Balanced metrics on the blow-up of \mathbb{C}^2 at the origin

Francesco Cannas Aghedu^{*}

October 26, 2018

Abstract

An interesting open question in Kähler geometry is the characterization of projectively induced Kähler metrics. An important class of projectively induced Kähler metrics are the so called *balanced metrics* in the sense of Donaldson S. In this talk, after a briefly introduction of Balanced metrics, we see the blowing-up operation and we introduce two important complete Kähler metrics defined on the blow-up of \mathbb{C}^2 at the origin: the celebrated *Simanca metric* and the *Eguchi-Hanson metric*. The Simanca metric is an important example (both from mathematical and physical point of view) of non homogeneous complete, zero constant scalar curvature metric. The Eguchi-Hanson metric is a well-know example of non homogeneous complete, Ricci-flat Kähler metric. In this talk we discuss on the balanced condition for these two Kähler metrics. The main results are the following theorems:

Theorem 1. Let $\tilde{\mathbb{C}}^2$ be the blow-up of \mathbb{C}^2 at the origin endowed with the Eguchi–Hanson metric g_{EH} . Then $(\tilde{\mathbb{C}}^2, mg_{EH})$ is not balanced for any positive integer m.

Theorem 2. Let $\tilde{\mathbb{C}}^2$ be the blow-up of \mathbb{C}^2 at the origin endowed with the Simanca metric g_S . Then $(\tilde{\mathbb{C}}^2, mg_S)$ is balanced for any positive integer m.

We also prove a result on Berezin's quantization on the dense subset $\mathbb{C}^2 \setminus \{0\} \subset \tilde{\mathbb{C}}^2$ equipped with the restriction of the Simanca Kähler form ω_S associated to the Simanca metric g_S . This is expressed by the following corollary:

Corollary 3. $(\mathbb{C}^2 \setminus \{0\}, \omega_S)$ admits a Berezin quantization.

^{*}PhD Student, University of Cagliari (Italy), Department of Mathematics and Computer Science - fcannasaghedu@unica.it