MAT5799 – Variedades diferenciáveis e grupos de Lie Lista de exercícios 1-22/08/2008

1.

- a. Use a projeção estereográfica $\varphi_N: U_N = S^2 \setminus \{(0,0,1)\} \to \mathbf{R}^2$ para definir uma carta local em S^2 e escreva uma expressão para φ_N em coordenadas do \mathbf{R}^3 . Faça o mesmo para a projeção $\varphi_S: U_S = S^2 \setminus \{(0,0,-1)\} \to \mathbf{R}^2$.
- b. Mostre que $\{(U_N, \varphi_N), (U_S, \varphi_S)\}$ é um atlas diferenciável para S^2 . Compare a estrutura diferenciável que ele define com a estrutura diferenciável anteriormente definida em S^2 .
- 2. Seja $M(m \times n, \mathbf{R})$ o espaço vetorial das matrizes reais $m \times n$. Mostre que o subconjunto de $M(m \times n, \mathbf{R})$ formado pelas matrizes de posto maior ou igual a k $(0 \le k \le \min\{m, n\})$ é uma variedade diferenciável.
- 3. Sejam M, N, P variedades diferenciáveis e $\pi_1: M \times N \to M, \pi_2: M \times N \to N$ as projeções. Defina aplicações $\iota_1: M \to M \times N, \iota_2: N \to M \times N$, onde $\iota_1(x) = (x,q), \iota_2(y) = (p,y)$ e $p \in M, q \in N$.
 - a. Mostre que π_1 , π_2 , ι_1 , ι_2 são aplicações de classe C^{∞} .
 - b. Mostre que $f: P \to M \times N$ é de classe C^{∞} se e somente se $\pi_1 \circ f$ e $\pi_2 \circ f$ são aplicações de classe C^{∞} .
- 4. Sejam M, N variedades diferenciáveis e $f: M \to N$ uma aplicação arbitrária. Prove que $f \in C^{\infty}(M, N)$ se e somente se $g \circ f \in C^{\infty}(M)$ para toda função $g \in C^{\infty}(N)$.
- 5. Seja $G \subset \mathbf{R}^2$ o gráfico de $f : \mathbf{R} \to \mathbf{R}$, $f(x) = |x|^{1/3}$. Mostre que G admite uma estrutura de variedade diferenciável de modo que a inclusão $G \to \mathbf{R}^2$ é de classe C^{∞} .
- 6. Construa um difeomorfismo natural $TS^1 \approx S^1 \times \mathbf{R}$ que se restringe a um isomorfismo linear $T_pS^1 \to \{p\} \times \mathbf{R}$ para todo $p \in S^1$ (dizemos que esse difeomorfismo leva fibra em fibra e é linear nas fibras).
- 6. Construa um difeomorfismo natural $T(M \times N) \approx TM \times TN$ que leva fibra em fibra e é linear nas fibras.
- 7. Defina um difeomorfismo natural $T\mathbf{R}^n \approx \mathbf{R}^n \times \mathbf{R}^n$ que leva fibra em fibra e é linear nas fibras.
- 8. Mostre que $TS^n \times \mathbf{R}$ é difeomorfo a $S^n \times \mathbf{R}^{n+1}$. (Sugestão: existem isomorfismos naturais $T_pS^n \oplus \mathbf{R} \cong \mathbf{R}^{n+1}$.)