## Words Distinguished by their Subwords

Imre Simon<br>Universidade de São Paulo<br>São Paulo, Brasil<br>[is@ime.usp.br](mailto:is@ime.usp.br)<br>http://www.ime.usp.br/~is/

September, 2003 (Words © Turku)

## Words distinguished by their subwords

Word $y$ distinguishes words $x_{1}$ and $x_{2}$ if $y$ is a subword of exactly one of $x_{1}$ and $x_{2}$.
$y$ is a subword of $x$ if there exist words $y_{1}, y_{2}, \ldots, y_{n}, x_{0}, x_{1}, \ldots, x_{n}$ in $A^{*}$, for some $n \geq 1$, such that

$$
y=y_{1} y_{2} \cdots y_{n} \quad \text { and } \quad x=x_{0} y_{1} x_{1} y_{2} x_{2} \cdots y_{n} x_{n}
$$

Sometimes $y$ is called "a subsequence" of $x$.
There exist a word distinguishing $x_{1}$ and $x_{2}$ iff $x_{1}$ and $x_{2}$ are distinct.
We are interested in finding a shortest word distinguishing $x_{1}$ and $x_{2}$ (if there is one).

Result to be presented here: an $O\left(|A|\left(\left|x_{1}\right|+\left|x_{2}\right|\right)\right)$ time complexity algorithm.
Main result: an $O\left(|A|+\left|x_{1}\right|+\left|x_{2}\right|\right)$ time complexity algorithm.

## Some examples

$$
\begin{aligned}
& x_{-} 1=b c a c a c a d c a b a b a b d a c b a \\
& x_{-} 2=b a c c a d c a b b c b c a b a d a b \\
& y_{-} 1=d a c b a c \\
& y_{\_} 2=d c c c
\end{aligned}
$$

$y_{1}$ and $y_{2}$ both distinguish $x_{1}$ and $x_{2}$
$y_{2}$ is a shortest word that distinguishes $x_{1}$ and $x_{2}$ :
$x_{1}$ and $x_{2}$ have the same subwords up to length 3

## Some theory

$x_{1}$ and $x_{2}$ are $m$-equivalent if they have the same subwords of length up to $m$ : $x_{1} \equiv x_{2}\left[J_{m}\right]$.

Let $y$ be a shortest word distinguishing $x_{1} \neq x_{2}$. We define:

$$
\delta\left(x_{1}, x_{2}\right)= \begin{cases}\infty & \text { if } x_{1}=x_{2} \\ |y|-1 & \text { otherwise }\end{cases}
$$

$\delta\left(x_{1}, x_{2}\right)$ is the greatest $m$ for which $x_{1} \equiv x_{2}\left[J_{m}\right]$.
Two one-sided particular cases: $\delta(u a, u)$ and $\delta(a v, v)$ lead to right and left distinguishers for $u, v \in A^{*}$ and $a \in A$

A fundamental property:

$$
\delta(u a v, u v)=\delta(u a, u)+\delta(a v, v)
$$

## An illustration of the fundamental property

$$
\begin{aligned}
& \text { * } \\
& x_{1} 1=b c a c a c a d c a b a b a b d a c b a \\
& \begin{array}{lllllllllllllllllllll}
--> & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 0 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 1 & 2 & 2 & 2 & 3 \\
<-- & 2 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 1 & 3 & 3 & 2 & 2 & 1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array} \\
& \mathrm{~m}=24444441244444413223 \\
& +\quad+\quad+\quad+
\end{aligned}
$$

a shortest distinguisher:

$$
y=\text { d.b.aad, } \quad|y|=5
$$

$$
\delta(b c a c a c a d c a \stackrel{b}{\uparrow} a b a b d a c b a, b c a c a c a d c a a b a b d a c b a)=1+3
$$

## The main theorem

The algorithm is (partially) based on carefully following the proof of the following main theorem:

If words $x_{1}$ and $x_{2}$ have the same subwords of length at most $m$, for some $m$, then $x_{1}$ and $x_{2}$ can be merged into a new word $z$, without introducing any new subwords of length up to $m$

In other words, taking the largest possible $m$ for given $x_{1}$ and $x_{2}$, we have: every $x_{1}$ and $x_{2}$ have a common superword $z$ such that

$$
\delta\left(x_{1}, x_{2}\right)=\min \left\{\delta\left(x_{1}, z\right), \delta\left(x_{2}, z\right)\right\} .
$$

Or, still in other words, every $x_{1}$ and $x_{2}$ can be merged into a word $z$ without introducing any new subwords of length up to $\delta\left(x_{1}, x_{2}\right)$.

## The merging of the example words

$$
\left.\begin{array}{rlllllllllllllllllllll}
x_{-} & = & b & c & a & c & a & c & a & d & c & a & b & & & a & b & a & b & d & a & c
\end{array}\right] b
$$

## Computing a shortest distinguisher for $x_{1}$ and $x_{2}$

Distinguisher $\left(x_{1}, x_{2}\right)$
$1 \triangleright$ Preparing the leftist data structures
$2 \operatorname{Ld}_{1} \leftarrow \operatorname{LeftDistinguisher}\left(x_{1}, x_{2}\right)$
$3 \mathrm{Ld}_{2} \leftarrow$ LeftDistinguisher $\left(x_{2}, x_{1}\right)$
$4 \triangleright$ Merging $x_{1}$ and $x_{2}$ into $z$
$5(z, \mathrm{Rd}, m, j m, p s m,(i m, a m)) \leftarrow \operatorname{Merge}\left(x_{1}, x_{2}\right)$
6 if $m=\infty$ then $\quad \triangleright x_{1}=x_{2}$, they can not be distinguished
7 else $\quad y r \leftarrow \operatorname{Collect}(\operatorname{Rd},(j m-1, z[j m]))$
$8 \quad y l \leftarrow \operatorname{Collect}\left(\operatorname{Ld}_{p s m},(i m, a m)\right)$
$9 \quad y \leftarrow \operatorname{reverse}(y r) . z[j m] . y l$
$10 \triangleright$ We just collected a shortest distinguisher in $y,|y|=m+1$
$11 \quad|y| \leftarrow m+1$
12 return $(m, y)$

## Left distinguisher Ld of $x$ with embeddings in $y$

```
LeftDistinguisher \((x, y)\)
```

```
                            \(\triangleright\) Subword automaton of the reverse of \(y\)
```

                            \(\triangleright\) Subword automaton of the reverse of \(y\)
                            Auto \([0, a] \leftarrow\) DeadState
                            Auto \([0, a] \leftarrow\) DeadState
                            Auto[DeadState, \(a] \leftarrow\) DeadState
                            Auto[DeadState, \(a] \leftarrow\) DeadState
    for \(i\) from 1 to \(|y|\) do
    for \(i\) from 1 to \(|y|\) do
    for \(a \in A\) do
    for \(a \in A\) do
        if \(y[i]=a\) then
        if \(y[i]=a\) then
                                Auto \([i, a] \leftarrow i-1\)
                                Auto \([i, a] \leftarrow i-1\)
                            else \(\quad\) Auto \([i, a] \leftarrow\) Auto \([i-1, a]\)
                            else \(\quad\) Auto \([i, a] \leftarrow\) Auto \([i-1, a]\)
                            \(\triangleright\) Left Distinguisher matrix Ld of \(x\)
                            \(\triangleright\) Left Distinguisher matrix Ld of \(x\)
    \(\operatorname{Ld}[|x|, a] \leftarrow(0\), nil, \(|y|)\)
    \(\operatorname{Ld}[|x|, a] \leftarrow(0\), nil, \(|y|)\)
    for \(i\) from \(|x|\) to 1 do
    for \(i\) from \(|x|\) to 1 do
    for \(a \in A\) do
    for \(a \in A\) do
    \((l, n, s) \leftarrow \operatorname{Ld}[i, x[i]]\)
    \((l, n, s) \leftarrow \operatorname{Ld}[i, x[i]]\)
    if \(a=x[i]\) or length \((\operatorname{Ld}[i, a])>1+l\) then
    if \(a=x[i]\) or length \((\operatorname{Ld}[i, a])>1+l\) then
    \(\operatorname{Ld}[i-1, a] \leftarrow(1+l,(i, x[i])\), Auto \([s, x[i]])\)
    \(\operatorname{Ld}[i-1, a] \leftarrow(1+l,(i, x[i])\), Auto \([s, x[i]])\)
    else \(\quad \operatorname{Ld}[i-1, a] \leftarrow \operatorname{Ld}[i, a]\)
    else \(\quad \operatorname{Ld}[i-1, a] \leftarrow \operatorname{Ld}[i, a]\)
    17 return Ld

```

\section*{Merging \(x_{1}+x_{2} \Rightarrow z\) without new short subwords}
```

$\operatorname{Merge}\left(x_{1}, x_{2}\right)$
$1\left(k_{1}, k_{2}, j, m\right) \leftarrow(0,0,0, \infty)$
for $a \in A$ do
$\mathrm{Rd}[0, a] \leftarrow(0$, nil, nil $)$
while $k_{1}<\left|x_{1}\right|$ or $k_{2}<\left|x_{2}\right|$ do
$j \leftarrow j+1$
(Case, $\left.p z, p s,\left(i^{\prime}, a^{\prime}\right)\right) \leftarrow$ MergeStep ()
$\left(k_{p z}, z[j]\right) \leftarrow\left(k_{p z}+1, x_{p z}\left[k_{p z}\right]\right)$
for $a \in A$ do
$(l, n, s) \leftarrow \operatorname{Rd}[j-1, z[j]]$
if $a=z[j]$ or length $(\operatorname{Rd}[j-1, a])>1+l$ then
$\operatorname{Rd}[j, a] \leftarrow(1+l,(j-1, z[j])$, nil $)$
else $\quad \operatorname{Rd}[j, a] \leftarrow \operatorname{Rd}[j-1, a]$
if Case $\neq$ Match then
$m^{\prime} \leftarrow \operatorname{length}(\operatorname{Rd}[j-1, z[j]])+\operatorname{length}\left(\operatorname{Ld}_{p s}\left[i^{\prime}, a^{\prime}\right]\right)$
if $m=\infty$ or $m^{\prime}<m$ then
$(m, j m, p s m,(i m, a m)) \leftarrow\left(m^{\prime}, j, p s,\left(i^{\prime}, a^{\prime}\right)\right)$
$17 \quad|z| \leftarrow j$
18 return $(z, \mathrm{Rd}, m, j m, p s m,(i m, a m))$

```

\section*{Auxiliary procedure MergeStep}
```

MergeStep()
1 if $k_{1}<\left|x_{1}\right|$ and $k_{2}<\left|x_{2}\right|$ then
2
3
4
5
6
7 else $\quad$ Case $\leftarrow$ Singleton
$8 \quad$ if $k_{1}=\left|x_{1}\right|$ then
9
$10 \quad$ else $\quad p z \leftarrow 1$
11
12
13 return (Case, $p z, p s,\left(i^{\prime}, a^{\prime}\right)$ )
$14 \triangleright$ If Case $=$ Merge then $p s$ and $\left(i^{\prime}, a^{\prime}\right)$ are undefined

```

\section*{Confronting \(x_{1}\) and \(x_{2}\) in the case of a mismatch}
\[
\begin{array}{ll}
\operatorname{Race}\left(k_{1}, b_{2}, k_{2}, b_{1}\right) \\
1 & \text { if length }\left(\operatorname{Ld}_{1}\left[k_{1}, b_{2}\right]\right) \leq \text { length }\left(\operatorname{Ld}_{2}\left[k_{2}, b_{1}\right]\right) \text { then } \\
2 & \quad(p s, p l) \leftarrow(1,2) \\
3 & \text { else } \quad(p s, p l) \leftarrow(2,1) \\
4 & \triangleright \operatorname{Ld}_{p s}\left[k_{p s}, b_{p l}\right] \text { is the left distinguisher which won the race } \\
5 & \left(i^{\prime}, a^{\prime}\right) \leftarrow\left(k_{p s}, b_{p l}\right) \\
6 & \text { if next }\left(\operatorname{Ld}_{p s}\left[k_{p s}, b_{p l}\right]\right)=\text { nil or } \operatorname{suffix}\left(\operatorname{Ld}_{p s}\left[k_{p s}, b_{p l}\right]\right) \geq 1+k_{p l} \text { then } \\
7 & p z \leftarrow p l \\
8 & \text { else } \quad p z \leftarrow p s \\
9 & \text { return }\left(p z, p s,\left(i^{\prime}, a^{\prime}\right)\right)
\end{array}
\]

\section*{Collecting the word encoded in a (one sided) distinguisher}

Collect(D, \((i, a))\)
\(1 \triangleright\) We collect the word \(y\) encoded in \(\mathrm{D}[i, a]\); with \(|y|=\operatorname{length}(\mathrm{D}[i, a])\)
\(2(j, k) \leftarrow(1\), length \((\mathrm{D}[i, a]))\)
3 while \(k>0\) do
\begin{tabular}{lcl}
4 & \((l,(i, a), s) \leftarrow \mathrm{D}[i, a]\) & \(\triangleright\) We must have \(l=k\) \\
5 & \(y[j] \leftarrow a\) \\
6 & \((j, k) \leftarrow(j+1, k-1)\) & \\
7 & \(|y| \leftarrow j-1\) & \\
8 & return \(y\) &
\end{tabular}

\section*{The merging of the example words}
\[
\left.\begin{array}{rllllllllllllllllllllll}
x_{2} & = & b & c & a & c & & a & c & a & d & c & a & b & & & a & b & a & b & d & a & c
\end{array}\right) b
\]

\section*{Part of the \(|A| \times\left|x_{1}\right|\) table of left distinguishers of \(x_{1}\)}
\begin{tabular}{|c|cccccc|}
\hline\(A\) & \(\cdots\) & 11 & 12 & 13 & 14 & 15 \\
\hline\(a\) & \(\cdots\) & \((3,(12, a), 13)\) & \(=\) & \((2,(14, a), 15)\) & \(=\) & \((1,(16, d), 16)\) \\
\hline\(b\) & \(\cdots\) & \(=\) & \((3,(13, b), 11)\) & \(=\) & \((2,(15, b), 14)\) & \(=\) \\
\hline\(c\) & \(\cdots\) & \(=\) & \(=\) & \(=\) & \(=\) & \(=\) \\
\hline\(d\) & \(\cdots\) & \(=\) & \(=\) & \(=\) & \(=\) & \((1,(16, d), 16)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccc|}
\hline\(A\) & 16 & 17 & 18 & 19 & 20 \\
\hline\(a\) & \((2,(17, a), 15)\) & \(=\) & \(=\) & \((1,(20, a), 17)\) & \((0\), nil, 20) \\
\hline\(b\) & \(=\) & \(=\) & \((1,(19, b), 18)\) & \(=\) & \((0\), nil 20\()\) \\
\hline\(c\) & \(=\) & \((1,(18, c), 19)\) & \(=\) & \(=\) & \((0\), nil 20\()\) \\
\hline\(d\) & \(=\) & \(=\) & \(=\) & \(=\) & \((0\), nil 20\()\) \\
\hline
\end{tabular}
\[
\operatorname{Ld}_{1}[13, a]=(2,(14, a), 15)
\]
\[
\delta\left(a \cdot x_{1}[13 . .20], x_{1}[13 . .20]\right)=2 \text { where } x_{1}[13 . .20]=a b d a c b a
\]
word stored in \(\operatorname{Ld}_{1}[13, a]\) is \(a d\) which is a subword of \(x_{2}[15 . .20]=a d a b c\)

\section*{Part of the left distinguisher tree of \(x_{1}\)}


\section*{The left distinguisher tree of \(x_{1}\)}


\section*{From \(O\left(|A|\left(\left|x_{1}\right|+\left|x_{2}\right|\right)\right)\) to \(O\left(|A|+\left|x_{1}\right|+\left|x_{2}\right|\right)\)}

The \(|A| \times|x|\) matrices are sparse: they have \(O\left(|A|+\left|x_{1}\right|+\left|x_{2}\right|\right)\) different elements

We use inversion techniques to obtain the left distinguisher trees
It would be nice to have mechanisms to recover \(\operatorname{Ld}[i, a]\) in \(O(1)\) time (does such a mechanism exist?)

We can survive with an \(O(|A|+|x|)\) sum of access times throughout the algorithm (the right data in the right place at the right time)

Computing the \(s^{\prime} \mathrm{s}\) in \(\operatorname{Ld}[i, a]=\left(l,\left(i^{\prime}, a^{\prime}\right), s\right)\) is the trickiest part

\section*{Just entered \(x_{2}[15]=b, s \geq 14\) 's are known}


\section*{Just entered \(x_{2}[14]=a, s \geq 13\) 's are known}


\section*{Just entered \(x_{2}[13]=c, s \geq 12\) 's are known}


\section*{Ours is a least common ancestor (LCA) problem}
\[
\begin{gathered}
{\left[x_{1}\right]_{0}=\left[x_{2}\right]_{0}=[\lambda]_{0}=A^{*}} \\
{\left[x_{1}\right]_{1}=\left[x_{2}\right]_{1}=[a b c d]_{1}} \\
{\left[x_{1}\right]_{2}=\left[x_{2}\right]_{2}=[a b c d a b c d]_{2}} \\
{\left[x_{1}\right]_{3}=\left[x_{2}\right]_{3}=[a b c d a b c d a b c]_{3}}
\end{gathered}
\]
\[
\begin{aligned}
& {\left[x_{1}\right]_{4}=[b a c a c d c a b a b d a c b a]_{4}} \\
& {\left[x_{1}\right]_{5}=[b a c a c a c d c a b a b a b d a c b a]_{5}} \\
& {\left[x_{1}\right]_{6}=\left\{x_{1}\right\}}
\end{aligned}
\]
\[
\left[x_{2}\right]_{4}=[b a c a c d a b c a b c d a b c]_{4}
\]
\[
\left[x_{2}\right]_{5}=[b a c c a d c a b b c c a a b d a b c]_{5}
\]
\[
\left[x_{2}\right]_{6}=[b a c c a d c a b b c b c a b a d a b c]_{6}
\]
\[
\left[x_{2}\right]_{7}=\left\{x_{2}\right\}
\]

\section*{A family of \(O(|A|+|x|)\) algorithms: \\ "the subword calculus"}

For every \(x\) there exists a least \(t, t \leq|x|+1\), such that \([x]_{t}\) is a singleton:
\[
A^{*}=[x]_{0} \supset[x]_{1} \supset[x]_{2} \supset \cdots \supset[x]_{m} \supset \cdots \supset[x]_{t}=\{x\}=[x]_{t+1}=\cdots
\]

For every \(x \neq 1\) there exists a largest \(s, s<t\), such that \([x]_{s}\) is idempotent For every \(m, x\) contains a minimal word which is \(m\)-equivalent to it, these subwords can be represented by the following structure:
\[
\begin{array}{lllllllllllllllllllll}
\mathrm{x}_{-} 1= & \mathrm{b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~d} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{~d} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{a} \\
& 3 & 5 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 5 & 5 & 4 & 4 & 2 & 2 & 1 & 4 & 1 & 1 & 1 \\
\mathrm{~m}=3 & \mathrm{~b} & & & & c & a & d & c & & & & a & b & d & & c & b & a
\end{array}
\]

Can this vector of \(m\) 's be computed in \(O(|A|+|x|)\) time?

\section*{A message to take home}

\section*{Please self-archive}

\section*{your scientific papers}

\author{
Free Online Scholarship (FOS) www.earlham.edu/~peters/fos
}

Nature Debates: e-access www.nature.com/nature/debates/e-access```

