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Example of repeated measures

Study conducted at the School of Dentistry of the University of São

Paulo

Objective: compare the effect of an experimental toothbrush with

that of a conventional one with respect to bacterial plaque reduction

Design: bacterial plaque index measured on 32 pre-schoolers (16 with

conventional and 16 with experimental toothbrush) before and after

toothbrushing in 4 sessions spaced by 15 days

Repeated measures: same characteristic measured on each subject

more than once

Observations on each subject tend to be correlated
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The data

Table 1: Bacterial plaque indices

1st session . . . 4th session
Before After . . . Before After

Subject Toothbrush brushing brushing . . . brushing brushing

1 conventional 1.05 1.00 . . . 1.13 0.94
2 conventional 1.07 0.62 . . . 1.15 0.85
3 experimental 0.82 0.62 . . . 1.78 1.39
...

...
... . . .

...
...

29 conventional 0.91 0.67 . . . 1.12 0.37
30 experimental 1.06 0.70 . . . 1.12 1.00
31 experimental 2.30 2.00 . . . 2.15 1.90
32 conventional 1.15 1.00 . . . 1.26 1.00
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Approaches for analysis of repeated measures

Multivariate Analysis

Balanced data (all subjects measured at the same occasions)
Many covariance parameters
Exact inference based on normality assumption

Generalized Estimating Equations

Interest in marginal response
Covariance structure based on working covariance matrix
Unspecified underlying distribution (except for first two moments)

Random Effects Models

Models for the covariance structure
Marginal and subject-specific inference
Some flexibility in the form of underlying distributions

Alencar, Singer and Rocha (2010, submitted) compare different

approaches
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Linear mixed models

Linear mixed models: popular alternative to analyze repeated measures
and, in particular, longitudinal data.

yi = Xiβ + Zibi + ei, i = 1, ...,m,

where

yi: (ni × 1) vector of response variables measured on subject i

β: (p × 1) vector of parameters (fixed effects)

Xi and Zi: (ni × p) and (ni × q) known matrices of full rank

bi: (q × 1) random vector, the components of which are called
random effects

ei: (ni × 1) random (within-subject) error term
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Linear mixed models

Usually one assumes

bi
iid
∼ Nq(0,G) i = 1, ...,m

ei
ind
∼ Nni

(0,Σi)

bi and ei independent

G and Σi are (q × q) and (ni × ni) positive definite matrices with

elements expressed as functions of a vector of covariance parameters

θ not functionally related to β

If Σi = Ini
σ2: homoskedastic conditional independence model
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BLUE and BLUP

Letting

y = (y⊤

1 , · · · ,y
⊤

m)⊤, X = (X⊤

1 , · · · ,X
⊤

m)⊤, Z = ⊕m
i=1Zi

b = (b⊤

1 , · · · ,b
⊤

m)⊤, e = (e⊤1 , · · · , e
⊤

m)⊤

Γ = Im ⊗G, Σ = ⊕m
i=1Σi

we can write the model more compactly as

y = Xβ + Zb+ e

Given Γ and Σ

Best Linear Unbiased Estimator (BLUE) of β : β̂ = Ty

Best Linear Unbiased Predictor (BLUP) of b : b̂ = ΓZ⊤Qy

with

T =
(
X⊤MX

)−1
X⊤M

Q = M(I −XT)

M = V−1 = (ZΓZ⊤ +Σ)−1
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Estimation of covariance parameters

Most popular methods for estimation of covariance parameters in θ
and consequently in Γ and Σ

maximum likelihood
restricted maximum likelihood (REML)

Replacing Γ and Σ in the expressions for β̂ and b̂ with convenient

estimates leads to the so called empirical BLUE (EBLUE) and

empirical BLUP (EBLUP)

Other estimation methods for the parameters of linear mixed models

discussed in Searle et al. (1992, Wiley) and Demidenko (2004, Wiley)
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Trellis display for the example data
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Linear mixed model for the example

Based on Singer et al. (2004, Statistical Modelling) who analyze a
different data set from the same study, we considered fitting models of the
form

ln yijd = αjd + βjd lnxijd + bi + eijd, (1)

where

yijd (xijd) is the posttreatment (pretreatment) bacterial plaque index
for the i-th subject evaluated in the d-th session with the j-th type of
toothbrush (j = 0: conventional)

αjd is a effect associated to the j-th toothbrush type in the d-th
session

βjd is a coefficient of uniformity of the expected bacterial plaque
index reduction rate associated to the j-th toothbrush type in the
d-th session

bi ∼ N(0, τ2) and eijd ∼ N(0, σ2) are independent
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Analysis strategy

i) Test whether uniformity coefficients are homogeneous for the two

types of toothbrush across the four sessions, i.e., whether βjd = β,

j = 0, 1, d = 1, ..., 4

ii) Test whether main effect of type of toothbrush and interaction

between type of toothbrush and evaluation session regarding the

coefficients of residual bacterial plaque index are null, i.e.,

α01 − α11 = α02 − α12 = α03 − α13 = α04 − α14

αjd = αj , d = 1, 2, 3, 4, j = 0, 1

iii) Fit model that incorporates the conclusions in (i) and (ii), i.e.,

ln yijd = αj + β lnxijd + bi + eijd
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Results

i) Model ln yijd = αj + β lnxijd + bi + eijd has a good fit when

compared with saturated model

ii) Maximum likelihood estimates and standard errors are

α̂0 = −0.32 ± 0.03, α̂1 = −0.21± 0.03, β̂ = 1.06 ± 0.06

τ̂2 = 0.006 ± 0.0028, σ̂2 = 0.021 ± 0.002

Essentially, the results indicate that

a) The expected reduction in the bacterial plaque index lies around 27%

for the conventional toothbrush compared to 19% for the

experimental one

b) There is no reduction in efficiency for either toothbrush within the

investigation period
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Residual Analysis

Residuals frequently used to

evaluate validity of assumptions of statistical models

help in model selection

For standard (normal) linear models, residuals are used to verify

homoskedasticity

linearity of effects

presence of outliers

normality and independence of the errors
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Type of residuals in linear mixed models

Cox and Snell (1968, JRSS-B): general definition of residuals for

models with single source of variability

Hilden-Minton (1995, PhD thesis UCLA), Verbeke and Lesaffre
(1997, CSDA) or Pinheiro and Bates (2000, Springer): extension to
define three types of residuals that accommodate the extra source of
variability present in linear mixed models, namely:

i) Marginal residuals, ξ̂ = y −Xβ̂ = M̂−1Q̂y, predictors of marginal

errors, ξ = y −E[y] = y −Xβ = Zb+ e

ii) Conditional residuals, ê = y −Xβ̂ − Zb̂ = Σ̂Q̂y, predictors of

conditional errors e = y −E[y|b] = y −Xβ − Zb

iii) BLUP, Zb̂, predictors of random effects, Zb = E[y|b]−E[y]
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Confounded Residuals

Hilden-Minton (1995, PhD thesis, UCLA): residual is pure for a
specific type of error if it depends only on the fixed components and
on the error that it is supposed to predict

Residuals that depend on other types of errors are called confounded
residuals

Given that

ξ̂ = [I−X(X⊤M̂X)−1X⊤M̂]ξ,

ê = Σ̂Q̂e+ Σ̂Q̂Zb,

Zb̂ = ZΓ̂Z⊤Q̂Zb+ ZΓ̂Z⊤Q̂e,

we have

ê is confounded with b

Zb̂ is confounded with e
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Marginal Residuals

Since y = Xβ + ξ, plots of the marginal residuals (ξ̂) versus

explanatory variables may be employed to check linearity of y with

respect to such variables

Lesaffre and Verbeke (1998, Biometrics): Ri = V̂
−1/2
i ξ̂i are residuals

to check appropriateness of the within-subjects covariance matrix

When ||Ini
− RiR

⊤

i ||
2 is small, within-subjects covariance matrix is

acceptable
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Marginal Residuals: example

Marginal residuals (a) and residuals for the within-subjects covariance
matrix structure (b)
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Some indications that linearity and/or within-subjects covariance structure
might not be appropriate for subjects 12 and 29
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Conditional Residuals

Identification of outlying observations/subjects

Conditional standardized residuals (Nobre and Singer, 2007,

Biometrical Journal)

ê∗k =
êk

σ̂
√
p̂kk

pkk: k-th element of the main diagonal of ΣQΣ, k = 1, . . . , n

p̂kk: functions of the joint leverage of the fixed and random effects

(Nobre and Singer, 2010, Journal of Applied Statistics)

ê∗
k
: generalization of usual studentized residuals
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Conditional Residuals

Check homoskedasticity of conditional errors (Σ = σ2In): plot

standardized conditional residuals versus fitted values

Check normality of conditional errors

Keep in mind the confounding present in ê
Hilden-Minton (1995, PhD thesis, UCLA): ability to check for
normality of e, using ê, decreases as V[ΣQZ⊤b] = ΣQZΓZ⊤QΣ
increases in relation to V[ΣQe] = ΣQΣQΣ
Fraction of confounding for the k-th conditional residual êk

0 ≤ Fk =
u⊤

k
ΣQZΓZ⊤QΣuk

u⊤

k
ΣQΣuk

= 1−
u⊤

k
ΣQΣQΣuk

u⊤

k
ΣQΣuk

≤ 1

Least confounded residual linear transformation t⊤ê such that

λi =
t⊤
i
ΣQΣQΣti

t⊤
i
ΣQΣti

is maximum
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Least Confounded Residuals: example

Least confounded residuals: homoskedastic and uncorrelated with
variance σ2

Check normality of the conditional errors via normal quantile plots
with simulated envelopes

Figure 3: Standardized conditional residuals (a) and simulated 95% confidence
envelope for the standardized least confounded conditional residuals (b)
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EBLUP

EBLUP: reflects the difference between the predicted responses for

the i-th subject and the population average

Useful to detect outlying subjects: plot ζ̂i = b̂⊤

i {V̂[b̂i − bi]}
−1b̂i

versus subject indices

Useful to assess which subjects are sensitive to homogeneity of the
covariance matrices of the random effects

Pinheiro and Bates (2000, Springer): scatter plot matrix of the
predicted random effects
Nobre (2004, MSc dissertation, USP): perturbation of the covariance
matrix of the i-th random effect by letting V[bi] = wiG and
identifying subjects which are sensitive to this perturbation via local
influence methods
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EBLUP

Useful to check normality of random effects

Lange and Ryan (1989, Annals of Statistics): weighted normal quantile
plots of standardized linear combinations of the random effects
Jiang (2001, Annals of Statistics): test to check the assumption that
the distributions of b and e are as specified
Both papers rely on asymptotic arguments

Butler and Louis (1992, Statistics in Medicine): BLUE is not affected

by incorrect specification of distribution of b (simulation study)

Result confirmed theoretically by Verbeke and Lesaffre (1997, CSDA)

when distribution of b has finite third absolute moment, and only

requires a correction in the covariance matrix of the fixed effects

estimators
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EBLUP: example

Figure 4: EBLUP (a) and Cook’s |dmax| for the perturbed variance of
random effects (b)
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Diagnostic results

Figure 2(b): Fitted covariance matrix may not be adequate for

subjects #12 and #29

Figure 3(a): Observations #12.2 and #29.4 are highlighted as

atypical with respect to the remaining standardized conditional

residuals: possible outliers

Figure 3(b): No observations outside the simulated envelope and do

not show trends: plausibility of the normality assumption for the

conditional error

Figure 4(a): subject #29 may be an outlier

Figure 4(b): data for subject # 29 not compatible with assumption of

homogeneity of variance of the random effects
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Summary

Table 2: Uses of residuals for diagnostic purposes

Diagnostic for Residual Plot

Linearity of effects (E[y] = Xβ) Marginal ξ̂k vs explanatory variables
Within-subjects covariance matrix (Vi) Marginal ||Ini

− RiR
⊤

i ||
2 vs subjects

Presence of outlying observations Conditional ê∗

k vs. observations
Homoskedasticity of conditional errors (ei) Conditional ê∗

k vs. fitted values
Normality of conditional errors (ei) Conditional QQ least confounded resid

Presence of outlying subjects EBLUP ζ̂i (or b̂i) vs subjects
Random effects covariance structure (G) EBLUP |dmax| vs. subjects

Normality of the random effects (bi) EBLUP Weighted QQ for b̂i
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Relative changes of estimates without outliers

Table 3: Estimates (± estimated standard errors) of parameters and
relative change with and without subjects #12 and #29

Parameters α0 α1 β τ 2 σ2

Complete -0.32±0.03 -0.21±0.03 1.06±0.06 0.0063±0.0028 0.021±0.02
data

- Sub.#12 -0.32±0.03 -0.22±0.03 1.06±0.06 0.0069±0.0027 0.015±0.02
(0.0%) (-4.8%) (0.0%) (-9.0%) (28.6%)

- Sub #29 -0.33±0.03 -0.19±0.03 1.07±0.05 0.0015±0.0013 0.017±0.02
(0.0%) (9.5%) (0.9%) (76.7%) (-19.1%)

- Both -0.32±0.03 -0.19±0.03 1.07±0.05 0.0030±0.0014 0.012±0.01
(0.0%) (9.5%) (0.9%) (52.8%) (42.9%)

Details for influential subjects given in Nobre and Singer (2007, Biometrical

Journal)
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Discussion

Incorrect identification of influential subjects may occur when the

covariance structure is misspecified (Fei and Pan, 2003, 18-th

International Workshop on Statistical Modelling)

Wolfinger (1993, Communications in Statistics), Rutter and Elashoff

(1994, Statistics in Medicine), Grady and Helms (1995, Statistics in

Medicine) or Rocha and Singer (2010, in preparation ): methods of

selection of the covariance structure in mixed models
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Efficiency of Least Confounded Residuals

Objective: evaluate robustness of the least confounded conditional

residuals

Generated observations from the model

yij = 1 + 2xij + bizij + eij , i = 1, ..., 100, j = 1, ..., 5

where eij ∼ N(0, 1) and bi ∼ F are independent random variables
and F is either:

a) N(0, 1)
b) t3
c) χ2

3

d) Poisson with mean 3

xij and zij generated from a Uniform(0,2) distribution
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Efficiency of Least Confounded Residuals

Figure 5: Simulated 95% confidence envelope for the least confounded residuals
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Efficiency of Least Confounded Residuals

Objective: show that confounding present in ê must be taken into
account
Generated observations according to model adopted previously, with
bi obtained from a t3 multiplied by 4 and zij from a Uniform(3,5)
distribution

Figure 6: simulated 95% confidence envelope for the standardized least
confounded residuals and for the standardized conditional residuals
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Conclusions and computational aspects

Standardized least confounded residuals may be employed to evaluate

the plausibility of the normality assumption for the conditional error

even when the random effects are not normal

Some diagnostic tools implemented in S-plus (NLME) and R (NLME

and lme4) packages

Modifications needed to take confounding and correct standardization

of the conditional residuals in consideration

Codes employed for the analysis of the example and the simulation

developed in R (function lmmresdidual ) and can be obtained directly

from the authors

JM Singer (USP) MAE0610 2011 31 / 1



References

Butler, S.M. and Louis, T.A. (1992). Random effects models with
non-parametric priors. Statistics in Medicine 11, 1981–2000.

Cox, D.R. and Snell, E.J. (1968) A general definition of residuals (with
discussion). Journal Royal Statistical Society B 30, 248–275.

Demidenko, E. (2004). Mixed models: theory and applications. New York:
John Wiley & Sons.

Fei, Y. & Pan, J. (2003). Influence assessments for longitudinal data in
linear mixed models. In 18-th International Workshop on Statistical

Modelling. Eds. G. Verbeke, G. Molenberghs, M. Aerts and S. Fieuws.
Leuven: Belgium, 143–148.

Grady, J.J. and Helms, R.W. (1995).Model selection techniques for the
covariance matrix for incomplete longitudinal data. Statistics in Medicine

14, 1397–1416.

Hilden-Minton, J.A. (1995). Multilevel diagnostics for mixed and

hierarchical linear models. PhD Thesis, UCLA, Los Angeles.

Jiang, J. (2001). Goodness-of-fit tests for mixed model diagnostics. The
Annals of Statistics 29, 1137–1164.

JM Singer (USP) MAE0610 2011 32 / 1



References

Lange, N. and Ryan, L. (1989). Assessing normality in random effects
models. The Annals of Statistics 17, 624–642.

Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models.
Biometrics 54, 570–582.

Nobre, J.S. (2004). Métodos de diagnóstico para modelos lineares mistos.
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