ERRATA TO "REAL ANALYSIS," 2nd edition
(6th and later printings)
G. B. Folland
Last updated May 26, 2012.

Additional corrections will be gratefully received at folland@math.washington.edu.

Page 7, line 12: $Y \cup\left\{y_{0}\right\} \quad \rightarrow \quad B \cup\left\{y_{0}\right\}$
Page 7, line $-12: X \in \quad \rightarrow \quad x \in$
Page 8, next-to-last line of proof of Proposition 0.10: $E \rightarrow X$
Page 12, line 17: $a \in \mathbb{R} \quad \rightarrow \quad x \in \mathbb{R}$ (two places)
Page 14, line 16: $x \in X \quad \rightarrow \quad x \in X_{1}$
Page 14, line 17: whenver \rightarrow whenever
Page 22, line 2: susbset \rightarrow subset
Page 24, Exercise 1, line 1: A family \rightarrow A nonempty family
Page 24, Exercise 3a: disjoint \rightarrow disjoint nonempty
Page 34, line 1: $\bigcup_{1}^{n} J_{j} \quad \rightarrow \quad \bigcup_{1}^{m} J_{j}$
Page 35, line -3 : open h-intervals \rightarrow open intervals
Page 37, line -1 : countable \rightarrow countable set.
Page 38, line $-4: \sum_{0}^{\infty} \rightarrow \sum_{1}^{\infty}$
Page 40, line 2 of $\S 1.6: 2.7 \rightarrow 2.8$
Page 45, line 5: $[\infty, \infty] \quad \rightarrow \quad[-\infty, \infty]$
Page 45, line 8: $2.3 \quad \rightarrow \quad 1.2$
Page 49, line -8: inegrals \rightarrow integrals
Page 56, last line of proof of Theorem 2.27: $(x, t) \quad \rightarrow \quad\left(x, t_{0}\right)$
Page 60, Exercise 27c: $\log (b / a) \rightarrow \log (a / b)$
Page 60, Exercise 31e: $s^{2} \rightarrow a^{2}$
Page 61, line 9: repectively \rightarrow respectively
Page 66, line -4: $\bigcap_{1}^{\infty} E_{n} \quad \rightarrow \quad E=\bigcap_{1}^{\infty} E_{n}$
Page 67, next-to-last line of Theorem 2.37: $\int f^{y} d \nu \quad \rightarrow \quad \int f^{y} d \mu$.
Page 69, Exercise 49a: $\mathcal{N} \times \mathcal{N} \quad \rightarrow \quad \mathcal{M} \otimes \mathcal{N}$
Page 69, Exercise 50: Either assume $f<\infty$ everywhere or use the condition $y<f(x)$ to define G_{f}. Also, $\mathcal{M} \times \mathcal{B}_{\mathbb{R}} \quad \rightarrow \quad \mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$.
Page 70, proof of Theorem 2.40, line 2: rectangles \rightarrow rectangles, which may be assumed bounded,
Page 72, line 5: definitons \rightarrow definitions

Page 75, line 9: $\sum_{j}\left(x_{j}-a_{j}\right)\left(\partial g / \partial x_{j}\right)(y) \quad \rightarrow \quad \sum_{k}\left(x_{k}-a_{k}\right)\left(\partial g_{j} / \partial x_{k}\right)(y)$
Page 75, line 9: joning \rightarrow joining
Page 76, line 6: $\bigcup_{1}^{\infty} U_{j} \rightarrow \bigcap_{1}^{\infty} U_{j}$
Page 76, line $-7: f \circ G \quad \rightarrow \quad f \circ G|\operatorname{det} D G|$
Page 76, line -5: $G(\Omega)) \quad \rightarrow \quad G(\Omega)$
Page 87, line 3: $\nu\left(A_{j}\right)>\sum \quad \rightarrow \quad \nu\left(A_{j}\right) \geq \sum$
Page 88, Exercise 6: $\int f d \mu \rightarrow \int_{E} f d \mu$
Page 90, line -6: $f \quad \rightarrow \quad f_{j}$
Page 102: (3.24) should be interpreted as " $T_{F}(b)=T_{F}(a)+\sup \{\ldots\}$ " in the case $T_{F}(b)=$ $T_{F}(a)=\infty$.
Page 104, line 7 of proof of Lemma 3.28: $x_{0}<\cdots \quad \rightarrow \quad x=x_{0}<\cdots$
Page 104, line $-12: \sum_{1}^{n} \rightarrow \sum_{1}^{m}$
Page 105, line 5 of proof of Proposition 3.32: $\mu\left(U_{j}\right)<\delta \quad \rightarrow \quad m\left(U_{j}\right)<\delta$
Page 105, proof of Proposition 3.32: The displayed inequalities are valid provided F is monotone, which may be assumed without loss of generality.
Page 106, line 4: greatest integer less than $\delta^{-1}(b-a)+1 \quad \rightarrow \quad$ smallest integer greater than $\delta^{-1}(b-a)$
Page 107, Exercise 28b: $\mu_{T_{F}(E)} \quad \rightarrow \quad \mu_{T_{F}}(E)$
Page 115, line -12: Propostiion \rightarrow Proposition
Page 159, next-to-last line of proof of Theorem 5.8: Moroever \rightarrow Moreover
Page 165, line 6: $x \in X \quad \rightarrow \quad x \in X$
Page 166, line -2 of proof of Theorem 5.14: $(1-t) x+(1-t) z \quad \rightarrow \quad(1-t) x-(1-t) z$
Page 166, line -1: $U_{x \alpha_{j} \epsilon_{j}} \rightarrow U_{0 \alpha_{j} \epsilon_{j}}$
Page 167, line 3: $p_{\alpha_{j}}(y)<\epsilon \quad \rightarrow \quad p_{\alpha_{j}}(y) \leq \epsilon$
Page 167, bulleted item at bottom (continuing to next page): \mathbb{C}^{X} should be replaced by the space of locally bounded functions on X, i.e., the space of all complex-valued functions f on X such that $p_{K}(f)<\infty$ for all K.
Page 174, line 2: paralellogram \rightarrow parallelogram
Page 174, lines -8 and $-4: \mathcal{X} \rightarrow \mathcal{H}$
Page 177, line 1: $e_{\alpha} \rightarrow u_{\alpha}$ and $X \rightarrow \mathcal{H}$
Page 179, next-to-last line of notes for $\S 5.1$: coincides with \rightarrow extends
Page 197, line -2 : on $(0, \infty), \quad \rightarrow \quad$ on $[0, \infty)$ such that $\phi(0)=0$,
Page 208, Exercise 41: For the case $p=\infty$, assume μ semifinite.
Page 208, Exercise 45, lines 3 and 4: T is weak type ($1, n \alpha^{-1}$) and strong type (p, r) where $1<p<n(n-\alpha)^{-1}$ and $r^{-1}=p^{-1}-(n-\alpha) n^{-1}$.
Page 210, final sentence: Theorem 6.36 was discovered independently, a little earlier than [51], by D. R. Adams (A trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105).

Page 217, lines 7 and 8: $f \quad \rightarrow \quad f_{1}$
Page 218, line $-5: \chi_{u} \quad \rightarrow \quad \chi_{U}$
Page 224, line 8: Insert minus signs before the two middle integrals.
Page 224, line -4 of proof of Proposition 7.19: $(-\infty, N] \quad \rightarrow \quad(-\infty,-N]$
Page 224, Exercise 18, line 1: $\mathcal{M}(X) \quad \rightarrow \quad M(X)$
Page 225, Exercise 24b: $\int f d \mu \rightarrow 0$
Page 225, Exercise 24c: $F(x) \quad \rightarrow \quad 0$
Page 226, line 2 of Proposition 7.21: $X \otimes Y \quad \rightarrow \quad X \times Y$
Page 229, line -10: $\mathcal{B}_{X} \times \mathcal{B}_{Y} \quad \rightarrow \quad \mathcal{B}_{X} \otimes \mathcal{B}_{Y}$
Page 242, line 12: $\|g\|_{(N+n+1, \alpha)} \quad \rightarrow \quad\|g\|_{(N+n+1,0)}$
Page 246, Exercise 9: Assume $p<\infty$.
Page 247, line 2 of Theorem 8.19: $\mathbf{T}^{n} \rightarrow \mathbb{Z}^{n}$
Page 250, line -2: $\sum_{|\gamma| \leq|\beta|}\|f\|_{(N+n+1, \gamma)} \rightarrow \sum_{|\gamma| \leq N}\|f\|_{(|\beta|+n+1, \gamma)}$
Page 251, line 4: $-2 \pi a e^{-\pi a x^{2}} \rightarrow-2 \pi a x e^{-\pi a x^{2}}$
Page 254, line 5: $\mathbb{Z}^{N} \rightarrow \mathbb{Z}^{n}$
Page 254, line 4 of proof of Theorem 8.32: $8.35 \rightarrow 8.31$
Page 256, line 1: right \rightarrow left
Page 259, line 9: $f_{2} * \phi_{t}(\xi) \quad \rightarrow \quad f_{2} * \phi_{t}(x)$
Page 261, line 7: $e^{-2 \pi i \kappa x} \rightarrow e^{2 \pi i \kappa x}$
Page 264, line 4: $e^{2 \pi(2 m+1) x} \quad \rightarrow \quad e^{2 \pi i(2 m+1) x}$
Page 268, formula (8.46): $\frac{1}{2}-x-[x] \quad \rightarrow \quad \frac{1}{2}-x+[x]$
Page 269, line 6: $S_{m}\left(a_{j}\right) \rightarrow S_{m} f\left(a_{j}\right)$
Page 273, line 7: if for all \rightarrow for all
Page 274, line $-1:\left(t^{2}+|x|^{2}\right)^{-(n+1) / 2} \quad \rightarrow \quad\left(t^{2}+|x|^{2}\right)^{(n+1) / 2}$
Page 276, Exercise 43: $e^{-|x| / 2} \quad \rightarrow \quad \frac{1}{2} e^{-|x|}$
Page 286, line 3: $\phi(y) \rightarrow \phi(x)$
Page 286, lines -13 and -5 , and page 287, lines 1 and 3: $U \rightarrow V$
Page 288, line -10: $\psi(\epsilon x) \quad \rightarrow \quad \psi(x / \epsilon)$
Page 289, Exercise 7, line 2: f agrees \rightarrow there exists a constant c such that $f+c$ agrees
Page 291, Exercise 13: $f * \psi_{t} \quad \rightarrow \quad F * \psi_{t}$
Page 293, line -2: $(1+|x|)^{N} \quad \rightarrow \quad(1+|x|)^{-N}$
Page 296, line -9: $x_{j} \rightarrow \xi_{j}$
Page 297, line 7: One \rightarrow On
Page 300, Exercise 28, line 2: $|\xi|^{\alpha-2} \quad \rightarrow \quad|x|^{\alpha-2}$
Page 303, line 7: $\left(1+|\xi|^{2}\right)^{s} \quad \rightarrow \quad\left(1+|\xi|^{2}\right)^{-s}$

Page 320 , line -1 : the the \rightarrow the
Page 325, Exercise 17, line 2: smaple \rightarrow sample
Page 325, Exercise 17, line 9: $X_{j}-M_{j} \quad \rightarrow \quad X_{j}-M_{n}$
Page 325, line 3 of $\S 10.3: e^{(t-\mu)^{2} / 2 \sigma^{2}} \quad \rightarrow \quad e^{-(t-\mu)^{2} / 2 \sigma^{2}}$
Page 326, line $-6: X_{n} \rightarrow X_{j}$
Page 331, line $-7: \exp (\cdots) \quad \rightarrow \quad \exp (-\cdots)$
Page 332, formula (10.23): $\exp (\cdots) \quad \rightarrow \quad \exp (-\cdots)$
Page 341, proof of Proposition 11.3, line 3: it \rightarrow if
Page 344, proof of Theorem 11.9, end of line 2: Delete " $h \in C_{c}^{+}$and".
Page 349, line 3: $\mu^{*}(A) \cup \mu^{*}(B) \quad \rightarrow \quad \mu^{*}(A)+\mu^{*}(B)$
Page 349, line $-11: B^{2 k-3} \rightarrow B_{2 k-3}$
Page 358, line 10: $\left.C_{(} X\right) \rightarrow C(X)$
Page 358, line $-7: x_{i_{1} \cdots x_{k}} \quad \rightarrow \quad x_{i_{1} \cdots i_{k}}$
Page 373, reference 131: of \rightarrow in
Page 373, reference 139: in \rightarrow on
Page 378, line $-2: C S^{\prime} \quad \rightarrow \quad \mathcal{S}^{\prime}$

