
Metaheuristics for large-scale instances of the
linear ordering problem

Celso S. Sakurabaa, Débora P. Ronconia, Ernesto G. Birginb and Mutsunori Yagiurac

aProduction Engineering Department, Polytechnic School, University of São Paulo
Av. Prof. Almeida Prado, Trav. 2, No. 128 - Cidade Universitária, São Paulo 05508-070 Brazil

sakuraba@usp.br,dronconi@usp.br
bDepartment of Computer Science, Institute of Mathematics and Statistics, University of São Paulo
Rua do Matão, 1010, Cidade Universitária, São Paulo 05508-090 Brazil egbirgin@ime.usp.br

cDepartment of Computer Science and Mathematical Informatics, Graduate School of Information
Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8603, Japan

yagiura@nagoya-u.jp

Abstract. This paper presents iterated local search and great deluge trajectory metaheuristics for the lin-
ear ordering problem (LOP). Both metaheuristics are based on the TREE local search method introduced
in Sakuraba and Yagiura, 2010 (Efficient local search algorithms for the linear ordering problem, Inter-
national Transactions in Operational Research 17, pp. 711–737) that is the only method ever applied to
a set of large-sized instances that are in line with the scale of nowadays real applications. By providing
diversification and intensification features, the introduced methods improve all best known solutions of
the large-sized instances set. Extensive numerical experiments show that the introduced methods are ca-
pable of tackling sparse and dense large-scale instances with up to 8,000 vertices and 31,996,000 edges
in a reasonable amount of time; while they also performs well in practice when compared with other
state-of-the-art methods in a benchmark with small and medium-scale instances.

Keywords: Metaheuristics, iterated local search, great deluge, linear ordering problem, large-scale
instances.

1 Introduction

The linear ordering problem (LOP) was first described by Chenery and Watanabe (1958)
in the context of the economic input-output studies proposed by Leontief (1966). By using
input-output matrices that represent the flow among production sectors of a certain region, it
is possible to analyze the stability of the regions’ economy. In order to make this analysis,
the order of the rows and columns of the matrix must be rearranged in a way that maximizes
the sum of the values above the diagonal of the matrix, where an identical permutation must
be used to rearrange the rows and the columns. Then the sectors that correspond to bigger
suppliers and consumers can be identified. The LOP can also be seen as a graph problem, as
shown in the example of Figure 1. In the graph of Figure 1(b), each vertex vi corresponds to
the i-th row and column of the matrix of Figure 1(a), and the forward edges, represented above
the vertices, correspond to the values in the upper triangle of the matrix. The equivalence of the
two representations is immediate, e.g. by regarding the matrix as the adjacency matrix of the
graph.

We formally define the LOP in its graph representation as follows: given a directed graph
G = (V,E) with vertices set V (|V | = n), edges set E ⊆ V × V (|E| = m), and a cost cuv
for each edge (u, v) ∈ E, find a permutation of the vertices that maximizes the total cost of
the direct edges, i.e. edges directed from a vertex u to a vertex v with v being a vertex in a
position after u in the permutation. The sum of the direct edges corresponds to the sum of the

Figure 1: (a) Matrix and (b) graph representations of the same solution to an instance of the LOP.

values above the diagonal of the matrix. We assume without loss of generality that cuv > 0
holds for all (u, v) ∈ E and that if we regard G as an undirected graph, it is connected (which
implies m ≥ n − 1). For convenience, we also assume cuv = 0 for all (u, v) /∈ E. Denoting a
permutation by π : {1, . . . , n} → V , where π(i) = v means that v is the i-th element of π, the
total cost of the direct edges is formally defined as follows:

cost(π) =
n−1∑
i=1

n∑
j=i+1

cπ(i)π(j). (1)

Maximizing this sum is equivalent to minimizing the sum of the reverse edges (edges of the
form (u, v) such that v appears before u in the permutation) or minimizing the sum of the
elements below the matrix diagonal, which would give rise to the “min” formulation of the LOP.
Throughout the remainder of this paper, we deal with the LOP formulation that maximizes the
cost of the direct edges unless otherwise stated.

The LOP can be formulated by the following linear integer programming problem:

Maximize
∑
i∈V

∑
j∈V
j 6=i

cijxij (2)

subject to xij + xji = 1 ∀ i, j ∈ V, i 6= j (3)
xij + xjk + xki ≤ 2 ∀ i, j, k ∈ V, i 6= j 6= k 6= i (4)
xij ∈ {0, 1} ∀ i, j ∈ V. (5)

In the model (2–5), xij = 1 if edge (i, j) is a direct one and xij = 0 otherwise. The objective
function (2) is equivalent to the sum of the cost of the direct edges (1). Constraints (3) and (4)
assure that the set of direct edges does not have 2 and 3-dicycles, which also prevents k-dicycles
for k ≥ 4 (Grötschel et al., 1984, 1985).

Besides the economic context, the LOP has various real world applications in many different
fields, such as the aggregation of individual preferences in marketing, and the most probable
chronological ordering of potteries in archeology (Grötschel et al., 1984), among others. In the
sports domain, instances of the LOP corresponding to point differential matrices of 347 teams in
NCAA college basketball are described in Sukegawara et al. (2011), while data corresponding
to the results of ATP tennis tournaments with up to 452 players are available at http://www.
optsicom.es/lolib/#instances. The increasing amount of information available nowadays and

2

http://www.optsicom.es/lolib/#instances
http://www.optsicom.es/lolib/#instances

the need for solutions that integrate more levels of the production chain demand solutions for
problems of a different scale. In fact, very large-scale instances of several classic problems, as
for example instances of the set covering problem with more than a million columns and several
thousand rows, are available at the OR-Library. Analysing instances of the LOP containing
information of hundreds of sectors or classifying data from a pool with thousands of alternatives
are far from being unrealistic situations. Therefore there is an imminent need for algorithms
capable of dealing with large-scale instances.

Known to be an NP-hard problem (Karp, 1972; Garey and Johnson, 1979) (the proof of NP-
completeness was given for the feedback arc set problem, which is equivalent to the LOP), the
LOP has been extensively studied in the literature and many exact and heuristic methods have
been proposed to solve it. Some results, conjectures and open problems dealing with the com-
binatorial and algorithmic aspects of the LOP are analyzed in Charon and Hudry (2007). It is
possible to solve instances of the LOP with up to seventy-five vertices using its MIP formula-
tion and the commercial solver CPLEX. However, instances with hundreds of vertices or more
were handled in the literature so far by using heuristic and metaheuristic approaches. Next we
provide a brief description of some relevant elements of these methods.

Chanas and Kobylanski (1996) suggested a multi-start algorithm (CK) that utilizes the sym-
metric property of LOP, i.e. if the permutation π = (π(1), π(2), . . . , π(n)) is an optimal so-
lution to the maximization problem (2–5) then (π(n), π(n− 1), . . . , π(1)) minimizes the ob-
jective function (2). The authors applied a local search based on an insertion mechanism and,
once a local optimal solution is found, the process is re-started from its reverse permutation.
In Laguna et al. (1999) the insertion move is also considered within four different variants of
the tabu search method: (i) a basic procedure that alternates between an intensification and
a diversification phase (TS); (ii) TS associated with path relinking; (iii) TS and a long-term
diversification, and (iv) TS with path relinking and a long-term diversification. Computational
tests suggested that version (iv) outperforms the CK algorithm. It should be pointed out that
the long-term diversification was inspired by the reverse operation developed by Chanas and
Kobylanski (1996). A scatter search algorithm was proposed in Campos et al. (2001). It uses a
frequency-based memory to guide the construction of a diversified initial reference set improved
by the best neighborhood search developed in Laguna et al. (1999). Furthermore, a specific so-
lutions combination method was developed for the LOP problem through the use of a min-max
rule. A study about variants of the variable neighborhood search (VNS) to solve the LOP prob-
lem was carried in Garcia et al. (2006). A hybrid version of VNS, where the local search is
replaced with the short-term tabu search proposed in Laguna et al. (1999), is also analyzed in
Garcia et al. (2006). In Huang and Lim (2003) and Schiavinotto and Stützle (2004) genetic
algorithms are coupled with local searches. For the generation of new solutions Huang and Lim
(2003) applied classical crossover and mutation operators associated with a local search that
uses the insertion move and a first-fit search strategy. In the memetic algorithm (MA) proposed
by Schiavinotto and Stützle (2004), where some additional crossover operators were evaluated,
numerical results pointed out that the classical operators (cycle and order-based) performed
best. Schiavinotto and Stützle (2004) also presented an iterated local-search (ILS) algorithm
whose main components are: the perturbation scheme (based on interchange moves), the local
search (lsf), and the acceptance criterion (automatic tuning process). A common component of
both proposed methods is the use of the lsf procedure that uses the insertion move with the best
search strategy and is able to evaluate the insert neighborhood in O(n2).

More recently, Kröemer et at. (2013) proposed a bio-inspired metaheuristic based on artificial
immune systems for the linear ordering problem. The proposed method consists in a modified

3

B-cell algorithm based on clonal selection and it is quite similar to a GA method. A population
of candidate solutions evolves by cloning, hypermutation, and selection. Numerical experi-
ments, considering a library of small instances with known optimal solutions named LOLIB
and comparing the introduced method with a GA and a differential evolution (DE) metaheuris-
tic, are presented. In Ceberio et al. (2013), the authors investigate instances’ features that can
provide useful insights into the difficulties of tackling the problem by applying local procedures
associated with the insert neighbourhood. Ye et al. (2014) presents a multi-parent memetic al-
gorithm that integrates a multi-parent recombination operator for generating offspring solutions
and a distance-and-quality based criterion for the pool updating.

A comprehensive survey about existing metaheuristic approaches for the LOP problem was
presented in Martı́ et al. (2012), where computational experiments are reported. A comparison
among the existing methodologies indicates that MA is the best method followed by ILS. The
authors suggest that this good behavior may be due to the efficient implementation of the MA
local search that, by calculating each neighbour solution in constant time, reduces the total cost
of evaluating the insert neighborhood to O(n2). Moreover, the authors highlight that this local-
search move complexity issue makes a significant difference in the overall performance of local-
search methods and on metaheuristics that use the local-search strategies in their composition.

In this paper, we develop metaheuristic algorithms based on the TREE local-search strategy
recently introduced in Sakuraba and Yagiura (2010), whose time complexity for considering
the whole neighbourhood of a given solution is O(n+ ∆ log ∆), where ∆ is the maximum de-
gree of the graph. Computational experiments presented in Sakuraba and Yagiura (2010) show
that the TREE local search outperforms the lsf local-search strategy introduced in Schiavinotto
and Stützle (2004) on large-scale instances. Since the metaheuristic identified in Martı́ et al.
(2012) as the one that presents the best performance over a set of ten evaluated metaheuristics
is based on the lsf local-search strategy, embedding the TREE local-search strategy within a
metaheuristic framework sounds as a promising method to tackle large-scale instances of the
LOP.

We consider two metaheuristic algorithms to deal with large-scale instances of the LOP: (a)
an iterated local-search algorithm (ILS) and (b) a great deluge algorithm (GDA). Iterated local
search is a metaheuristic framework that obtained good results for a variety of problems, and,
according to Schiavinotto and Stützle (2003), it is a good candidate to handle the LOP. John-
son and McGeoch (1997) suggested that the great deluge algorithm is also a good candidate
among variants of simulated annealing, despite its lack of popularity if compared to other meta-
heuristics. This recommendation is based on the results of computational experiments on the
traveling salesman problem, for which the great deluge algorithm obtained better results than
the threshold accepting method (Dueck and Scheuer, 1990). ILS and GDA metaheuristics share
the characteristic of handling only one solution at a time. This type of metaheuristics is clas-
sified as trajectory metaheuristics, in contrast to the populational-based ones (Blum and Roli,
2003). The solution is iteratively modified and two successive solutions are always neighbors
one to the other. This feature allows us to combine the aforementioned metaheuristics with the
TREE local-search algorithm in an efficient way, since TREE is based on neighborhood search
and its data structure would require a considerable amount of memory space if many solutions
have to be kept.

The rest of this work is organized as follows. The TREE local-search strategy, the iterated
local search and the great deluge metaheuristics are briefly described in Section 2. Section 3 is
devoted to numerical experiments and the discussion of the numerical results. The last section
summarizes the outcomes of this work.

4

2 Proposed Algorithms

In this section, the TREE local search, the iterated local-search metaheuristic, and the great
deluge metaheuristic are described. To simplify the presentation, and to be in accordance with
the vast optimization literature, methods will be described as minimization methods. Should
the reader find it convenient, he/she may consider the LOP formulation that minimizes the sum
of the costs of the reverse edges, or, equivalently, minimizes the sum of the cost of elements
below the diagonal of the matrix.

2.1 The TREE Algorithm

The TREE algorithm is an algorithm designed to efficiently perform the local search through
the insert neighborhood of the LOP. The procedure starts from an initial solution πinit and re-
peatedly replaces it with the best solution in its neighborhood until no better solution is found.
The insert neighborhood of the LOP consists of solutions obtainable by taking one vertex from
a position i and inserting it after (resp., before) the vertex in position j for i < j (resp., i > j). It
is the most common neighborhood used for the LOP and it is also the one that presented the best
results so far (Huang and Lim, 2003; Schiavinotto and Stützle, 2004). TREE is an algorithm
that can perform the local search of large-scale instances of the LOP in reasonable time. This
result is achieved by implementing the following operations efficiently:

• Find a vertex v that, when inserted in a given position, generates a solution π′ with a cost
smaller than the cost of the current solution π, or conclude that no such vertex exists, in
O(n) time.

• Find the position where v should be inserted to generate π′ in O(log dv) time, where dv is
the degree of v.

• Update the data structure related to the new solution π′ in O(dv log ∆) time, where ∆ is
the maximum degree of the graph.

To process these operations, a tree with O(dv) leaves like the one illustrated in Figure 2 is
built for each vertex v. Each leaf of the tree corresponds to a position where v could be inserted
with a different set of reverse edges connected to it. An index vname represented on the left side
of each node x of the tree is used to find the position of each leaf. The value γ(x) represented
in the bottom part of each node, when summed up from a leaf l through the path to the root,
corresponds to the cost of vertex v in a solution where v is inserted in a position corresponding
to l. We define the cost cost(v, π) of v in a permutation π as the sum of the reverse edges in
π connected to v. For instance, if we take the bottom value of the leaf between vertices v4 and
v8 in Figure 2, and sum it up with the bottom values of its ancestors, we obtain the value of
148 + (−53) + 23 = 118, which is the sum of the reverse edges connected to v2 if we insert
v2 in the gap between v4 and v8. The value in the top part of each node, γmin(x), represents the
minimum sum of the values of γ in the nodes among all paths between x and the leaves in the
subtree that has x as its root. The value γmin(r), where r is the root of the tree, represents the
minimum cost v can have if inserted in an appropriate position of the permutation π. From the
definitions above, we can obtain a solution with a cost smaller than the current one (π) if there
is a vertex v with γmin(v) < cost(v, π). A complete description of the operations performed by
the TREE algorithm is given in Sakuraba and Yagiura (2010).

5

Figure 2: Example of a tree for vertex v2 and the vertices connected to v2 with their costs, in a graph with n = 10.
The value 59 in the root represents the minimum cost v2 can have if inserted in a certain position of the current
permutation.

2.2 Iterated Local Search

Iterated local search is a metaheuristic framework introduced by Baxter (1981). Its general
structure can be described in three steps. First, generate an initial solution and apply a local
search to obtain a local optimal solution s∗. Then, add a perturbation to s∗ and apply a local
search again, obtaining ŝ. If an acceptance criterion is satisfied, set s∗ ← ŝ. Repeat the last
step until a stopping criterion is satisfied. If deterministic perturbations are used, a history of
solutions can be saved to avoid short cycles (Lourenço et al., 2003). Algorithm 1 describes the
framework of the iterated local search.

Algorithm 1 Framework of the iterated local search
1: s0 := GenerateInitialSolution
2: s∗ := LocalSearch(s0)
3: while stopping criteria are not satisfied do
4: s′ := Perturbation(s∗, history)
5: ŝ := LocalSearch(s′)
6: s∗ := AcceptanceCriteria(s∗, ŝ, history)
7: end while

To apply the framework of ILS to the LOP, we need to define functions GenerateInitial-
Solution, Perturbation and AcceptanceCriteria. The LocalSearch function corresponds to the
iterative use of the TREE algorithm until a local optimal solution is found. To generate the
initial solution, we use the constructive heuristic proposed by Becker (1967). This method was

6

selected since it provides a good trade-off between solution quality and execution time. The
algorithm calculates a quotient for each vertex, which is given by the sum of the costs of out-
going edges from the vertex divided by that of incoming edges. The solution is obtained by
ordering the vertices in non-increasing order of the quotients. For Perturbation we use k insert
operations choosing vertices v randomly, where k is a parameter. To determine the position in
which v is inserted, we walk the tree of v from its root to a leaf looking at the value of γmin(x).
In a local search, we walk the tree from its root to a leaf choosing the children that has the
minimum value of γmin. In a perturbation, we do the opposite and walk the tree from its root
to a leaf choosing the children that has the maximum value of γmin in order to add diversity to
the obtained solutions. (As an example, in the tree of Figure 2, a perturbation would go from
the root to the node with γmin(x) = 62 and then to the node with γmin(x) = 148; while the
local search would go from the root to the node with γmin(x) = 36 and then to the node with
γmin(x) = 34.) As AcceptanceCriteria, we choose to always accept the obtained local optimal
solution (i.e. s∗ := ŝ at line 6 of Algorithm 1), to avoid the computational effort that would be
required to rebuild or keep the data structure corresponding to s∗ in the case of rejection of ŝ.

2.3 Great Deluge Algorithm

The great deluge algorithm (Dueck, 1993) for maximization problems can be explained as
follows: find the highest point in a given surface where it rains continuously, by walking through
it without stepping into the water. The equivalent interpretation for minimization problems can
be thought as a fish in a lake where it doesn’t rain for long periods of time. As the water
evaporates, the fish swims through the lake looking for deeper places where it can still survive
under the water. To be more precise, the GDA (for minimization problems) works as follows:
generate an initial solution s and set an initial value of waterlevel such that waterlevel >
cost(s). Then, add a small perturbation to s to obtain s′ and, if cost(s′) < waterlevel, replace s
with s′ and reduce waterlevel by dry, where dry > 0 is the amount of evaporation that is
decided at each iteration. Repeat it until a stopping criterion is satisfied. GDA’s framework for
minimization problems is described below.

Algorithm 2 Framework of the great deluge algorithm
1: s := GenerateInitialSolution
2: set waterlevel
3: while stopping criteria are not satisfied do
4: s′ := Perturbation(s)
5: if cost(s′) < waterlevel then
6: s := s′

7: decide the value of dry
8: waterlevel := waterlevel − dry
9: end if

10: if too many iterations without updating s then
11: reset waterlevel
12: end if
13: end while

In the implementation of GDA, we consider the constructive heuristic proposed by Becker
(1967), described in Subsection 2.2, to generate the initial solution. The initial waterlevel is set
to the value obtained by multiplying the cost of the initial solution by a parameter iwl > 1. The

7

value of dry is calculated at each iteration by multiplying the difference between the current
waterlevel and the cost(s) by parameter dryratio (0 < dryratio < 1).

The perturbation and solution acceptance steps (lines 4 to 6 of Algorithm 2) were imple-
mented in a slightly different way from the one described in the general framework: our proce-
dure always finds a solution that satisfies the decreasing condition at line 5. That is, there is no
iteration in which a solution is generated, evaluated and discarded because it does not satisfy the
condition at line 5. This makes the algorithm efficient and is one of the merits of incorporating
the TREE data structure into the GDA. The procedure that achieves this is now explained. A
vertex v is chosen randomly and the tree for v is used to determine the position in which it
should be inserted. This position corresponds to the leaf of the tree for v found by the following
procedure:

1. Set e := waterlevel − cost(s), x := r and parcost := γ(r), where r is the root of the
tree for v.

2. Let Cwl(x) be the set of children y of x such that the subtree rooted at y has at least one
leaf corresponding to a position where v could be inserted so that the obtained solution
has a cost smaller than or equal to waterlevel, i.e. Cwl(x) = {y ∈ C(x) | γmin(y) +
parcost− cost(v, π) ≤ e}, where C(x) is the set of children of x.

3. Randomly choose a node y′ ∈ Cwl(x) and set x := y′ and parcost := parcost+ γ(y′).

4. Repeat steps 2 and 3 above until x becomes a leaf and then insert v into the position
corresponding to x.

Through this procedure, we can always find a leaf corresponding to a position to insert vertex v
so that the resulting solution satisfies the decreasing condition at line 5 of Algorithm 2. Note
that the procedure may return a position that keeps v in its current position. Even if this situation
happens, waterlevel is updated at line 8 of Algorithm 2.

The resetting of the waterlevel value at lines 10-12 of Algorithm 2 is optional, but essential
for the algorithm to have a good performance if it runs for a long time. Otherwise, when the
difference betweenwaterlevel and cost(s) becomes too small, GDA behaves like a local search
and stops updating the solution after a local optimal solution is reached. In our implementa-
tion, the reset operation is applied when n iterations occur without an updating of the current
solution s, indicating that a local optimal solution was probably reached. In a reset operation,
waterlevel is reset to iwl × cost(s), where iwl is the same parameter used to set the initial
value of waterlevel as iwl times the cost of the initial solution.

3 Numerical Experiments

Numerical experiments are divided into three phases. Initially, preliminary numerical exper-
iments are conducted on a reduced set of instances to calibrate the algorithmic parameters of the
proposed metaheuristics. Then, a comparison with state-of-the-art methods from the literature
is performed considering a known benchmark with small and medium-scale instances. Finally,
the application of the proposed methods to large-scale instances of the LOP is illustrated and its
performance analyzed. The proposed ILS and GDA metaheuristics that uses the TREE local-
search method will be called ILS-TREE and GDA-TREE from now on, respectively. All codes
were written in C language.

8

3.1 Preliminary experiments

Numerical experiments in this subsection were run on an Intel Xeon 3.0 GHz processor with
8GB of RAM memory. Aiming to select the parameters of the presented algorithms, in this first
set of experiments, we considered representative benchmark instances1 classified by their size:
(i) small-scale instances (named LOLIB and SGB) and (ii) medium-scale instances (named
Random I and Random II). A succinct description of the instances sets follows:

Small scale: 74 instances with data related to real world input-output matrices with up to 75
production sectors. Instances are divided into the following two groups:

LOLIB: 49 instances corresponding to European input-output matrices with 44 ≤ n ≤
60 and 285 ≤ m ≤ 1, 556.

SGB: 25 instances with n = 75 and 2, 505 ≤ m ≤ 2, 623 corresponding to American
input-output matrices.

Medium scale: 150 instances with n ∈ {100, 150, 200} and m ≈ n2/2 described in Campos
et al. (2001). Instances are classified into the following two groups:

Random I: 75 instances with costs generated from the discrete uniform distribution in
the interval [0, 100].

Random II: 75 instances generated by counting the number of times an element appears
in a higher position than another in a set of randomly generated permutations.

Optimal solutions for all small-scale instances are known. For medium-scale instances, the
results presented in Garcia et al. (2006) were used as a basis of comparison (henceforth called
reference solutions).

In this preliminary test, a CPU time limit of t = m/(2n) seconds was considered, which is
approximately the same time used for the state-of-the-art metaheuristics to solve medium-scale
instances. Table 1 shows the experimental results of running ILS-TREE varying the number
of perturbations k ∈ {5, 10, 20, n/2,m/n}. In the table, the first two columns identify the in-
stances’ sets and the number of instances per set. Instances in sets Random I and Random II
are grouped by their number of vertices n (showed within parenthesis). Each pair of columns
named “B/E” and “RD” shows the results of ILS-TREE with a specified number of perturba-
tions k. For a given k, “B/E” contains the number B of solutions found that were better than
the corresponding reference solution and the number E of solutions found that were equal to
the corresponding optimal or reference solution. Column “RD” contains the average of the per-
centage relative differences from the optimal or reference solutions, where the average is taken
over all the instances in the group. For each instance, the percentage relative difference from
the optimal or reference solution is given by

RD = 100 (fMH − fRF)/fRF ,

where fMH and fRF are the objective function value found by the metaheuristic being evaluated
and the optimal or reference objective function value, respectively. Note that, since we are
dealing with a maximization problem, a positive value ofRDmeans that the proposed algorithm
obtained better results. The last row in the table contains, for each value of parameter k, the
totalized number of improved or attained solutions B + E and the average RD for the whole
set of 224 considered instances.

1The instances used in the experiments are available online at http://www.optsicom.es/#lolib/instances.

9

http://www.optsicom.es/#lolib/instances.

Table 1: Summary of the performance of ILS-TREE varying the value of parameter k in a set of small and medium-
scale instances with a CPU time limit t = m/(2n) seconds.

Instances ILS-TREE
k = 5 k = 10 k = 20 k = n/2 k = m/n

Set name and # Inst B/E RD B/E RD B/E RD B/E RD B/E RD

Sm
al

l LOLIB 49 0/46 -0.0027 0/48 -0.0015 0/49 0.0000 0/49 0.0000 0/49 0.0000
SGB 25 0/22 -0.0020 0/24 0.0000 0/24 0.0000 0/23 0.0000 0/23 0.0000

M
ed

iu
m Random I

(100) 25 3/0 -0.1073 4/4 -0.0472 8/3 -0.0104 15/4 0.0118 15/4 0.0112
(150) 25 0/0 -0.1588 0/0 -0.1224 6/0 -0.0469 19/0 0.0257 21/0 0.0270
(200) 25 0/0 -0.1755 0/0 -0.1191 4/0 -0.0741 24/0 0.0498 21/0 0.0386

Random II
(100) 25 0/16 -0.0014 0/19 -0.0005 0/24 -0.0001 0/17 -0.0005 0/19 -0.0004
(150) 25 1/0 -0.0022 0/1 -0.0017 3/3 -0.0004 0/0 -0.0011 0/3 -0.0010
(200) 25 0/0 -0.0036 1/0 -0.0023 2/2 -0.0010 1/0 -0.0015 1/0 -0.0011

B+E and average RD 88 -0.0509 101 -0.0331 128 -0.0148 152 0.0094 156 0.0083

We can see from Table 1 that optimal solutions were found for at least 72 out of the 74 small
instances for any value of k other than 5. It was also possible to improve the reference solutions
in 58 and 57 out of the 75 medium-scale instances in Random I with k = n/2 and k = m/n,
respectively. For the medium-scale instances in Random II, the number of improved solutions
was small, but the quality of the obtained solutions is very similar to the quality of the reference
solutions (i.e. very small values of RD). In general, it is easy to see that, for the considered
instances, the ILS-TREE method with k = n/2 and k = m/n presented the best results.

Table 2 shows the results of the preliminary tests with the GDA-TREE for all combina-
tions of dryratio ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and iwl ∈ {1.1, 1.3, 1.5}. We can observe from
Table 2 that, for the small-scale instances, GDA-TREE with (iwl, dryratio) = (1.3, 0.7) and
(iwl, dryratio) = (1.5, 0.7) was able to find the largest number of optimal solutions (70 out
of 74 for both combinations of parameters). Ranked in second place in terms of the number
of optimal solutions found is GDA-TREE with parameters (iwl, dryratio) = (1.3, 0.3) and
(iwl, dryratio) = (1.5, 0.3), that found 69 optimal solution out of 74. Considering set Ran-
dom I, the combinations of parameters given by (iwl, dryratio) = (1.3, 0.3) and (iwl, dryratio) =
(1.5, 0.3) also showed good performances, improving 35 reference solutions out of 75. How-
ever, the largest number of improved reference solutions within set Random I was given by com-
bination (iwl, dryratio) = (1.1, 0.1) that improved 39 reference solutions. The performance of
GDA-TREE with different combinations of parameters is hard to determine for the Random II
instances. However, it is worth noting that the largest number of attained or improved solutions
(within set Random II) was obtained by combination (iwl, dryratio) = (1.1, 0.9). The last part
of the table shows, for each combination of parameters iwl and dryratio, the totalized number
of improved or attained solutions B + E and the average RD for the whole set of 224 consid-
ered instances. All combinations present a very similar behavior. This appears as a drawback of
the GDA-TREE method when compared to the ILS-TREE approach, for which calibrating its
solely parameter was a simple task. For the GDA-TREE algorithm, we arbitrarily considered,
for the experiments in the following subsection, combination (iwl, dryratio) = (1.1, 0.3), that
was arbitrary selected based on a detailed analysis comparing the performance of ILS-TREE
and GDA-TREE instance by instance.

10

Table 2: Summary of the performance of GDA-TREE varying the value of parameters dryratio and iwl in a set
of small and medium-scale instances with a CPU time limit t = m/(2n) seconds.

Instances GDA-TREE
dryratio = 0.1 dryratio = 0.3 dryratio = 0.5 dryratio = 0.7 dryratio = 0.9

Set name and # Inst iwl B/E RD B/E RD B/E RD B/E RD B/E RD

Sm
al

l

LOLIB/SGB 74
1.1 0/62 -0.0041 0/65 -0.0036 0/66 -0.0019 0/64 -0.0055 0/63 -0.0064
1.3 0/66 0.0000 0/69 0.0000 0/68 -0.0017 0/70 0.0000 0/66 -0.0017
1.5 0/60 0.0000 0/69 0.0000 0/66 -0.0006 0/70 0.0000 0/67 -0.0017

M
ed

iu
m Random I 75

1.1 39/0 0.0001 33/2 0.0001 31/3 -0.0001 18/1 -0.0003 4/21 -0.0003
1.3 18/0 -0.0002 35/0 0.0001 31/3 -0.0001 26/2 -0.0002 21/1 -0.0004
1.5 17/0 -0.0002 35/0 0.0001 32/2 0.0000 26/2 -0.0002 18/3 -0.0004

Random II 75
1.1 1/12 0.0000 0/22 -0.0001 2/27 0.0000 3/24 0.0000 3/27 0.0000
1.3 0/5 0.0000 2/13 0.0000 2/15 0.0000 4/22 0.0000 1/24 0.0000
1.5 0/5 0.0000 2/13 0.0000 1/13 0.0000 0/20 0.0000 3/22 0.0000

B+E and average RD
1.1 114 -0.0013 122 -0.0012 129 -0.0007 110 -0.0019 118 -0.0022
1.3 89 -0.0001 119 0.0000 119 -0.0006 124 -0.0001 113 -0.0007
1.5 82 -0.0001 119 0.0000 114 -0.0002 118 -0.0001 113 -0.0007

3.2 Comparative study with other methods of the literature

In the present subsection, we compare the ILS-TREE and GDA-TREE metaheuristics against
the ten metaheuristics TS, MA, VNS, SA, SS, GRASP, ILS, GA, CKM, and KLM, whose
performances are summarized in Tables 4–6 of Martı́ et al. (2012, pp.1311–1314). Numerical
experiments in this subsection were run on an Intel Xeon X3363 2.83 GHz with 24 GB of RAM
memory.

In a first set of experiments we considered set OPT-I composed of 229 instances that are
instances with a known optimal solution. We run methods ILS-TREE with k = m/n and
GDA-TREE with (iwl, dryratio) = (1.1, 0.3) considering a CPU time limit of t = 10 seconds.
Table 3 summarizes the results. In the table, “Name” identifies the source subset from which
the instances with a known optimal solution were extracted, “# Inst” is the number of instances
in the subset, “# Opt” is the number of optimal solutions found by the proposed methods,
“RD” is the average percentage relative difference from the optimal solution, and “RD non-
opt” is the average percentage relative difference from the optimal solution disregarding the
instances in which the optimal solution was found. Figures in the table show that ILS-TREE
found an optimal solution in 192 instances, while GDA-TREE found an optimal solution in
175 cases. Moreover, the average percentage relative deviations from the known optimal value
were -0.0013% and -0.0095% for ILS-TREE and GDA-TREE, respectively. Since ILS-TREE
outperformed GDA-TREE (as already verified in the previous subsection), we compared ILS-
TREE versus the ten methods whose performances are summarized in Table 4 of (Martı́ et al.,
2012, p.1311). Figures in the table show that methods MA, ILS, TS, and VNS found 228, 228,
215, and 208 optimal solutions, respectively. ILS-TREE was capable of finding 192 optimal
solutions, ranking fifth and outperforming methods GRASP, SS, KLM, CKM, SA, and GA
that found 182, 165, 124, 93, 32, and 14 optimal solutions, respectively. When considering
the average deviation from the optimal solution, the ILS-TREE presents the same results as
the three top-ranked methods MA, ILS, and TS, that is strictly smaller than 0.005% (values
are presented with two decimal places in Martı́ et al. (2012) and all average deviations smaller
than 0.005 are reported as 0.00). At this point it is important to notice that numerical results

11

being compared were run on different machines, having a direct effect on the stopping criterion
based on CPU time. However, the benchmarks in http://www.spec.org allow us to conclude
that both machines are “similar”. Therefore, accompanied by every applicable caveat regarding
machines, programming languages, compilers, and compiling options, we may roughly say
that our analysis shows that the ILS-TREE method performs well when compared to the ten
state-of-the-art methods being considered.

Table 3: Performances of ILS-TREE and GDA-TREE in the set of small and medium-scale instances named OPT-I
composed of instances with a known optimal solution and considering a CPU time limit of 10 seconds.

Subset of instances ILS-TREE GDA-TREE
Name # Ins # Opt RD RD non-opt # Opt RD RD non-opt

IO 50 50 0.0000 – 46 -0.0253 -0.3164
SGB 25 23 -0.0000 -0.0005 19 -0.0009 -0.0036

Random A II 25 15 -0.0037 -0.0092 14 -0.0040 -0.0091
Random B 70 70 0.0000 – 70 0.0000 -0.0000

MB 30 18 -0.0006 -0.0015 12 -0.0009 -0.0014
Special 29 16 -0.0063 -0.0140 14 -0.0262 -0.0507

Total # Opt and average RD 229 192 -0.0013 -0.0079 175 -0.0095 -0.0402

In a second set of experiments, we considered set UB-I composed of 255 instances for which
no optimal solutions are known. For each instance an upper and a lower bound are known. The
upper bound of each instance was obtained by solving an LP-relaxation (remember that we
are dealing with a maximization problem). The lower bound of each instance was obtained by
running some metaheuristics with a large CPU time limit (see Martı́ et al. (2012) for details).
We run methods ILS-TREE with k = m/n and GDA-TREE with (iwl, dryratio) = (1.1, 0.3)
considering a CPU time limit of ten seconds. Table 4 shows the results. In the table, “Name”
identifies the source subset from which the instances were extracted, “# Inst” is the number of
instances in the subset, “B/E” identifies the number B of solutions that improve the reference
solution and the number E of solutions found that are equal to the best known solution (lower
bound), “RD” is the average percentage deviation from the best known solution, and “RD non-
att” is the average percentage deviation from the best known solution disregarding the instances
in which the best known solution was attained. Figures in the table show that ILS-TREE and
GDA-TREE attained the best known solution in 29 and 21 instances, respectively. The average
percentage deviation from the best known values were -0.2709% and -0.5335%, for the ILS-
TREE and GDA-TREE methods, respectively. Once again, the ILS-TREE performed better
than GDA-TREE in the considered set of instances. Hence, we analyzed the performance of
ILS-TREE in comparison with the ten methods whose performances are summarized in Table 5
of (Martı́ et al., 2012, p.1313). When considering both, the number of attained best known
values and average percentage deviation from the best known values, ILS-TREE ranking fourth
(with very similar results to the ones obtained by the TS method that ranking third) over the
twelve considered metaheuristics.

In a final set of experiments, ILS-TREE and GDA-TREE were run with an increased CPU
time limit t = 600 seconds. Table 5 shows the results. Note that, this time, a few reference
solutions were improved. These results may be compared to the ones presented in Table 6
of (Martı́ et al., 2012, p.1314). Once again, similarly to the shorter CPU time limit situation,
ILS-TREE ranked in fourth place (close to the third one) when considering the number of
attained or improved reference solutions. If the average RD is considered, ILS-TREE ranking

12

http://www.spec.org

Table 4: Performances of ILS-TREE and GDA-TREE in the set of instances named UB-I composed of instances
with unknown optimal solution and considering a CPU time limit of 10 seconds.

Subset of instances ILS-TREE GDA-TREE
Name # Inst B/E RD RD non-att B/E RD RD non-att

Random A I 100 0/6 -0.1945 -0.2069 0/1 -0.7080 -0.7152
Random A II 50 0/0 -0.0157 -0.0157 0/0 -0.0159 -0.0159
Random B 20 0/20 0.0000 – 0/19 -0.0012 -0.0240
XLOLIB 78 0/0 -0.6117 -0.6117 0/0 -0.8008 -0.8008
Special 7 0/3 -0.1606 -0.2810 0/1 -0.2798 -0.3264

B+E and average RD 255 29 -0.2709 -0.3056 21 -0.5335 -0.5814

third, outperformed by MA and ILS and outperforming TS and the other seven metaheuristics
being considered.

Table 5: Performances of ILS-TREE and GDA-TREE in the set of instances named UB-I composed of instances
with unknown optimal solution with a CPU time limit of 600 seconds.

Subset of instances ILS-TREE GDA-TREE
Name # Inst B/E RD RD non-att B/E RD RD non-att

Random A I 100 2/25 -0.0345 -0.0479 0/14 -0.1015 -0.1180
Random A II 50 0/6 -0.0045 -0.0051 0/15 -0.0026 -0.0037
Random B 20 0/20 0.0000 – 0/20 0.0000 –
XLOLIB 78 0/0 -0.3871 -0.3871 0/0 -0.3056 -0.3056
Special 7 1/4 -0.0659 -0.2548 0/3 -0.1271 -0.2224

B+E and average RD 255 58 -0.1346 -0.1748 52 -0.1373 -0.1724

Summing up, the whole set of experiments performed in the present subsection allows us
to claim, accompanied by every applicable caveat, that the ILS-TREE metaheuristic perfor-
mance is comparable to the one reported for the top-ranked state-of-the-art methods considered
in Martı́ et al. (2012).

3.3 Experiments with large-scale instances

Numerical experiments in this subsection were run on an Intel Xeon 3.0 GHz processor with
8GB of RAM memory. In this subsection, we evaluate the performance of ILS-TREE and
GDA-TREE in a set of large-scale instances presented in Sakuraba and Yagiura (2010). The
set is composed of 150 instances with 500 ≤ n ≤ 8000 and m ≈ n(n − 1)/2 × (p/100),
where 1 ≤ p ≤ 100 is a “density” parameter such that each pair of vertices has an edge joining
them with probability p/100. Edges’ costs were randomly generated from the discrete uniform
distribution in the interval [1, 100]. A full description of the instances is available online at
http://www.al.cm.is.nagoya-u.ac.jp/∼yagiura/lop/ for benckmark purposes. For each instance,
best known solutions reported in Sakuraba and Yagiura (2010) were used as reference values for
comparison. It should be stressed that, to the extent of our knowledge, no numerical experiments
with other metaheuristics were reported in the literature for large-scale instances like the ones
being considered in the present subsection.

Table 6 shows the experimental results of running ILS-TREE varying the number of pertur-
bations k ∈ {5, 10, 20, n/2,m/n} with a CPU time limit t = m/(2n) ≈ 0.0025np seconds.
In the table, n is the number of nodes and p/100 is the density of the instances, while “# Inst”

13

http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/lop/

indicates the number of instances with n nodes and density p/100. In all cases, we have 5 in-
stances of each type. For each group of 5 instances with the same n and p, the table shows the
quantities B/E and RD (already described in the previous subsections). Reference solutions
were improved for almost all instances with almost any value of parameter k. Therefore, the
comparison must be focused on the average percentage deviations from the reference solutions.
In the table, the largest (positive) average percentage deviations for each combination (n, p)
are shown in bold. It is easy to see that, once again, the best performance was obtained con-
sidering k = n/2, followed by k = m/n. ILS-TREE with k = n/2 improved the reference
solutions for all instances, regardless of their size and density, while ILS-TREE with k = m/n
improved 149 out of the 150 reference solutions. The larger the instances’ size and density, the
smaller the average percentage relative improvement, suggesting that solutions found on larger
and denser instances may still be improved by increasing the CPU time limit of the metaheuris-
tics. The only groups of instances in which better results were obtained by ILS-TREE with
values of k other than n/2 and m/n were the ones with (n, p) = (500, 1), (n, p) = (500, 5),
(n, p) = (1000, 1), and (n, p) = (2000, 1), that correspond to small (within this set of large-
scale instances) and sparse instances. It suggests that, although good results were obtained
setting k = n/2 or k = m/n, even better results for some sparse instances can be obtained by
tuning the value of k. Last but not least, note that k = m/n presented the best results for almost
all groups of complete graphs (note that p = 100 implies that graphs are completely dense). In
this case, we have m/n = (n − 1)/2 = n/2 − 1 (last equality holds because n is even for all
instances) and this is why the cases with k = n/2 and k = m/n presented almost identical
results in the groups of dense-graphs instances. It is worth noting that the best performance of
ILS-TREE was obtained by setting k = n/2, as it was the case with the small and medium-
scale instances. It suggests that ILS-TREE is a robust method with respect to the value of its
sole parameter, in the sense that the value selected in the preliminary tests is also the one that
presents the best performance in this new set of instances.

Table 7 shows the experimental results of running GDA-TREE for all combinations of
dryratio ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (named r in the table due to lack of space) and iwl ∈
{1.1, 1.3, 1.5} with a CPU time limit t = m/(2n) ≈ 0.0025np seconds. In the table, in-
stances are grouped by their density p/100 and “# Inst” indicates the number of instances in
each group. For example, in a line starting with p = 1 there are 5 grouped instances with
n = 500, 5 instances with n = 1, 000, 5 instances with n = 2, 000, 5 instances with n = 3, 000,
5 instances with n = 4, 000, and 5 instances with n = 8, 000, totalizing 30 instances. For
each combination of parameters iwl and dryratio, the table shows the values of “B/E” and
“RD” (already described in previous tables). Figures in the table indicate that combination
(iwl, dryratio) = (1.1, 0.9) presented the largest average relative deviation, while the largest
number of improved solutions was attained with combination (iwl, dryratio) = (1.5, 0.7).
Note that, the combinations of parameters with the best overall performance for the large-scale
instances do not coincide with the ones obtained in the preliminary numerical experiments of
Subsection 3.1 for small and medium-scale instances. Analyzing the average relative devia-
tions, it can be seen that negative values are found for every combination of parameters with
dryratio ∈ {0.1, 0.3}, while positive average relative deviations are found for every combi-
nation of parameters with dryratio ∈ {0.5, 0.7, 0.9}. From this observation, it is possible to
conclude that the value of parameter dryratio has a larger influence on the GDA-TREE perfor-
mance.

In a final numerical experiment, GDA-TREE was run with a refined combination of param-
eters. We considered values of iwl and dryratio around 1.1 and 0.9, respectively, because this

14

Table 6: Performance of ILS-TREE in the set of large-scale instances considering a CPU time limit t = m/(2n) ≈
0.0025np seconds.

Instances k = 5 k = 10 k = 20 k = n/2 k = m/n
n p # Inst B/E RD B/E RD B/E RD B/E RD B/E RD

500

1 5 5/0 3.9036 5/0 3.9577 5/0 3.8220 5/0 2.5259 5/0 3.6956
5 5 5/0 2.2932 5/0 2.4961 5/0 2.5543 5/0 2.2769 5/0 2.4816
10 5 5/0 1.5625 5/0 1.7363 5/0 1.8163 5/0 1.9829 5/0 1.9167
50 5 4/0 0.1213 5/0 0.1348 5/0 0.2475 5/0 0.6338 5/0 0.5309

100 5 5/0 0.0613 5/0 0.0799 5/0 0.0997 5/0 0.2316 5/0 0.2246

1000

1 5 5/0 3.2116 5/0 3.2335 5/0 3.3181 5/0 2.1860 5/0 3.0717
5 5 5/0 1.0396 5/0 1.2411 5/0 1.3812 5/0 1.9348 5/0 1.5158
10 5 5/0 0.4153 5/0 0.5467 5/0 0.6422 5/0 1.2638 5/0 0.8056
50 5 4/0 0.0297 4/0 0.0500 5/0 0.0810 5/0 0.4353 5/0 0.2924

100 5 1/0 -0.0212 1/0 -0.0078 3/0 0.0088 5/0 0.1267 5/0 0.1314

2000

1 5 5/0 1.7134 5/0 1.9627 5/0 2.1611 5/0 2.1159 5/0 1.9251
5 5 5/0 0.4351 5/0 0.5095 5/0 0.5636 5/0 1.2714 5/0 0.6682
10 5 5/0 0.1323 5/0 0.1807 5/0 0.2258 5/0 0.8087 5/0 0.3639
50 5 2/0 -0.0209 2/0 -0.0143 2/0 -0.0025 5/0 0.2310 5/0 0.1108

100 5 0/0 -0.0179 1/0 -0.0159 1/0 -0.0102 5/0 0.0611 5/0 0.0631

3000

1 5 5/0 1.1155 5/0 1.1522 5/0 1.2474 5/0 1.8203 5/0 1.2086
5 5 5/0 0.2246 5/0 0.2210 5/0 0.2392 5/0 0.8720 5/0 0.3512
10 5 5/0 0.0702 5/0 0.0779 5/0 0.1143 5/0 0.5450 5/0 0.1972
50 5 2/0 -0.0067 2/0 -0.0022 2/0 0.0035 5/0 0.1615 5/0 0.0762

100 5 2/0 -0.0014 3/0 0.0005 2/0 0.0005 5/0 0.0445 5/0 0.0446

4000

1 5 5/0 0.8546 5/0 0.9040 5/0 0.9400 5/0 1.6238 5/0 0.9291
5 5 5/0 0.1766 5/0 0.1672 5/0 0.1856 5/0 0.6801 5/0 0.2655
10 5 4/0 0.0615 5/0 0.0589 5/0 0.0802 5/0 0.4196 5/0 0.1543
50 5 3/0 -0.0004 3/0 0.0024 3/0 0.0030 5/0 0.1200 5/0 0.0504

100 5 1/0 -0.0058 1/0 -0.0060 1/0 -0.0057 5/0 0.0283 5/0 0.0292

8000

1 5 5/0 0.3863 5/0 0.3802 5/0 0.3600 5/0 0.8973 5/0 0.3607
5 5 5/0 0.0513 5/0 0.0591 5/0 0.0660 5/0 0.3028 5/0 0.0942
10 5 1/0 -0.0068 1/0 -0.0023 3/0 -0.0010 5/0 0.1404 5/0 0.0286
50 5 1/0 -0.0073 1/0 -0.0075 1/0 -0.0062 5/0 0.0296 4/0 0.0077

100 5 3/0 -0.0001 3/0 0.0005 3/0 0.0009 5/0 0.0114 5/0 0.0122
B+E and average RD 113 0.5924 117 0.6366 121 0.6712 150 0.8594 149 0.7202

combination corresponds to the combination with the largest RD (see Table 7). Additionally,
several combinations with dryratio = 0.1 were included since a detailed analysis showed that
GDA-TREE with dryratio = 0.1 and different values of iwl found better solutions than the
ones found by ILS-TREE in many cases. Table 8 shows the experimental results of running
GDA-TREE for all combinations of dryratio ∈ {0.1, 0.9} (named r in the table by lack of
space) and iwl ∈ {1.01, 1.03, 1.05, 1.10} with a CPU time limit t = m/(2n) ≈ 0.0025np sec-
onds. In the table, n is the number of nodes and p/100 is the density of the instances, while
“# Inst” indicates the number of instances with n nodes and density p/100. In all cases, we
have 5 instances of each type. For each group of 5 instances with the same n and p, the ta-
ble shows the quantities B/E and RD (already described in the previous subsections). It is
very clear from the table that GDA-TREE does not have the nice property presented by ILS-
TREE, since bold numbers (best RD for each group of 5 instances with same values of n and
p) are distributed all over the table corresponding to different combinations of parameters iwl
and dryratio. Moreover, some of the bold numbers are negative, indicating that for some of the

15

Table 7: Performance of GDA-TREE in the set of large-scale instances considering a CPU time limit t =
m/(2n) ≈ 0.0025np seconds.

Instances
iwl

r = 0.1 r = 0.3 r = 0.5 r = 0.7 r = 0.9
p # Inst B/E RD B/E RD B/E RD B/E RD B/E RD
1 30

1.1

25/0 0.6968 25/0 1.7957 25/0 2.0175 25/0 1.8823 25/0 1.8898
5 30 15/0 -1.4959 25/0 0.1300 25/0 0.4550 25/0 0.4429 25/0 0.5335
10 30 15/0 -2.1626 20/0 -0.7319 20/0 0.0598 20/0 0.0463 24/0 0.1288
50 30 10/0 -1.9080 10/0 -1.0767 15/0 -0.3291 14/0 -0.2914 14/0 -0.1952

100 30 10/0 -0.6431 10/0 -0.3872 15/0 -0.1405 14/0 -0.1200 11/0 -0.0953
B+E and average RD 75 -1.1026 90 -0.0540 100 0.4126 98 0.3920 99 0.4523
1 30

1.3

25/0 0.7264 25/0 1.7854 25/0 1.8883 25/0 1.8868 25/0 1.8637
5 30 15/0 -1.6417 20/0 0.1386 25/0 0.3285 25/0 0.4338 25/0 0.5478
10 30 12/0 -2.3698 19/0 -0.7536 20/0 -0.0960 20/0 0.0592 20/0 0.1355
50 30 10/0 -2.0130 10/0 -1.1322 15/0 -0.4512 14/0 -0.3233 13/0 -0.2434

100 30 6/0 -0.6873 10/0 -0.4001 11/0 -0.1858 13/0 -0.1359 12/0 -0.1036
B+E and average RD 68 -1.1971 84 -0.0724 96 0.2968 97 0.3841 95 0.4400
1 30

1.5

25/0 0.6608 25/0 1.8025 25/0 1.9862 30/0 1.9271 25/0 1.8485
5 30 15/0 -1.8296 24/0 0.1619 25/0 0.4669 25/0 0.4734 24/0 0.5131
10 30 10/0 -2.5099 20/0 -0.7900 20/0 0.0139 22/0 -0.0330 19/0 0.1143
50 30 10/0 -2.0174 10/0 -1.1998 15/0 -0.4437 15/0 -0.3021 13/0 -0.2757

100 30 5/0 -0.7066 10/0 -0.4236 10/0 -0.1772 13/0 -0.1299 10/0 -0.1012
B+E and average RD 65 -1.2805 89 -0.0898 95 0.3692 105 0.3871 91 0.4198

groups (mostly the ones corresponding to dense instances with large values of n) none of the pa-
rameters’ combinations make it possible for GDA-TREE to improve, on average, the reference
solutions. The positive result is that GDA-TREE with (iwl, dryratio) = (1.03, 0.9) presented
an overall positive RD = 0.4760. But even in this case, this value is almost half of the best
overall RD = 0.8594 presented by ILS-TREE with k = n/2.

4 Conclusions

In this work, we presented two metaheuristic algorithms for large-scale instances of the
linear ordering problem: iterated local search (ILS-TREE) and great deluge algorithm (GDA-
TREE). Those are the first metaheuristic methods ever applied to large-sized instances of the
LOP problem in line with the scale of current real applications. Combined with the TREE
local-search method, both algorithms are capable of dealing with sparse as well as complete
graphs with several thousand vertices, obtaining good results in a reasonable amount of time.
ILS-TREE was shown to be efficient and robust, obtaining the best overall performance. It is
well-known that adjusting the several parameters of a given metaheuristic method is a difficult
problem. In this sense, the introduced ILS-TREE metaheuristic presents an attractive feautre:
its only parameter besides the CPU time limit is the number of perturbations k, and good results
for all sets of instances were obtained by setting it to k = n/2, where n is the number of vertices
of the graph. Numerical experiments showed that ILS-TREE presents competitive results for
the benchmark small and medium-scale instances from the literaure, while it improves all the
best known results for the large-scale instances with up to 8, 000 vertices and 31, 996, 000 edges.

The TREE local search method introduced in Sakuraba and Yagiura (2010) appears as a
promising local search strategy for large-sized instances of the LOP problem due to its low
complexity neighborhood search. This state of facts suggests two different directions for future
research. On the one hand, in this work, diversification and intensification were provided by
the ILS and GDA frameworks, that, by being trajectory metaheuristics, were identified as ade-

16

Table 8: Performance of GDA-TREE, considering a refined parameter tuning, in the set of large-scale instances
considering a CPU time limit t = m/(2n) ≈ 0.0025np seconds.

Instances iwl = 1.01 iwl = 1.03 iwl = 1.05 iwl = 1.10
n p # Inst r = 0.1 r = 0.9 r = 0.1 r = 0.9 r = 0.1 r = 0.9 r = 0.1 r = 0.9

500

1 5 4.3384 3.7733 4.0502 3.7840 4.0170 3.7267 3.9583 3.9273
5 5 2.8583 2.5195 2.9532 2.5192 2.9237 2.5728 2.9055 2.6069

10 5 2.0200 1.7314 2.0992 1.7314 2.0699 1.7568 2.1817 1.7788
50 5 0.5032 0.2508 0.5284 0.2508 0.6035 0.2701 0.5968 0.3495
100 5 0.2026 0.1064 0.1959 0.1063 0.2080 0.1072 0.1971 0.1077

1000

1 5 3.5365 3.1250 3.5311 3.1250 3.5426 3.1742 3.4208 3.1647
5 5 1.9939 1.4489 2.0835 1.5014 2.0111 1.5096 2.0469 1.4805

10 5 1.1483 0.7038 1.2308 0.6802 1.2389 0.5489 1.2753 0.5902
50 5 0.3972 0.1380 0.4275 0.1287 0.4275 0.1242 0.4273 0.1212
100 5 -0.1036 0.0257 -0.0634 0.0239 0.0365 0.0192 0.0305 0.0236

2000

1 5 2.8301 2.1237 2.8271 2.1308 2.8682 2.1610 2.8808 2.0942
5 5 1.1349 0.5545 1.1800 0.5361 1.1789 0.5339 1.1726 0.5165

10 5 -0.8754 0.3146 0.0829 0.3015 0.0926 0.3022 0.0640 0.3149
50 5 -3.8303 0.0425 -3.6922 0.0384 -3.8592 0.0375 -3.8991 0.0521
100 5 -1.2654 -0.0063 -1.2987 -0.0111 -1.3533 -0.0093 -1.3363 -0.0004

3000

1 5 1.9800 1.2059 2.0273 1.1764 2.0450 1.2331 2.0376 1.3130
5 5 -3.4487 0.2796 -2.3253 0.2645 -2.3119 0.2616 -2.3151 0.2505

10 5 -3.9802 0.1286 -3.2357 0.1037 -3.2345 0.1245 -3.2356 0.0997
50 5 -3.1091 -0.0996 -3.2003 -0.1203 -3.1583 -0.1220 -3.1457 -0.0544
100 5 -0.9326 -0.0663 -0.9632 -0.0642 -0.9824 -0.1042 -0.9576 -0.0542

4000

1 5 1.4246 0.9514 1.5618 0.9546 1.5762 0.9298 1.5757 0.9602
5 5 -5.6202 0.1826 -4.7608 0.1811 -4.7583 0.1336 -4.7690 0.1838

10 5 -6.9062 -0.0122 -7.2511 0.0257 -7.1498 -0.0580 -7.2713 0.0417
50 5 -2.8468 -0.4730 -2.7993 -0.2938 -2.8641 -0.4687 -2.7668 -0.2720
100 5 -0.9535 -0.2966 -0.9491 -0.1614 -0.9476 -0.1963 -0.9465 -0.1856

8000

1 5 -10.8524 0.1501 -9.7064 0.1337 -9.6932 0.1204 -9.6922 -0.1203
5 5 -8.0223 -1.3047 -7.9107 -1.3429 -8.1098 -1.3454 -8.0163 -1.8373

10 5 -5.9331 -1.5784 -5.9791 -1.6111 -5.9543 -1.6038 -5.9898 -2.0524
50 5 -2.6965 -1.2861 -2.6644 -1.3685 -2.6612 -1.1649 -2.6608 -1.3680
100 5 -0.9121 -0.4786 -0.8445 -0.4454 -0.8471 -0.4480 -0.8455 -0.4627

Average RD -1.2640 0.4718 -1.0955 0.4760 -1.1015 0.4709 -1.1026 0.4523

quate choices to extend the capabilities of TREE. In the same line of research, the combination
of TREE with other trajectory metaheuristics remains to be investigated. On the other hand,
since large changes in the current solution imply in costly updates of TREE internal data struc-
ture, it appears that populational-based metaheuristics are not an adequate framework to embed
the TREE local search algorithm. However, being TREE a promising approach, confirming
or refuting this hypothesis is an interesting subject that deserves future research. Moreover,
combining TREE with Memetic Algorithms, that are, at the same time, a populational-based
method and a trajectory method and have shown outstanding results when applied to the LOP
problem (Schiavinotto and Stützle, 2003), may be a promising direction of research. In a sec-
ond stage, in case the studies confirm that the TREE method is not adequate for being combined
with populational metaheuristics, a deep analysis of the updating operations of the TREE data
structures would be done. This analysis would point out to the development of a “TREE-based”
local search method that, on the one hand, inherits the TREE low complexity neighborhood
search (hence being adequate for large-scale instances) and, on the other hand, is suitable for

17

being combined with populational-based metaheuristics. Last but not least, on a different line
of research, developing methods capable of dealing with the increasingly large nowadays LOP
applications and utilizing them in practice is also an exciting challenge.

Acknowledgements: This research has been financially supported by FAPESP (grants 2010/08434-
1, 2010/10133-0, 2013/03447-6, 2013/05475-7, and 2013/07375-0) and CNPq.

References

Baxter, J.: 1981, Local optima avoidance in depot location, Journal of the Operational Research
Society 32, 815–819.

Becker, O.: 1967, Das Helmstädtersche Reihenfolgeproblem - die Effizienz verschiedener
Näherungsverfahren, in Computer uses in the Social Science, Berichteiner Working Con-
ference, Wien.

Blum, C. and Roli, A.: 2003, Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv. 35, 268–308.

Campos, V., Glover, F., Laguna, M. and Martı́, R.: 2001, An experimental evaluation of a scatter
search for the linear ordering problem, Journal of Global Optimization 21, 397–414.

Ceberio, J., Hernando, L., Mendiburu, A. and Lozano, J.: 2013, Understanding instance com-
plexity in the linear ordering problem, in Proceedings of the 14th International Conference
on Intelligent Data Engineering and Automated Learning – IDEAL 2013, H. Yin, K. Tang,
Y. Gao (eds), Lecture Notes in Computer Science 8206, 479–486.

Chanas, S. and Kobylanski, P.: 1996, A new heuristic algorithm solving the linear ordering
problem, Computational Optimization and Applications 6, 191–205.

Charon, I. and Hudry, O.: 2007, A survey on the linear ordering problem for weighted or
unweighted tournaments, 4OR: A Quarterly Journal of Operations Research 5, 5–60.

Chenery, H. B. and Watanabe, T.: 1958, International comparisons of the structure of produc-
tion, Econometrica 26, 487–521.

Dueck, G.: 1993, New optimization heuristics - the great deluge algorithm and the record-to-
record travel, Journal of Computational Physics 104, 86–92.

Dueck, G. and Scheuer, T.: 1990, Threshold accepting: A general purpose optimization algo-
rithm appearing superior to simulated annealing, Journal of Computational Physics 90, 161–
175.

Garcia, C. G., Pérez-Brito, D., Campos, V. and Martı́, R.: 2006, Variable neighborhood search
for the linear ordering problem, Computers and Operations Research 33, 3549–3565.

Garey, M. R. and Johnson, D. S.: 1979, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co Ltd, New York, NY, USA.

Grötschel, M., Jünger, M. and Reinelt, G.: 1984, A cutting plane algorithm for the linear order-
ing problem, Operations Research 32, 1195–1220.

Grötschel, M., Jünger, M. and Reinelt, G.: 1985, Facets of the linear ordering polytope, Math-
ematical Programming 33, 43–60.

Huang, G. and Lim, A.: 2003, Designing a hybrid genetic algorithm for the linear ordering
problem, Genetic and Evolutionary Computation - GECCO 2003, proc. pp. 1053–1064.

Johnson, D. and McGeoch, L.: 1997, The traveling salesman problem: a case study, in E. Aarts
and J. Lenstra (eds), Local search in Combinatorial Optimization, Interscience Series in Dis-
crete Mathematics and Optimization, Wiley, Chichester, pp. 215–310.

Karp, R. M.: 1972, Reducibility among combinatorial problems, in R. E. Miller and J. W.
Thatcher (eds), Complexity of Computer Computations, Plenum Press, New York, NY, USA,

18

pp. 85–103.
Kröemer, P., Platos, J. and Snasel, V.: 2013, Implementing artificial immune systems for the lin-

ear ordering problem, in Proceedings of the 7th International Conference on Soft Computing
Models in Industrial and Environm Applications, V. Snasel, A. Abraham, and E.S. Corchado
(eds), Advances in Intelligent Systems and Computing 188, 53–62.

Laguna, M., Marti, R. and Campos, V.: 1999, Intensification and diversification with elite
tabu search solutions for the linear ordering problem, Computers and Operations Research
26, 1217–1230.

Leontief, W.: 1966, Input-output economics, Oxford University Press, New York.
Lourenço, H. R., Martin, O. C. and Stützle, T.: 2003, Iterated local search, in F. Glover and G. A.

Kochenberger (eds), Handbook of Metaheuristics, Kluwer Academic Publishers, pp. 321–
353.

Martı́, R. and Reinelt, G.: 2011, The linear ordering problem: exact and heuristic methods in
combinatorial optimization, Springer, Berlin.

Martı́, R., Reinelt, G. and Duarte, A.: 2012, A benchmark library and a comparison of heuris-
tic methods for the linear ordering problem, Computational Optimization and Applications
51, 1297–1317.

Sakuraba, C. S. and Yagiura, M.: 2010, Efficient local search algorithms for the linear ordering
problem, International Transactions in Operational Research 17, 711–737.

Schiavinotto, T. and Stützle, T.: 2003, Search space analysis of the linear ordering problem,
in F. Rothlauf et al. (eds), Applications of Evolutionary Computing, Springer, Heidelberg,
Germany, pp. 197–204.

Schiavinotto, T. and Stützle, T.: 2004, The linear ordering problem: Instances, search space
analysis and algorithms, Journal of Mathematical Modelling and Algorithms 3, 367–402.

Sukegawara, N., Yamamoto, Y. and Zhang, L.: 2011, Lagrangian relaxation and pegging test for
linear ordering problems, Journal of the Operations Research Society of Japan 54, 142–160.

Ye, T., Wang, T., Lü, Z. and Hao J.-K.: 2014, A Multi-parent memetic algorithm for the linear
ordering roblem, arXiv:1405.4507v1 [cs.NE] (submitted to arXiv on May 18, 2014).

19

	Introduction
	Proposed Algorithms
	The TREE Algorithm
	Iterated Local Search
	Great Deluge Algorithm

	Numerical Experiments
	Preliminary experiments
	Comparative study with other methods of the literature
	Experiments with large-scale instances

	Conclusions

