0.1 Homotopic maps induce the same map in cohomology

Let f, g : M — N be smooth maps between smooth manifolds. A (smooth) homotopy between f
and g is a smooth map F : M x [0,1] — N such that

{F(p,O) = f(p)
F(p,1) = g(p)

for p € M. If there exists a homotopy between f and g, we say that they f and g are homotopic.
0.1.1 Proposition Let f, g be homotopic maps. Then the induced maps in cohomology

9" H§R(N) - HgR(M)
are equal.

The proof of this propositon is given below. First, we need to make some remarks. For ¢ € [0, 1],
consider the inclusions ¢; given by

it(p) = (p,1)

for p € M, and consider the natural projection m : M x [0,1] — M given by 7(p,t) = p. Then,
obviously,
moi; = idyy

implying that
irr* =id in QF(M) and HX; (M).

We consider the projection t : M x [0,1] — [0,1]. Then there exists a “vertical” vector field %
and a 1-form dt. Note that ker dr is spanned by %.

0.1.2 Lemma Let w € Q¥(M x [0,1]). Then we can write
(0.1.3) w=(+dtAn

where ¢ € QF(M x [0,1]) has the property that it vanishes if some of its arguments belongs to ker dr,
and n € QFY(M x [0,1]) has the same property.

Proof. Set n =i0w and ( =w — dt An. Since
ot

it is clear that n has the claimed property. Similarly,

ioC = tow—io(dtAn)
ot ot ot
n—iodtAn+dtANian
ot ot
= n—n+0
= O7
as desired. OJ

We define the homotopy operator
Hy - QF(M x [0,1]) — QF1 (M)

1



by the formula
1
(Hrw)p(v1, ..., 05—1) = / Nt (dig(v1), ..., dij(vk_1)) dt,
0

where w is decomposed as in (0.1.3) and p € M, vq,...,v5—1 € T, M. Note that Hj, is “integration
along the fiber of n”. For simplicity, we henceforth drop the subscript and just write H for the
homotopy operator.

Proof of Propostion 0.1.1. Let w € HX: (M x [0,1]). We first claim that
(0.1.4) dHw + Hdw = ijw — igw.

The proof is by direct computation: since this is a pointwise identity, we can work in a coordinate
system. Let (U, x1,...,2,) be a coordinate system in M. Then (U x [0,1],z10m,..., 2, 07, t) is
a coordinate system in M x [0, 1] and we can write

wluxjo,) = Za1d$1 +dt A ZdexJ
I J

where a;, by are smooth functions on U x [0,1] and I, J are increasing multi-indices. In U x [0, 1],

we have: .
Ho=>_ (/ det> dxy,
0

J

L ab,
dHw = dt ) dz; Adxy,
. Z(/o Oz; ) T

Ji

Oa Oa 0b
dw:Za—édmi/\dm—kza—;dt/\dw—dt/\za—xid:v,-/\dxj,
1,3 I J,i

Hdw = laaldt d lab‘]dt dz; Ad
W—Z o W I‘[—Z o 8x2 XT; X J.
I

Jyi

It follows that

1
dHw + Hdw|, = Z( %?(p,t)dt) dzy
I O
= Z(al(pv 1) - al(pv 0))d$[
I
= qw —igwlp,

as claimed.
Suppose now that F': M x [0,1] — N is a homotopy between f and g. Let a be a closed k-form
in NV representing the cohomology class [a] € HX (N). Applying identity (0.1.4) to w = F*« yields

dHF o+ HF*do = i1 F o — i F* a.
Since da =0 and Foig= f, Foi; =g, we get
d(HF*a) =g*a— ffa.

Hence g*a and f*a are cohomologous. O



0.2 Hairy ball theorem

Consider Euclidean space R" ! with coordinates (x¢, 21, . . ., 2,) and the unit sphere s : S* — R
Consider the n-form in R"*!

w:Z(—l)ixidxo/\'--/\(f:z?i/\--‘dxn.
i=0

Note that w vanishes only at the origin. In particular,
n —_—
(0.2.1) a=rw=Y (1) (ziot)d(moor) A+ -d(ziot) A---d(z,00)
i=0
is a nowhere vanishing n-form on S, hence it defines an orientation there. Of course,
dw = (n+ 1)dxog ANdxy A -+ ANdzy,
and

/a:/ w= [ dw=(n+1)vol(B") >0
n n B

(where the orientation of S™ is induced from B™) so « is not exact by Stokes theorem. Thus [a] # 0
in HR(S™).
In the sequel, we consider n = 2m.

0.2.2 Theorem Let X be a smooth vector field on S*™. Then there exists p € S*™ such that
Xp = 0. In other words, every smooth vector field on an even-dimensional sphere has a zero.

Proof. Suppose, on the contrary, that X never vanishes. By rescaling, we may assume that X
is a unit vector field with respect to the metric induced from Euclidean space. Set

Fy: 8%™ — §* Fy(p) = costx +sint X(p).
It is clear that F; defines a homotopy between the identity map and the antipodal map of S2™:

F() — ldSQm and Fﬂ- — _ldSQm

Note that
Fi(zjot) = —x;00.
It follows that
Fra=(-1)"""a=—qa
On the other hand,
Fya = q,
and by Proposition 0.1.1, [F{a] = [Fa], which contradicts the fact that [o] # 0. O

0.2.3 Remark The theorem can be extended to the case of continuous vector fields by using an
approximation result.



0.3 The smooth Brouwer fixed point theorem

Let B™ be the closed ball in R™, and denote its boundary by dB™; of course, B is diffeomorphic
to S"~. We first prove

0.3.1 Lemma There exists no smooth retraction v : B® — OB™ (that is, there exists no smooth
map r : B" — 0B™ whose restriction to OB™ is the identity).

Proof. The case n = 1 is easy as the closed interval B! is connected and its boundary is
disconnected. Assume n > 2 and suppose, to the contrary, that such a retraction r exists. Recall
that n-form « defined in (0.2.1). Since r is the identity along 0B",

/ r*a:/ a # 0.
oBn oBn

On the other hand, by Stokes theorem,

/ r*a :/ dra :/ r*da = 0,
OB Bn B

since da = 0, which is a contradiction. ]

0.3.2 Theorem Let f : B® — B™ be a smooth map. Then there exists p € B™ such that f(p) = p.
In other words, every smooth self-map of the closed n-ball admits a fixed point.

Proof. Suppose, on the contrary, that f () # x for all x € B". The half-line originating at x
and going through f(z) meets dB™ at a unique point; call it (x). It is easy to see that this defines
a smooth retraction r : B” — 9B™ which is prohibited by Lemma 0.3.1. U

0.3.3 Remark The theorem is not true in the case of the open ball B", as is easily seen.



