## EXISTENCE RESULTS FOR AN ELLIPTIC EQUATION INVOLVING THE FRACTIONAL LAPLACIAN

## GAETANO SICILIANO

In the talk we present recent results on the following system involving the fractional Laplacian in the whole  $\mathbb{R}^N$ ,  $N \geq 3$ :

$$\begin{cases} (-\Delta)^s u + u - \varphi |u|^{p-2} u = 0, \\ (-\Delta)^{\alpha/2} \varphi = \gamma(\alpha) |u|^p. \end{cases}$$

Here  $\gamma(\alpha)$  is a normalizing constant,  $s \in (0, 1)$  and  $\alpha \in (0, N)$ . Finally p varies in a suitable range involving  $s, \alpha, N$  which permits to obtain a unique solution to the second equation,  $\varphi = \varphi(u)$  for every  $u \in H^s(\mathbb{R}^N)$ . The system is then reduced to a single nonlocal equation.

We look for weak solutions to the above problem in the fractional Sobolev space  $H^s(\mathbb{R}^N)$ . These solutions can be characterized as critical points of a functional, whose geometry and compactness properties (the Palais-Smale condition) will depend on the values of the parameters. Using variational methods and concentration compactness arguments (note the invariance by translations) we are able to show the existence of a ground state which is positive and radially symmetric. Moreover we also obtain multiplicity results for radial and non-radial solutions, as well as nonexistence result when p is greater then a "critical" exponent.

These results are obtained in collaboration with P. d'Avenia (Politecnico di Bari, IT) and M. Squassina (Univ. di Verona, IT).

1