MAT 5798 – Medida e Integração IME - 2017

http://www.ime.usp.br/~glaucio/mat5798 Lista 14

Seções 3.2 e 3.3

- 8-) $\nu \ll \mu$ see $|\nu| \ll \mu$ see $\nu^+ \ll \mu$ e $\nu^- \ll \mu$.
- 9-) Seja $(\nu_j)_j$ uma sequência de medidas positivas.
 - (a) Se $(\forall j) \nu_j \perp \mu$, então $\sum_{1}^{\infty} \nu_j \perp \mu$. (b) Se $(\forall j) \nu_j \ll \mu$, então $\sum_{1}^{\infty} \nu_j \ll \mu$.
- 11-) Seja μ uma medida positiva. Uma coleção de funções $(f_{\alpha})_{\alpha \in A} \prec \mathsf{L}^1(\mu)$ diz-se uniformemente integrável se, para todo $\epsilon > 0$, existe $\delta > 0$ tal que $\left| \int_{E} f \, \mathrm{d} \mu \right| < \epsilon$ para todo $\alpha \in A$ e para todo $E \in \mathcal{M}$ com $\mu(E) < \delta$.
 - (a) Todo subconjunto finito de $L^1(\mu)$ é uniformemente integrável.
 - (b) Se $(f_n)_{n\in\mathbb{N}} \prec \mathsf{L}^1(\mu)$ e $f_n \to f$ em $\mathsf{L}^1(\mu)$, então $(f_n)_{n\in\mathbb{N}}$ é uniformemente integrável.
- 12-) Para j=1,2, sejam ν_j,μ_j medidas positivas σ -finitas em (X_j,\mathcal{M}_j) tais que $\nu_j\ll\mu_j$. Então $\nu_1\times\nu_2\ll\mu_1\times\mu_2$

$$\frac{\mathrm{d}(\nu_1 \times \nu_2)}{\mathrm{d}(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{\mathrm{d}\nu_1}{\mathrm{d}\mu_1}(x_1) \frac{\mathrm{d}\nu_2}{\mathrm{d}\mu_2}(x_2).$$

- 13-) Sejam $X = [0,1], \mathcal{M} = \mathcal{B}_{[0,1]}, m$ a medida de Lebesgue e μ a medida de contagem em \mathcal{M} .
 - (a) $m \ll \mu$, mas não existe f μ -quase integrável tal que $dm = f d\mu$.
 - (b) μ não admite decomposição de Lebesgue com respeito a m.
- 14-) Sejam ν uma medida com sinal arbitrária (não necessariamente σ -finita) e μ uma medida positiva σ -finita em (X, \mathcal{M}) tais que $\nu \ll \mu$. Então existe $f: X \to \overline{\mathbb{R}}$ μ -quase integrável tal que $d\nu = f d\mu$. Como sugestão, use o seguinte roteiro:
 - (a) É suficiente demonstrar o caso em que μ é finita e ν é positiva.
- (b) Com tais hipóteses, existe $E \in \mathcal{M}$ σ -finito para ν tal que $\mu(E) \geqslant \mu(F)$ para todo $F \in \mathcal{M}$ σ -finito para ν .
- (c) O teorema de Radon-Nikodym se aplica em E. Se $F \in \mathcal{M}$ e $F \cap E = \emptyset$, então, ou $\nu(F) = \mu(F) = 0$ ou $\mu(F) > 0 \ e \ |\nu(F)| = \infty.$
- 16-) Sejam μ, ν medidas σ -finitas em (X, \mathcal{M}) tais que $\nu \ll \mu, \lambda \doteq \mu + \nu$ e $f \doteq \frac{d\nu}{d\lambda}$. Então $0 \leqslant f < 1$ μ -q.s. e $\frac{\mathrm{d}\nu}{\mathrm{d}\mu} = f/(1-f).$
- 17-) Sejam (X, \mathcal{M}, μ) um espaço de medida finito, \mathcal{N} uma sub- σ -álgebra de \mathcal{M} e $\nu \doteq \mu|_{\mathcal{N}}$. Se $f \in \mathsf{L}^1(\mu)$, existe $g \in \mathsf{L}^1(\nu)$ (portanto, $g \in \mathcal{N}$ -mensurável) tal que ($\forall E \in \mathcal{N}$) $\int_E f \, \mathrm{d}\mu = \int_E g \, \mathrm{d}\nu$. Se $g' \in \mathsf{L}^1(\nu)$ for outra função com a mesma propriedade, então $g = g' \nu$ -q.s.; em teoria da Probabilidade, g chama-se expectativa condicional de f em \mathcal{N} .
- 18-) Sejam ν uma medida complexa em (X, \mathcal{M}) e $f \in \mathsf{L}^1(\nu)$. Então $\mathsf{L}^1(\nu) = \mathsf{L}^1(|\nu|)$ e $|\int f \, \mathrm{d}\nu| \leqslant \int |f| \, \mathrm{d}|\nu|$.
- 19-) Se ν, μ são medidas complexas e λ é uma medida positiva, então $\nu \perp \mu$ see $|\nu| \perp |\mu|$, e $\nu \ll \lambda$ see $|\nu| \ll \lambda$.
- 20-) Se ν é uma medida complexa em (X, \mathcal{M}) e $\nu(X) = |\nu|(X)$, então $\nu = |\nu|$.
- 21-) Sejam ν uma medida complexa em (X, \mathcal{M}) e $E \in \mathcal{M}$. Defina:

$$\mu_{1}(E) \doteq \sup\{\sum_{1}^{n} |\nu(E_{j})| | n \in \mathbb{N}, (E_{j})_{1}^{n} \prec \mathcal{M}, E = \bigcup_{1}^{n} E_{j}\}$$

$$\mu_{2}(E) \doteq \sup\{\sum_{1}^{\infty} |\nu(E_{j})| |(E_{j})_{1}^{\infty} \prec \mathcal{M}, E = \bigcup_{1}^{\infty} E_{j}\}$$

$$\mu_{3}(E) \doteq \sup\{|\int_{E} f \, d\nu| | f \in \mathsf{L}^{1}(\nu), |f| \leqslant 1\}.$$

Então $\mu_1 = \mu_2 = \mu_3 = |\nu|$. Sugestão: Mostre que $\mu_1 \leqslant \mu_2 \leqslant \mu_3$. Para verificar que $\mu_3 = |\nu|$, tome $f \doteq \overline{\mathrm{d}\nu/\mathrm{d}|\nu|}$. Para verificar que $\mu_3 \leqslant \mu_1$, aproxime f por funções simples.