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Abstract

Over the last two decades, it has been observed that using the gradient vector as a
search direction in large-scale optimization may lead to efficient algorithms. The effec-
tiveness relies on choosing the step lengths according to novel ideas that are related to
the spectrum of the underlying local Hessian rather than related to the standard decrease
in the objective function. A review of these so-called spectral projected gradient meth-
ods for convex constrained optimization is presented. To illustrate the performance of
these low-cost schemes, an optimization problem on the set of positive definite matrices
is described.
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1. Introduction

A pioneering paper by Barzilai and Borwein (1988) proposed a gradient method for the
unconstrained minimization of a differentiable function f : Rn → R that uses a novel and
nonstandard strategy for choosing the step length. Starting from a given x0 ∈ Rn, the
Barzilai-Borwein (BB) iteration is given by

xk+1 = xk − λk∇f(xk), (1)

where the initial step length λ0 > 0 is arbitrary and, for all k = 1, 2, . . .,

λk =
s>k−1sk−1

s>k−1yk−1
, (2)

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)−∇f(xk−1).

http://www.jstatsoft.org/


2 Spectral Projected Gradient method

When f(x) = 1
2x
>Ax+ b>x+ c is a quadratic function and A is a symmetric positive definite

(SPD) matrix, then the step length (2) becomes

λk =
∇f(xk−1)>∇f(xk−1)

∇f(xk−1)>A∇f(xk−1)
. (3)

Curiously, the step length (3) used in the BB method for defining xk+1 is the one used in the
optimal Cauchy steepest descent method (Cauchy 1847) for defining the step at iteration k.
Therefore, the BB method computes, at each iteration, the step that minimizes the quadratic
objective function along the negative gradient direction but, instead of using this step at the
k-th iteration, saves the step to be used in the next iteration. The main result in the pa-
per by Barzilai and Borwein (1988) is to show the surprising result that for two-dimensional
strictly convex quadratic functions the BB method converges R-superlinearly, which means
that, in the average, the quotient between the errors at consecutive iterations tends asymp-
totically to zero. This fact raised the question about the existence of a gradient method with
superlinear convergence in the general case. In 1990, the possibility of obtaining superlinear
convergence for arbitrary n was discarded by Fletcher (1990), who also conjectured that, in
general, only R-linear convergence should be expected. For more information about conver-
gence rates see (Dennis and Schnabel 1983). Raydan (1993) established global convergence
of the BB method for the strictly convex quadratic case with any number of variables. The
nonstandard analysis presented in (Raydan 1993) was later refined by Dai and Liao (2002) to
prove the expected R-linear convergence result, and it was extended by Friedlander, Mart́ınez,
Molina, and Raydan (1999) to consider a wide variety of delayed choices of step length for
the gradient method; see also (Raydan and Svaiter 2002).

For the minimization of general (not necessarily quadratic) functions, a bizarre behavior
seemed to discourage the application of the BB method: the sequence of functional values
f(xk) did not decrease monotonically and, sometimes, monotonicity was severely violated.
Nevertheless, it was experimentally observed (see, e.g., (Fletcher 1990; Glunt, Hayden, and
Raydan 1993)) that the potential effectiveness of the BB method was related to the relation-
ship between the step lengths and the eigenvalues of the Hessian rather than to the decrease
of the function value. It was also observed (see, e.g., (Molina and Raydan 1996)) that, with
the exception of very special cases, the BB method was not competitive with the classical
Hestenes-Stieffel (Hestenes and Stiefel 1952) Conjugate Gradients (CG) algorithm when ap-
plied to strictly convex quadratic functions. On the other hand, starting with the work by
Grippo, Lampariello, and Lucidi (1986), nonmonotone strategies for function minimization
began to become popular when combined with Newton-type schemes. These strategies made
it possible to define globally convergent algorithms without monotone decrease requirements.
The philosophy behind nonmonotone strategies is that, frequently, the first choice of a trial
point by a minimization algorithm hides a lot of wisdom about the problem structure and
that such knowledge can be destroyed by the decrease imposition.

The conditions were given for the implementation of the BB method for general unconstrained
minimization with the help of a nonmonotone strategy. Raydan (1997) developed a globally
convergent method in 1997 using the Grippo-Lampariello-Lucidi (GLL) strategy (Grippo et al.
1986) and the BB method given by (1) and (2). He exhibited numerical experiments that
showed that, perhaps surprisingly, the method was more efficient than classical conjugate
gradient methods for minimizing general functions. These nice comparative numerical results
were possible because, albeit the Conjugate Gradient method of Hestenes and Stiefel continued
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to be the method of choice for solving strictly convex quadratic problems, its efficiency is
hardly inherited by generalizations for minimizing general functions. Therefore, there existed
a wide space for variations and extensions of the BB original method.

The Spectral Projected Gradient (SPG) method (Birgin, Mart́ınez, and Raydan 2000, 2001,
2003b), for solving convex constrained problems, was born from the marriage of the global
Barzila-Borwein (spectral) nonmonotone scheme (Raydan 1997) with the classical projected
gradient (PG) method (Bertsekas 1976; Goldstein 1964; Levitin and Polyak 1966) which have
been extensively used in statistics; see e.g., (Bernaards and Jennrich 2005) and references
in there. Indeed, the effectiveness of the classical PG method can be greatly improved by
incorporating the spectral step length and nonmonotone globalization strategies; more details
on this topic can be found in (Bertsekas 1999). In Section 2, we review the basic idea of the
SPG method and list some of its most important properties. In Section 3, we illustrate the
properties of the method by solving an optimization problem on the convex set of positive
definite matrices. In Section 4, we briefly describe some of the most relevant applications and
extensions of the SPG method. Finally, in Section 5, we present some conclusions.

2. Spectral Projected Gradient (SPG) method

Quasi-Newton secant methods for unconstrained optimization (Dennis and Moré 1977; Dennis
and Schnabel 1983) obey the recursive formula

xk+1 = xk − αkB
−1
k ∇f(xk), (4)

where the sequence of matrices {Bk} satisfies the secant equation

Bk+1sk = yk. (5)

It can be shown that, at the trial point xk −B−1
k ∇f(xk), the affine approximation of ∇f(x)

that interpolates the gradient at xk and xk−1 vanishes for all k ≥ 1.

Now assume that we are looking for a matrix Bk+1 with a very simple structure that satis-
fies (5). More precisely, if we impose that

Bk+1 = σk+1I,

with σk+1 ∈ R, then equation (5) becomes:

σk+1sk = yk.

In general, this equation has no solutions. However, accepting the least-squares solution that
minimizes ‖σsk − yk‖22, we obtain:

σk+1 =
s>k yk

s>k sk
, (6)

i.e., σk+1 = 1/λk+1, where λk+1 is the BB choice of step length given by (2). Namely, the
method for unconstrained minimization is of the form xk+1 = xk + αkdk, where at each
iteration,

dk = −λk∇f(xk),
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λk = 1/σk, and formula (6) is used to generate the coefficients σk provided that they are
bounded away from zero and that they are not very large. In other words, the method uses
safeguards 0 < λmin ≤ λmax <∞ and defines, at each iteration:

λk+1 = max{λmin,min{
s>k sk

s>k yk
}, λmax}.

By the Mean-Value Theorem of integral calculus, one has:

yk =

[ ∫ 1

0
∇2f(xk + tsk) dt

]
sk.

Therefore, (6) defines a Rayleigh quotient relative to the average Hessian matrix
∫ 1

0 ∇
2f(xk +

tsk) dt. This coefficient is between the minimum and the maximum eigenvalue of the average
Hessian, which motivates the denomination of spectral method (Birgin et al. 2000).

Writing the secant equation as Hk+1yk = sk, which is also standard in the Quasi-Newton
tradition, we arrive at a different spectral coefficient: (y>k yk)/(s>k yk); see (Barzilai and Bor-
wein 1988; Raydan 1993). Both this dual and the primal (6) spectral choices of step lengths
produce fast and effective nonmonotone gradient methods for large-scale unconstrained opti-
mization (Fletcher 2005; Friedlander et al. 1999; Raydan 1997). Fletcher (2005) presents some
experimental considerations about the relationship between the nonmonotonicity of BB-type
methods and their surprising computational performance; pointing out that the effectiveness
of the approach is related to the eigenvalues of the Hessian rather than to the decrease of
the function value; see also (Asmundis, Serafino, Riccio, and Toraldo 2012; Glunt et al. 1993;
Raydan and Svaiter 2002). A deeper analysis of the asymptotic behavior of BB methods
and related methods is presented in (Dai and Fletcher 2005). The behavior of BB methods
has also been analyzed using chaotic dynamical systems (van den Doel and Ascher 2012).
Moreover, in the quadratic case, several spectral step lengths can be interpreted by means
of a simple geometric object: the Bézier parabola (Berlinet and Roland 2011). All of these
interesting theoretical as well as experimental observations, concerning the behavior of BB
methods for unconstrained optimization, justify the interest in designing effective spectral
gradient methods for constrained optimization.

The SPG method (Birgin et al. 2000, 2001, 2003b) is the spectral option for solving convex
constrained optimization problems. As its unconstrained counterpart (Raydan 1997), the
SPG method has the form

xk+1 = xk + αkdk, (7)

where the search direction dk has been defined in (Birgin et al. 2000) as

dk = PΩ(xk − λk∇f(xk))− xk,

PΩ denotes the Euclidean projection onto the closed and convex set Ω, and λk is the spectral
choice of step length (2). A related method with approximate projections has been defined
in (Birgin et al. 2003b). The feasible direction dk is a descent direction, i.e., d>k∇f(xk) < 0
which implies that f(xk + αdk) < f(xk) for α small enough. This means that, in principle,
one could define convergent methods imposing sufficient decrease at every iteration. However,
as in the unconstrained case, this leads to very inefficient practical results. A key feature is to
accept the initial BB-type step length as frequently as possible while simultaneously guarantee
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global convergence. For this reason, the SPG method employs a nonmonotone line search that
does not impose functional decrease at every iteration. In (Birgin et al. 2000, 2001, 2003b)
the nonmonotone GLL (Grippo et al. 1986) search is used (see Algorithm 2.2 below). The
global convergence of the SPG method, and some related extensions, can be found in (Birgin
et al. 2003b).

The nonmonotone sufficient decrease criterion, used in the SPG method, depends on an inte-
ger parameter M ≥ 1 and imposes a functional decrease every M iterations (if M = 1 then
GLL line search reduces to a monotone line search). The line search is based on a safeguarded
quadratic interpolation and aims to satisfy an Armijo-type criterion with a sufficient decrease
parameter γ ∈ (0, 1). Algorithm 2.1 describes the SPG method in details, while Algorithm 2.2
describes the line search. More details can be found in (Birgin et al. 2000, 2001).

Algorithm 2.1: Spectral Projected Gradient

Assume that a sufficient decrease parameter γ ∈ (0, 1), an integer parameter M ≥ 1 for
the nonmonotone line search, safeguarding parameters 0 < σ1 < σ2 < 1 for the quadratic
interpolation, safeguarding parameters 0 < λmin ≤ λmax <∞ for the spectral step length, an
arbitrary initial point x0, and λ0 ∈ [λmin, λmax] are given. If x0 /∈ Ω then redefine x0 = PΩ(x0).
Set k ← 0.

Step 1. Stopping criterion

If ‖PΩ(xk − ∇f(xk)) − xk‖∞ ≤ ε then stop declaring that xk is an approximate stationary
point.

Step 2. Iterate

Compute the search direction dk = PΩ(xk − λk∇f(xk)) − xk, compute the step length αk

using Algorithm 2.2 (with parameters γ, M , σ1, and σ2), and set xk+1 = xk + αkdk.

Step 3. Compute the spectral step length

Compute sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk). If s>k yk ≤ 0 then set λk+1 = λmax.

Otherwise, set λk+1 = max{λmin,min{s>k sk/s>k yk, λmax}}. Set k ← k + 1 and go to Step 1.

Algorithm 2.2: Nonmonotone line search

Compute fmax = max{f(xk−j) | 0 ≤ j ≤ min{k,M − 1}} and set α← 1.

Step 1. Test nonmonotone GLL criterion

If f(xk + αdk) ≤ fmax + γα∇f(xk)>dk then set αk ← α and stop.
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Step 2. Compute a safeguarded new trial step length

Compute αtmp ← −1
2α

2∇f(xk)>dk/[f(xk +αdk)− f(xk)−α∇f(xk)>dk]. If αtmp ∈ [σ1, σ2α]
then set α← αtmp. Otherwise, set α← α/2. Go to Step 1.

In practice, it is usual to set λmin = 10−30, λmax = 1030, σ1 = 0.1, σ2 = 0.9, and γ = 10−4.
A typical value for the nonmonotone parameter is M = 10, although in some applications
values ranging from 2 to 100 have been reported. However, the best possible value of M is
problem-dependent and a fine tuning may be adequate for specific applications. It can only
be said that M = 1 is not good because it makes the strategy to coincide with the classical
monotone Armijo strategy (a comparison with this case can be found in (Birgin et al. 2000))
and that M ≈ ∞ is not good either because in this case the decrease of the objective function
is not controlled at all. Other nonmonotone techniques were also introduced in (Grippo,
Lampariello, and Lucidi 1991; Toint 1996; Dai and Zhang 2001; Zhang and Hager 2004; Grippo
and Sciandrone 2002; La Cruz, Mart́ınez, and Raydan 2006). Parameter λ0 ∈ [λmin, λmax] is
arbitrary. In (Birgin et al. 2000, 2001) it was considered

λ0 = max{λmin,min{1/‖PΩ(x0 −∇f(x0))− x0‖∞, λmax}}, (8)

assuming that x0 is such that PΩ(x0−∇f(x0)) 6= x0. In (Birgin et al. 2003b), at the expense
of an extra gradient evaluation, it was used

λ0 =

{
max{λmin,min{s̄>s̄/s̄>ȳ, λmax}}, if s̄>ȳ > 0,
λmax, otherwise,

where s̄ = x̄− x0, ȳ = ∇f(x̄)−∇f(x0), x̄ = x0 − αsmall∇f(x0),

αsmall = max{εrel‖x0‖∞, εabs},

and εrel and εabs are relative and absolute small values related to the machine precision,
respectively.

It is easy to see that SPG only needs 3n + O(1) double precision positions but one addi-
tional vector may be used to store the iterate with best functional value obtained by the
method. This is almost always the last iterate but exceptions are possible. C/C++, For-
tran 77 (including an interface with the CUTEr (Gould, Orban, and Toint 2003) test set),
Matlab, and Octave subroutines implementing the Spectral Projected Gradient method (Al-
gorithms 2.1 and 2.2) are available in the TANGO Project web page (http://www.ime.usp.
br/~egbirgin/tango/). A Fortran 77 implementation is also available as Algorithm 813 of
the ACM Collected Algorithms (http://calgo.acm.org/). An implementation of the SPG
method in R (R Core Team 2012) is also available within the BB package Varadhan and
Gilbert (2009). Recall that the method’s purpose is to seek the least value of a function f
of potentially many variables, subject to a convex set Ω onto which we know how to project.
The objective function and its gradient should be coded by the user. Similarly, the user must
provide a subroutine that computes the projection of an arbitrary vector x onto the feasible
convex set Ω.

3. A matrix problem on the set of positive definite matrices

Optimization problems on the space of matrices, which are restricted to the convex set of

http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/tango/
http://calgo.acm.org/
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positive definite matrices, arise in various applications, such as statistics, as well as financial
mathematics, model updating, and in general in matrix least-squares settings; see, e.g., (Boyd
and Xiao 2005; Escalante and Raydan 1996; Fletcher 1985; Higham 2002; Hu and Olkin 1991;
Yuan 2012).

To illustrate the use of the SPG method, we now describe a classification scheme (see, e.g.,
(Kawalec and Magdziak 2012)) that can be written as an optimization problem on the convex
set of positive definite matrices. Given a training set of labelled examples

D = {(zi, wi), i = 1, . . . ,m, zi ∈ Rq and wi ∈ {1,−1}},

we aim to find a classifier ellipsoid E(A, b) = {y ∈ Rq | y>Ay + b>y = 1} in Rq such that
z>i Azi + b>zi ≤ 1 if wi = 1 and z>i Azi + b>zi ≥ 1, otherwise. Since such ellipsoid may not
exist, defining I = {i ∈ {1, . . . ,m} | wi = 1} and O = {i ∈ {1, . . . ,m} | wi = −1}, we seek to
minimize the function given by

f(A, b) =
1

m

[∑
i∈I

max{0, z>i Azi + b>zi − 1}2 +
∑
i∈O

max{0, 1− z>i Azi − b>zi}2
]

subject to symmetry and positive definiteness of the q × q matrix A. Moreover, to impose
closed constraints on the semi-axes of the ellipsoid, we define a lower and an upper bound

0 < λ̂min ≤ λi(A) ≤ λ̂max < +∞

on the eigenvalues λi(A), 1 ≤ i ≤ q. Given a square matrix A, its projection onto this
closed and convex set can be computed in two steps (Escalante and Raydan 1996; Higham
1988). In the first step one symmetrizes A and in the second step one computes the QDQ>

decomposition of the symmetrized matrix and replaces its eigenvalues by their projection onto
the interval [λ̂min, λ̂max].

The number of variables n of the problem is n = q(q + 1), corresponding to the q2 elements
of matrix A ∈ Rq×q plus the elements of b ∈ Rq. Variables correspond to the column wise
representation of A plus the elements of b.

3.1. Coding the problem

The problem will be solved using the implementation of the SPG method that is part of
the R package BB Varadhan and Gilbert (2009) as subroutine spg. Using the SPG method
requires subroutines to compute the objective function, its gradient, and the projection of
an arbitrary point onto the convex set. The gradient is computed once per iteration, while
the objective function may be computed more than once. However, the nonmonotone strat-
egy of the SPG method implies that the number of function evaluations per iteration is in
general near one. There is a practical effect associated with this property. If the objective
function and its gradient share common expressions, they may be computed jointly in order
to save computational effort. This is the case of the problem at hand. Therefore, subroutines
to compute the objective function and its gradient, that will be named evalf and evalg,
respectively, are based on a subroutine named evalfg that, as its name suggests, computes
both at the same time. Every time evalf is called, it calls evalfg, returns the computed
value of the objective function and saves its gradient. When subroutine evalg is called, it
returns the saved gradient. This is possible because the SPG method possesses the following
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property: every time the gradient at a point x is required, the objective function was already
evaluated at point x and that point was the last one at which the objective function was
evaluated. Therefore, the code of subroutines that compute the objective function and its
gradient is given by

R> evalf <- function(x) { r <- evalfg(x); gsaved <<- r$g; r$f }

and

R> evalg <- function(x) { gsaved }

Both subroutines return values effectively computed by the subroutine evalfg given by

R> evalfg <- function(x) {

+ n <- length(x)

+ A <- matrix(x,nrow=nmat,ncol=nmat)

+ b <- x[seq(length=nmat, from=nmat^2+1, by=1)]

+ fparc <- apply(p,2,function(y) {return( t(y) %*% A %*% y + b %*% y )}) - 1.0

+ I <- which( ( t=='i' & fparc>0.0 ) | ( t=='o' & fparc<0.0 ) )

+ if ( length(I) > 0 ) {

+ f <- sum( as.array(fparc[I])^2 ) / np

+ g <- ( as.vector( apply(as.matrix(p[,I]),2,

+ function(y) {return( c(as.vector(y %*% t(y)), y) )}) %*%

+ ( 2.0 * as.array(fparc[I]) ) ) ) / np

+ }

+ else {

+ f <- 0.0

+ g <- rep(0.0,n)

+ }

+

+ list(f=f,g=g)

+ }

The subroutine that computes the projection onto the feasible convex set is named proj and
is given by

R> proj <- function(x) {

+ A <- matrix(x,nrow=nmat,ncol=nmat)

+ A <- 0.5 * ( t(A) + A )

+ r <- eigen(A,symmetric=TRUE)

+ lambda <- r$values

+ V <- r$vectors

+ lambda <- pmax( lowerl, pmin( lambda, upperl ) )

+ A <- V %*% diag(lambda) %*% t(V)

+ x[seq(length=nmat^2, from=1, by=1)] <- as.vector(A)

+ x

+ }
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Note that subroutine proj uses subroutine eigen to compute eigenvalues and eigenvectors.

3.2. Numerical experiments

Numerical experiments were conducted using R version 2.14.1 on a 2.67GHz Intel Xeon CPU
X5650 with 8GB of RAM memory and running GNU/Linux operating system (Ubuntu 12.04
LTS, kernel 3.2.0-33).

In the numerical experiments, we considered the default parameters of the SPG mentioned
in Section 2. Regarding the initial spectral step length, we considered the choice given by (8)
and for the stopping criterion we arbitrarily fixed ε = 10−6. The nonmonotone line search
parameter was arbitrarily set as M = 100.

Four small two-dimensional illustrative examples were designed. In the four examples we
considered q = 2 and m = 10, 000 random points zi ∈ Rq uniformly distributed within the
box [−100, 100]q; and we fixed the suitable values λ̂min = 10−4 and λ̂max = 104. In the first
example, label wi = 1 is given to the points inside a circle with radius 70 centered at the origin
(see Figure 1(a)). If the reader is able to see the figure in colors, points labelled with wi = 1
(i.e., inside the circle) are depicted in blue while points outside the circle (with wi = −1) are
depicted in red. Examples in Figures 1(b–d) correspond to a square of side 70 centered at
the origin, a rectangle with height equal to 70 and width equal to 140 centered at the origin,
and a triangle with corners (−70, 0), (0,−70), and (70, 70), respectively.

The sequence of operations needed to solve the first example is given by:

R> library(BB)

R> nmat <- 2

R> np <- 10000

R> set.seed(123456)

R> p <- matrix(runif(nmat*np,min=-100.0,max=100.0),nrow=nmat,ncol=np)

R> t <- apply(p,2,function(y)

+ {if (sum(y^2)<=70.0^2) return('i') else return('o')})
R> lowerl <- rep(1.0e-04, nmat )

R> upperl <- rep(1.0e+04, nmat )

R> n <- nmat^2 + nmat

R> set.seed(123456)

R> x <- runif(n,min=-1.0,max=1.0)

R> ans <- spg(par=x, fn=evalf, gr=evalg, project=proj, method=1,

+ control=list(M=100, maxit=10000, maxfeval=100000,

+ ftol=0.0, gtol=1.e-06))

In the code above, nmat represents the dimension q of the space, np is the number of points m,
and p saves the m randomly generated points zi ∈ Rq. For each point, t saves the value of wi

that, instead of −1 and 1, is represented by ’i’ that means inside and ’o’ that means outside
the circle centered at the origin with radius 70. lowerl and upperl represent, respectively,
the lower and the upper bounds λ̂min and λ̂max for the eigenvalues of matrix A. Finally, the
number of variables n of the optimization problem and a random initial guess x ∈ [−1, 1]n

are computed and the spg subroutine is called. The other three examples can be solved
substituting the command line that defines t by
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R> t <- apply(p,2,function(y) {if (length(y)==sum(-70.0<=y & y<=70.0))

+ return('i') else return('o')})

R> t <- apply(p,2,function(y) {if (-70.0<=y[1] & y[1]<=70.0 & -35.0<=y[2] &

+ y[2]<=35.0) return('i') else return('o')})

or

R> t <- apply(p,2,function(y) {if (2.0 * y[1] - y[2] <= 70.0 &

+ -y[1] + 2.0 * y[2] <= 70.0 &-y[1] - y[2] <= 70.0)

+ return('i') else return('o')})

respectively.

Figure 1 shows the solutions to the four illustrative examples. The problem depicted on Fig-
ure 1(a) corresponds to a problem with known global solution at which the objective function
vanishes, and the graphic shows that the global solution is correctly found by the method.
The remaining three examples clearly correspond to problems at which the global minimum
is strictly positive. Moreover, problems depicted on Figure 1(b) and 1(c) are symmetric prob-
lems whose solutions are given by ellipses with their axes parallel to the Cartesian axes, while
Figure 1(d) displays a solution with a rotated ellipse.

Table 1 presents a few figures that represent the computational effort needed by the SPG
method to solve the problems. Figures in the table show that the stopping criterion was
satisfied in the four cases and that, as expected, the ratio between the number of functional
evaluations and the number of iterations is near unity, stressing the high rate of acceptance
of the trial spectral step length along the projected gradient direction. A short note regard-
ing the reported CPU times is in order. A Fortran 77 version of the SPG method (available
in http://www.ime.usp.br/~egbirgin/) was also considered to solve the same four prob-
lems. Equivalent solutions were obtained using CPU times three orders of magnitude smaller
than the ones required by the R version of the method. From the required total CPU time, ap-
proximately 99% is used to compute the objective function and its gradient. This observation
is in complete agreement with the fact that SPG iterations have a time complexity O(n) while
the objective function and gradient evaluations have time complexity O(nm), and that, in the
considered examples, we have n = q(q + 1) = 6 and m = 10, 000. In this scenario, coding the
problem subroutines (that computes the objective function f , its gradient, and the projection
onto the convex feasible set Ω) in R and developing an interface to call a compiled Fortran 77
version of spg is not an option. On the other hand, when the execution of the subroutines
that define the problem is inexpensive compared to the linear algebra involved in an itera-
tion of the optimization method, coding the problem subroutines in an interpreted language
like R and developing interfaces to optimization methods developed in compiled languages
might be an adequate choice. This combination may jointly deliver (a) the fast development
supplied by the usage of the user preferred language to code the problem subroutines and
(b) the efficiency of powerful optimization tools developed in compiled languages especially
suited to numeric computation and scientific computing. This is the case of, for example, the
optimization method Algencan (Andreani, Birgin, Mart́ınez, and Schuverdt 2007, 2008) (see
also the TANGO Project web page: http://www.ime.usp.br/~egbirgin/tango/) for non-
linear programming problems, coded in Fortran 77 and with interfaces to R, AMPL, C/C++,
CUTEr, Java, MATLAB, Octave, Python, and TCL.

http://www.ime.usp.br/~egbirgin/
http://www.ime.usp.br/~egbirgin/tango/
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(a) (b)

(c) (d)

Figure 1: Solutions to four small two-dimensional illustrative examples.

Problem # it # fe f(x∗) ‖PΩ(x∗ −∇f(x∗))− x∗‖∞ CPU Time

Circle 3307 3440 1.195192e−13 3.4e−07 1003.92
Square 1761 1907 2.352849e−03 7.9e−07 597.43
Rectangle 7269 8177 1.036716e−03 8.9e−07 2174.63
Triangle 7193 7753 6.512737e−03 9.9e−07 2199.36

Table 1: Performance of the R version of SPG in the four small two-dimensional illustrative
examples.
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4. Applications and extensions

As a general rule, the SPG method is applicable to large-scale convex constrained problems
in which the projection onto the feasible set can be inexpensively computed. Moreover, the
scenario is also beneficial to the application of the SPG method whenever the convex feasible
set is hard to describe with nonlinear constraints or when the nonlinear constraints that are
needed to describe the convex feasible set have an undesirable property (e.g., being too many,
being highly nonlinear, or having a dense Jacobian). A clear example of this situation is
the problem that illustrates the previous section. Comparisons with other methods for the
particular case in which the feasible set is an n-dimensional box can be found in (Birgin et al.
2000; Birgin and Gentil 2012).

Since its appearance, the SPG method has been useful for solving real applications in differ-
ent areas, including optics (Andrade, Birgin, Chambouleyron, Mart́ınez, and Ventura 2008;
Azofeifa, Clark, and Vargas 2005; Birgin, Chambouleyron, and Mart́ınez 1999b; Birgin, Cham-
bouleyron, Mart́ınez, and Ventura 2003a; Chambouleyron, Ventura, Birgin, and Mart́ınez
2009; Curiel, Vargas, and Barrera 2002; Mulato, Chambouleyron, Birgin, and Mart́ınez
2000; Murphy 2007; Ramirez-Porras and Vargas-Castro 2004; Vargas 2002; Vargas, Azofeifa,
and Clark 2003; Ventura, Birgin, Mart́ınez, and Chambouleyron 2005), compressive sens-
ing (van den Berg and Friedlander 2008, 2011; Figueiredo, Nowak, and Wright 2007; Loris,
Bertero, Mol, Zanella, and Zanni 2009), geophysics (Bello and Raydan 2007; Birgin, Biloti,
Tygel, and Santos 1999a; Cores and Loreto 2007; Deidda, Bonomi, and Manzi 2003; Zeev,
Savasta, and Cores 2006), statistics (Borsdorf, Higham, and Raydan 2010; Varadhan and
Gilbert 2009), image restoration (Benvenuto, Zanella, Zanni, and Bertero 2010; Bonettini,
Zanella, and Zanni 2009; Bouhamidi, Jbilou, and Raydan 2011; Guerrero, Raydan, and Rojas
2012), atmospheric sciences (Jiang 2006; Mu, Duan, and Wang 2003), chemistry (Francisco,
Mart́ınez, and Mart́ınez 2006; Birgin, Mart́ınez, Mart́ınez, and Rocha 2013), and dental ra-
diology (Kolehmainen, Vanne, Siltanen, Järvenpää, Kaipio, Lassas, and Kalke 2006, 2007).
The SPG method has also been combined with several schemes for solving scientific problems
that appear in other areas of computational mathematics, including eigenvalue complemen-
tarity (Júdice, Raydan, Rosa, and Santos 2008), support vector machines (Cores, Escalante,
Gonzalez-Lima, and Jiménez 2009; Dai and Fletcher 2006; Serafini, Zanghirati, and Zanni
2005), non-differentiable optimization (Crema, Loreto, and Raydan 2007), trust-region glob-
alization (Maciel, Mendonça, and Verdiell 2012), generalized Sylvester equations (Bouhamidi
et al. 2011), nonlinear monotone equations (Zhang and Zhou 2006), condition number es-
timation (Brás, Hager, and Júdice 2012), optimal control (Birgin and Evtushenko 1998),
bound-constrained minimization (Andreani, Birgin, Mart́ınez, and Schuverdt 2010; Andretta,
Birgin, and Mart́ınez 2005; Birgin and Mart́ınez 2001, 2002), nonlinear programming (An-
dreani et al. 2007, 2008; Andreani, Birgin, Mart́ınez, and Yuan 2005; Andretta, Birgin, and
Mart́ınez 2010; Birgin and Mart́ınez 2008; Diniz-Ehrhardt, Gomes-Ruggiero, Mart́ınez, and
Santos 2004; Gomes-Ruggiero, Mart́ınez, and Santos 2009), non-negative matrix factoriza-
tion (Li, Liu, and Zheng 2012), and topology optimization (Tavakoli and Zhang 2012). More-
over, alternative choices of the spectral step length have been considered and analyzed for
solving some related nonlinear problems. A spectral approach has been considered to solve
large-scale nonlinear systems of equations using only the residual vector as search direc-
tion (Grippo and Sciandrone 2007; La Cruz and Raydan 2003; La Cruz et al. 2006; Varadhan
and Gilbert 2009; Zhang and Zhou 2006). Spectral variations have also been developed for
accelerating the convergence of fixed-point iterations, in connection with the well-known EM
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algorithm which is frequently used in computational statistics (Roland and Varadhan 2005;
Roland, Varadhan, and Frangakis 2007; Varadhan and Roland 2008).

The case in which the convex feasible set of the problem to be solved by SPG is defined by
linear equality and inequality constraints has been considered in (Birgin et al. 2003b; Andreani
et al. 2005; Mart́ınez, Pilotta, and Raydan 2005; Andretta et al. 2010). A crucial observation
is that this type of set is not necessarily one in which it is easy to project. Projecting onto
a polytope requires to solve a convex quadratic programming problem, for which there exist
many efficient algorithms, especially when the set exhibits additional structure. (To perform
this task, the BB package relies on the method introduced in (Goldfarb and Idnani 1983),
implemented in the package quadprog (Weingessel 2013).) An important observation is that
the dual of such a problem is a concave box-constrained problem, which allows the use of
specialized methods to solve them (see (Andreani et al. 2005)). In the large-scale case, it is
important to have the possibility of performing the projection only aproximately. The SPG
theory for that case have been extensively developed in (Birgin et al. 2003b).

5. Conclusions

The SPG method is nowadays a well-established numerical scheme for solving large-scale
convex constrained optimization problems when the projection onto the feasible set can be
performed efficiently. The attractiveness of the SPG method is mainly based on its simplicity.
No sophisticated linear codes are required, no additional linear algebra packages are needed
and the user can code its own version of the method with a relatively small effort. In this
review, we presented the basic ideas behind the SPG method, discussed some of its most rele-
vant properties, and discussed recent applications and extensions. In addition, we illustrated
how the method can be applied to a particular matrix problem for which the feasible convex
set is easily described by a subroutine that computes the projection onto it.
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Brás CP, Hager WW, Júdice JJ (2012). “An Investigation of Feasible Descent Algorithms for
Estimating the Condition Number of a Matrix.” TOP - Journal of the Spanish Society of
Statistics and Operations Research, 20, 791–809.
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