2 NMF model order selection

To demonstrate the proposed model order selection method, we generated a
data matrix by multiplying two random unit mean i.i.d. exponential distributed
matrices with I = 100, J = 20, and N = 3 and adding unit variance zero mean
i.i.d. normal noise. Using Chib’s method, we computed the marginal likelihood
for model orders between 1 and 5. We generated 20, 000 samples per parameter

Algorithm 1: Gibbs sampler

for m = 1 to M do

C = BB⊤, D = XB⊤

for n = 1 to N do

A:,n←R
(

an, σ2

Cn,n
, α:,n

)

end

σ2←G−1
(

IJ
2

+ k + 1, χ + θ + ξ
)

E = A⊤A, F = A⊤X

for n = 1 to N do

Bn,:←R
(

bn, σ2

En,n
, βn,:

)

end

A(m)←A, B(m)←B

end

Output:
{

A(m), B(m)
}M

m=1

Algorithm 2: ICM

repeat

C = BB⊤, D = XB⊤

for n = 1 to N do
A:,n = P+(an)

end

σ
2 =

θ + χ + ξ
IJ
2

+ k + 1

E = A⊤A, F = A⊤X

for n = 1 to N do
Bn,:=P+ (bn)

end

until convergence
Output: A, B

Definitions: χ =
1

2

∑

i,j

X
2
i,j , ξ= 1

2

∑

i,n

Ai,n (AC − 2D)
i,n

an =
D:,n −A:,\nC\n,n − α:,n σ2

Cn,n

, bn =
F n,: −En,\nB\n,: − βn,: σ

2

En,n
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Fig. 1. Analysis of chemical shift imaging data. Two components are identified corre-
sponding to (top) muscle and (bottom) brain tissue. MAP estimation provides a point
estimate of the components whereas Gibbs sampling gives full posterior marginals, that
provide an uncertainty estimate on the spectra, and leads to better interpretation of
the results. For example, the confidence intervals show, that many of the low amplitude
peaks in the MAP spectra may not be significant.

3-component toy example CSI data
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Fig. 2. NMF model order selection using Chib’s method and the Bayesian information
criterion (BIC). Left: A three-component toy example demonstrates that the method
finds the correct number of components where BIC fails due to the small sample size.
Center: Several runs of the algorithm suggest that the estimate of the marginal likeli-
hood is stable after a few thousand Gibbs samples. Right: Analysis of the chemical shift
imaging data confirms that it contains two spectral components. In this experiment,
Chib’s method and BIC were in agreement.
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Fig. 3. Convergence rate for three least squares NMF algorithms on an image feature
extraction problem. The ICM algorithm converges much faster than the Lee-Seung
algorithm and with similar rate per iteration as the Kim-Sra-Dhillon algorithm.

block, and discarded the first half to allow burn-in; several runs of the algorithm
suggested that this was sufficient for the sampler to stabilize. For comparison,
we computed the Baysian information criterion (BIC), where the number of
effective parameters was chosen as the number of non-zero parameters in the
MAP estimate. The marginal likelihood attained its maximum at the correct
model order, N = 3, whereas BIC favored a simpler model, N = 2. The reason
why BIC fails in this case is the small number of samples in the data set, and
our results suggest that Chib’s method is more robust. Next, we applied the
marginal likelihood estimation technique to the CSI data set described in the
previous section, and here Chib’s method and BIC agreed in confirming that the
data contains two spectral components (see Figure 2).

3.3 Image feature extraction

To compare our ICM algorithm to other methods, we computed an N = 32
components factorization of the cropped UMIST Face Database [12] that consists
of 564 images of size 92× 112 that were vectorized to form a data matrix of size
I = 10304× J = 564. To be able to directly compare with existing least squares
NMF methods, we used a flat prior, αi,n = βn,j = k = θ = 0. We compared with
two state-of-the-art methods: Lee and Seung’s multiplicative update algorithm
[13] and Kim, Sra, and Dhillon’s fast Newton algorithm (FNMAI) [14].

The results (see Figure 3) show that the ICM algorithm converges much
faster than the Lee-Seung algorithm and with approximately the same rate per
iteration as the Kim-Sra-Dhillon algorithm. Since all three algorithms are domi-
nated by the computation of the same matrix products they have approximately
the same computational cost per iteration.

4 Conclusions

We have taken a Bayesian approach to NMF and presented a fast MCMC sam-
pling procedure for approximating the posterior density, and we have showed



that this can be valuable for the interpretation of the non-negative factors re-
covered in NMF. The sampling procedure can also directly be used to estimate
the marginal likelihood, which is useful for model order selection. Finally, we
have presented an iterated conditional modes algorithm for computing the MAP
estimate, that rivals existing state-of-the-art NMF algorithms.
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