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1 Introduction

We consider the projected gradient method for the minimization of differentiable functions
on nonempty closed and convex sets. Over the last decades, there have been many dif-
ferent variations of the projected gradient method that can be viewed as the constrained
extensions of the optimal gradient method for unconstrained minimization. They all have
the common property of maintaining feasibility of the iterates by frequently projecting
trial steps on the feasible convex set. This process is in general the most expensive part
of any projected gradient method. Moreover, even if projecting is inexpensive, as in the
box-constrained case, the method is considered to be very slow as well as its analogue, the
optimal gradient method (also known as steepest descent), for unconstrained optimization.
On the positive side, the projected gradient method is quite simple to implement and very
effective for large-scale problems.

This state of affairs motivates us to combine the projected gradient method with two
recently developed ingredients in optimization. First we extend the typical globalization
strategies associated with these methods to the nonmonotone line search schemes devel-
oped by Grippo, Lampariello and Lucidi [17] for Newton’s method. Second, we propose
to associate the spectral steplength, introduced by Barzilai and Borwein [1] and analyzed
by Raydan [26]. This choice of steplength requires little computational work and greatly
speeds up the convergence of gradient methods. In fact, while the spectral gradient method
appears to be a generalized steepest descent method, it is clear from its derivation that it is
related to the quasi-Newton family of methods through an approximated secant equation.
The fundamental difference is that it is a two-point method while the steepest descent
method is not. The main idea behind the spectral choice of steplength is that the steepest
descent method is very slow but it can be accelerated taking, instead of the stepsize that
comes from the minimization of the function along the gradient of the current iteration, the
one that comes from the one-dimensional minimization at the previous step. See Glunt et
al. [15] for a relationship with the shifted power method to approximate eigenvalues and
eigenvectors, and also for an interesting chemistry application. See also Raydan [27] for a
combination of the spectral choice of steplength with nonmonotone line search techniques
to solve unconstrained minimization problems. An successful application of this technique
can be found in [5].

Therefore, it is natural and rather easy to transport the spectral gradient idea with a
nonmonotone line search to the projected gradient case in order to speed up the conver-
gence of the projected gradient method. In particular, in this work we extend the practical
version of Bertsekas [2] that enforces an Armijo type of condition along the curvilinear
projection path. This practical version is based on the original version proposed by Gold-
stein [16] and Levitin and Polyak [19]. We also apply the new ingredients to the feasible
continuous projected path that will be properly defined in Section 2.

The convergence properties of the projected gradient method for different choices of
stepsize have been extensively studied. See [2, 3, 7, 11, 16, 19, 22, 30], and other authors.
For an interesting review of the different convergence results that have been obtained under
different assumptions, see Calamai and Moré [7]. For a complete survey see Dunn [12].

In Section 2 of this paper we define the spectral projected gradient algorithms and

2



we prove global convergence results. In Section 3 we present numerical experiments.
This set of experiments show that, in fact, the spectral choice of the steplength represents
considerable progress in relation to constant choices and that the nonmonotone framework
is useful. Some final remarks are presented in Section 4. In particular, we elaborate on
the relationship between the spectral gradient method and the quasi-Newton family of
methods.

2 Nonmonotone Gradient-Projection Algorithms

The nonmonotone spectral gradient-projection algorithms introduced in this section apply
to problems of the form

Minimize f(x) subject to x ∈ Ω,

where Ω is a closed convex set in IRn. Throughout this paper we assume that f is defined
and has continuous partial derivatives on an open set that contains Ω. All along this
work ‖ · ‖ denotes the 2-norm of vectors and matrices, although in some cases it can be
replaced by an arbitrary norm.

Given z ∈ IRn we define P (z) the orthogonal projection on Ω. We denote g(x) =
∇f(x). The algorithms start with x0 ∈ Ω and use an integer M ≥ 1; a small parameter
αmin > 0; a large parameter αmax > αmin; a sufficient decrease parameter γ ∈ (0, 1) and
safeguarding parameters 0 < σ1 < σ2 < 1. Initially, α0 ∈ [αmin, αmax] is arbitrary. Given
xk ∈ Ω and αk ∈ [αmin, αmax], Algorithms 2.1 and 2.2 describe how to obtain xk+1 and
αk+1, and when to terminate the process.

Algorithm 2.1

Step 1. Detect whether the current point is stationary

If ‖P (xk − g(xk))− xk‖ = 0, stop, declaring that xk is stationary.

Step 2. Backtracking

Step 2.1 Set λ← αk.

Step 2.2 Set x+ = P (xk − λg(xk)).

Step 2.3 If

f(x+) ≤ max
0≤j≤ min {k,M−1}

f(xk−j) + γ〈x+ − xk, g(xk)〉, (1)

then define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = g(xk+1)− g(xk) and go to Step 3.

If (1) does not hold, define

λnew ∈ [σ1λ, σ2λ], (2)

set λ← λnew and go to Step 2.2.

Step 3

Compute bk = 〈sk, yk〉.

If bk ≤ 0, set αk+1 = αmax, else, compute ak = 〈sk, sk〉 and

αk+1 = min {αmax,max {αmin, ak/bk}}.
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The one-dimensional search procedure of Algorithm 2.1 (called SPG1 from now on)
takes into account points of the form P (xk−λg(xk)), for λ ∈ (0, αk] which, in general, form
a curvilinear path (piecewise linear if Ω is a polyhedral set). For this reason, the scalar
product 〈x+ − xk, g(xk)〉 in the nonmonotone Armijo condition (1) must be computed
for each trial point x+. Moreover, in the SPG1 formulation the distance between two
consecutive trial points could be very small or even null in the vicinity of corner points of
the set Ω. In fact the distance between the projections of two points on the feasible set
can be small, even if the points are distant one from the other. Clearly, to evaluate the
objective function on two close points represents a bad use of available information. Of
course, proximity of two consecutive trial points can be computationally detected at the
expense of O(n) operations or comparisons.

These observations motivated us to define Algorithm 2.2. This algorithm is also based
on the spectral projected gradient direction P (xk−αkg(xk))−xk, being αk the safeguarded

“inverse Rayleigh quotient”
〈sk−1,sk−1〉
〈sk−1,yk−1〉

. (Observe that
〈sk−1,yk−1〉
〈sk−1,sk−1〉

is in fact a Rayleigh quo-

tient corresponding to the average Hessian matrix
∫ 1
0 ∇

2f(xk−1 + tsk−1)dt.) However, in
the case of rejection of the first trial point, the next ones are computed along the same
direction. As a consequence, 〈x+−xk, g(xk)〉 must be computed only at the first trial and
the projection operation must be performed only once per iteration. So, Algorithm 2.2,
which will be called SPG2 in the rest of the paper, coincides with SPG1 except at the
backtracking step, whose description is given below.

Algorithm 2.2: Step 2 (Backtracking)

Step 2.1 Compute dk = P (xk − αkg(xk))− xk. Set λ← 1.

Step 2.2 Set x+ = xk + λdk.

Step 2.3 If

f(x+) ≤ max
0≤j≤ min {k,M−1}

f(xk−j) + γλ〈dk, g(xk)〉, (3)

then define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = g(xk+1)− g(xk) and go to Step 3.

If (3) does not hold, define λnew as in (2), set λ← λnew and go to Step 2.2.

In both algorithms the computation of λnew uses one-dimensional quadratic interpo-
lation and it is safeguarded taking λ ← λ/2 when the minimum of the one-dimensional
quadratic lies outside [0.1, 0.9λ]. Notice also that the line search conditions (1) and (3)
guarantee that the sequence {xk} remains in Ω0 ≡ {x ∈ Ω : f(x) ≤ f(x0)}.

It will be useful in our theoretical analysis to define the scaled projected gradient gt(x)
as

gt(x) = [P (x− tg(x)) − x],

for all x ∈ Ω, t > 0. If x is an iterate of SPG1 or SPG2 and t = αk the scaled projected
gradient is the spectral projected gradient that gives the name to our methods. If t = 1, the
scaled projected gradient is the continuous projected gradient whose ∞− norm ‖g1(x)‖∞
is used for the termination criterion of the algorithms. In fact, the annihilation of gt(x) is
equivalent to the satisfaction of first-order stationary conditions. This property is stated
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in the following lemma, whose proof is a straightforward consequence of the convexity
of Ω.

Lemma 2.1 For all x ∈ Ω, t ∈ (0, αmax],

(i) 〈g(x), gt(x)〉 ≤ −
1
t
‖gt(x)‖

2
2 ≤ −

1
αmax

‖gt(x)‖
2
2.

(ii) The vector gt(x̄) vanishes if and only if x̄ is a constrained stationary point.

Now, let us prove that both algorithms are well defined and have the property that
every accumulation point x̄ is a constrained stationary point, i.e.,

〈g(x̄), x− x̄〉 ≥ 0 for all x ∈ Ω.

The proof of our first theorem relies on Proposition 2.3.3 in Bertsekas [3], which is related
to the Armijo condition along the projection arc. This proposition was originally shown
in [14]. For completeness we include in the next lemma some technical results from [3]
that will be used in our proof.

Lemma 2.2 (i) For all x ∈ Ω and z ∈ IRn, the function h : [0,∞)→ IR given by

h(s) =
‖P (x+ sz)− x‖

s
for all s > 0,

is monotonically nonincreasing.
(ii) For all x ∈ Ω there exists sx > 0 such that for all t ∈ [0, sx] it holds

f(P (x− tg(x))) − f(x) ≤ γ〈g(x), gt(x)〉.

Proof. See Lemma 2.3.1 and Theorem 2.3.3 (part (a)) in [3].

Theorem 2.1 Algorithm SPG1 is well defined, and any accumulation point of the se-
quence {xk} that it generates is a constrained stationary point.

Proof. From Lemma (2.2), (ii), we have for all λ ∈ [0,min{sxk
, αmin}]

f(P (xk − λg(xk)))− max
0≤j≤M−1

f(xk−j) ≤ f(P (xk − λg(xk)))− f(xk)

≤ γ〈g(xk), gλ(xk)〉.

Therefore, a stepsize satisfying (1) will be found after a finite number of trials, and
Algorithm SPG1 is well defined.

Let x̄ ∈ Ω be an accumulation point of {xk}, and relabel {xk} a subsequence converging
to x̄. We consider two cases:

Case 1. If inf λk = 0, then there exists a subsequence {xk}K such that

lim
k∈K

λk = 0.
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In that case, from the way λk is chosen in (1), there exists an index k̄ sufficiently large such
that for all k ≥ k̄, k ∈ K, there exists ρk, 0 < σ1 ≤ ρk ≤ σ2, for which ψk ≡ λk/ρk > 0
fails to satisfy condition (1), i.e.,

f(P (xk − ψkg(xk))) > max
0≤j≤M−1

f(xk−j) + γ〈g(xk), P (xk − ψkg(xk))− xk〉

≥ f(xk) + γ〈g(xk), P (xk − ψkg(xk))− xk〉.

Therefore, it follows that

f(P (xk − ψkg(xk)))− f(xk) > γ〈g(xk), gψk
(xk)〉. (4)

By the mean value theorem we obtain

f(P (xk − ψkg(xk)))− f(xk) = 〈g(xk), gψk
(xk)〉+ 〈g(ξk)− g(xk), gψk

(xk)〉, (5)

where ξk lies along the line segment connecting xk and P (xk − ψkg(xk)).
Combining (4) and (5) we obtain for all k ∈ K sufficiently large

(1− γ)〈g(xk), gψk
(xk)〉 > 〈g(xk)− g(ξk), gψk

(xk)〉. (6)

Using Lemma (2.1) and Lemma (2.2), we have

〈g(xk), gψk
(xk)〉 ≤ −

1

ψk
‖gψk

(xk)‖
2
2 ≤ −

1

αk
‖gαk

(xk)‖2 ‖gψk
(xk)‖2, (7)

where αk is the initial stepsize at iteration k. Combining (6) and (7) and using the
Schwartz inequality, we obtain for k ∈ K sufficiently large

(1− γ)

αk
‖gαk

(xk)‖2 ‖gψk
(xk)‖2 < 〈g(ξk)− g(xk), gψk

(xk)〉

≤ ‖g(ξk)− g(xk)‖2 ‖gψk
(xk)‖2.

Using that ‖gψk
(xk)‖2 6= 0, we have

(1− γ)

αk
‖gαk

(xk)‖2 < ‖g(ξk)− g(xk)‖2. (8)

Since ψk → 0 and xk → x̄ as k → ∞, k ∈ K, then ξk → x̄ as k → ∞, k ∈ K. Taking
a convenient subsequence K̄ ⊆ K such that {αk} is convergent to ᾱ ∈ [αmin, αmax], and
taking limits in (8) as k →∞, k ∈ K̄, we deduce that

‖gᾱ(x̄)‖2 ≤ 0.

Therefore, gᾱ(x̄) = 0, and x̄ is a constrained stationary point.
Case 2. Assume that inf λk ≥ ρ > 0. Let us suppose by way of contradiction that

x̄ is not a constrained stationary point. Therefore ‖gλ(x̄)‖ > 0 for all λ ∈ (0, αmax].
By continuity and compactness, there exists δ > 0 such that ‖gλ(x̄)‖ ≥ δ > 0 for all
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λ ∈ [ρ, αmax]. Using the first part of the proof of the theorem in [17, p. 709], we obtain a
monotonically nonincreasing sequence {f(xl(k))}. Indeed, let l(k) be an integer such that
k −min{k,M − 1} ≤ l(k) ≤ k, and

f(xl(k)) = max
0≤j≤ min {k,M−1}

f(xk−j).

From (1) it follows that, for k > M − 1 (see [17] for details)

f(xl(k)) ≤ f(xl(l(k)−1)) + γ〈g(xl(k)−1), gλl(k)−1
(xl(k)−1)〉.

By continuity, for k ≥ k̄ sufficiently large, ‖gλ(x̄k)‖ ≥ δ/2. Hence, using Lemma 2.1, we
obtain

f(xl(k)) ≤ f(xl(l(k)−1))−
γ

αmax
‖gλl(k)−1

(xl(k)−1)‖
2
2 ≤ f(xl(l(k)−1))−

γδ2

4αmax
.

When k →∞, clearly f(xl(k))→ −∞ which is a contradiction. In fact, f is a continuous
function and so f(xk) converges to f(x̄). 2

Theorem 2.2 Algorithm SPG2 is well defined, and any accumulation point of the se-
quence {xk} that it generates is a constrained stationary point.

Proof. If xk is not a constrained stationary point, then by Lemma 2.1

〈g(xk), dk〉 = 〈g(xk), gαk
(xk)〉 ≤ −

1

αmax
‖gαk

(xk)‖
2
2 < 0,

and the search direction is a descent direction. Hence, a stepsize satisfying (3) will be
found after a finite number of trials, and Algorithm SPG2 is well defined.

Let x̄ ∈ Ω be an accumulation point of {xk}, and relabel {xk} a subsequence converging
to x̄. We consider two cases:

Case 1. Assume that inf λk = 0. Suppose, by contradiction, that x̄ is not stationary.
By continuity and compactness, there exists δ > 0 such that

〈g(x̄),
P (x̄− αg(x̄))− x̄

‖P (x̄− αg(x̄))− x̄‖
〉 < −δ for all α ∈ [αmin, αmax].

This implies that

〈g(xk),
P (xk − αg(xk))− xk
‖P (xk − αg(xk))− xk‖

〉 < −δ/2 for all α ∈ [αmin, αmax], (9)

and k large enough on the subsequence that converges to x̄.

Since inf λk = 0, there exists a subsequence {xk}K such that

lim
k∈K

λk = 0.
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In that case, from the way λk is chosen in (3), there exists an index k̄ sufficiently large
such that for all k ≥ k̄, k ∈ K, there exists ρk, 0 < σ1 ≤ ρk ≤ σ2, for which λk/ρk > 0
fails to satisfy condition (3), i.e.,

f(xk +
λk
ρk
dk) > max

0≤j≤M−1
f(xk−j) + γ

λk
ρk
〈g(xk), dk〉 ≥ f(xk) + γ

λk
ρk
〈g(xk), dk〉.

Hence,
f(xk + λk

ρk
dk)− f(xk)

λk/ρk
> γ〈g(xk), dk〉.

By the mean value theorem, this relation can be written as

〈g(xk + tkdk), dk〉 > γ〈g(xk), dk〉, for all k ∈ K, k ≥ k̄, (10)

where tk is a scalar in the interval [0, λk/ρk] that goes to zero as k ∈ K goes to infinity.
Taking a convenient subsequence such that dk/‖dk‖ is convergent to d, and taking lim-

its in (10) we deduce that (1− γ)〈g(x̄), d〉 ≥ 0. (In fact, observe that {‖dk‖}K is bounded
and so tk‖dk‖ → 0.) Since (1− γ) > 0 and 〈g(xk), dk〉 < 0 for all k, then 〈g(x̄), d〉 = 0.
By continuity and the definition of dk this implies that for k large enough on that subse-
quence we have that

〈g(xk),
P (xk − αkg(xk))− xk
‖P (xk − αkg(xk))− xk‖

〉 > −δ/2,

which contradicts (9).
Case 2. Assume that inf λk ≥ ρ > 0. Let us suppose by way of contradiction that

x̄ is not a constrained stationary point. Therefore ‖gλ(x̄)‖ > 0 for all λ ∈ (0, αmax].
By continuity and compactness, there exists δ > 0 such that ‖gλ(x̄)‖ ≥ δ > 0 for all
λ ∈ [ρ, αmax].

As in the proof of the second case of Theorem 2.1

f(xl(k)) = max
0≤j≤ min {k,M−1}

f(xk−j)

is a monotonically nonincreasing sequence. From (3) it follows that, for k > M − 1

f(xl(k)) ≤ f(xl(l(k)−1)) + γλl(k)−1〈g(xl(k)−1), gαl(k)−1
(xl(k)−1)〉.

By continuity, for k ≥ k̄ sufficiently large, ‖gαk
(x̄k)‖ ≥ δ/2. Hence, using Lemma (2.1),

we obtain

f(xl(k)) ≤ f(xl(l(k)−1))−
γ ρ

αmax
‖gαl(k)−1

(xl(k)−1)‖
2
2 ≤ f(xl(l(k)−1))−

γδ2ρ

4αmax
.

When k →∞, clearly f(xl(k))→ −∞ which is a contradiction. In fact, f is a continuous
function and so f(xk) converges to f(x̄). 2
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Set # Objective Type Problem Interest

1 other academic
2 other modelling
3 other real application
4 sum of squares academic
5 sum of squares modelling
6 quadratic academic
7 quadratic modelling
8 quadratic real application

Table 1: Problem sets according to the CUTE classsification.

3 Numerical Results

The algorithms SPG1 and SPG2 introduced in the previous section compute at least one
projection on the feasible set Ω per iteration. Therefore, these algorithms are especially
interesting in the case in which this projection is easy to compute. An important situation
in which the projection is trivial is when Ω is an n−dimensional box, possibly with some
infinite bounds. In fact, good algorithms for box constrained minimization are the essential
tool for the development of efficient augmented Lagrangian methods for general nonlinear
programming (see [8, 10, 13]). With this in mind, we implemented the spectral projected
gradient algorithms for the case in which Ω is described by bounds on the variables. In
order to assess the reliability of SPG algorithms, we tested them against the well known
package LANCELOT [8] using all the bound constrained problems with more than 50
variables from the CUTE [10] collection. Only problem GRIDGENA was excluded from
our tables because it gives an “Exception error” when evaluated at some point by SPG
algorithms. For all the problems with variable dimension, we used the largest dimension
that is admissible without modification of the internal variables of the “double large”
installation of CUTE.

As a whole, we solved 50 problems. The horizontal lines in Tables 2–5 divide the CUTE
problems into 8 classes according objective function type (quadratic, sum of squares, other)
and problem interest (academic, modelling, real application). All problems are bound
constrained only, twice continuosly differentiable and with more than 50 variables. The 8
sets, in the order in which they appear in the tables, are described in Table 1.

In the numerical experiments we used the default options for LANCELOT, i.e.,

• exact-second-derivatives-used,

• bandsolver-preconditioned-cg-solver-used 5,

• exact-cauchy-point-required,

• infinity-norm-trust-region-used,
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• gradient-tolerance 1.0D-05.

We are deeply concerned with the reproducibility of the numerical results presented
in this paper. For this reason, all the used codes are available by e-mail request to any of
the authors, who are also available for discussing computational details.

All the experiments were run in a SPARCstation Sun Ultra 1, with an UltraSPARC
64 bits processor, 167-MHz clock and 128-MBytes of RAM memory. SPG codes are in
Fortran77 and were compiled with the optimization compiler option -O4.

For the SPG methods we used γ = 10−4, αmin = 10−30, αmax = 1030, σ1 = 0.1,
σ2 = 0.9 and α0 = 1/‖g1(x0)‖∞. After running a few problems with M ∈ {5, 10, 15}, we
decided to use M = 10 as the tests did not show meaningful differences. For deciding
when to stop the execution of the algorithms declaring convergence we used the criterion
‖g1(xk)‖∞ ≤ 10−5. We also stopped the execution of SPG when 50000 iterations or 200000
function evaluations were completed without achieving convergence.

To complete the numerical insight on the behavior of SPG methods, we also ran the
Projected Gradient Algorithm (PGA), which turns out to be identical to SPG1, with
the initial choice of steplength αk ≡ 1. In this case we implemented both the monotone
version of PGA, which corresponds to M = 1, and the nonmonotone one with M = 10.
The convergence of the nonmonotone version is a particular case of our Theorem 2.1.
The performance of the nonmonotone version of PGA, which is more efficient than the
monotone version, is reported in Table 5.

The complete performance of LANCELOT on this set of problems is reported in Ta-
ble 2. In Tables 3 and 4 we show the behavior of SPG1 and SPG2 respectively.

For LANCELOT, we report the number of outer iterations (or function evaluations)
(ITout-FE), gradient evaluations (GE), conjugate gradient (or inner) iterations (ITin-CG),
CPU time in seconds (Time), functional value at the final iterate (f(x)), and ∞-norm of
the “continuous projected gradient” at the final iterate (‖g1(x)‖∞). For SPG methods, we
report number of iterations (IT), function evaluations (FE), gradient evaluations (GE),
CPU time in seconds (Time), best function value found (f(x)), and ∞ − norm of the
continuous projected gradient at the final iterate (‖g1(x)‖∞).

The numerical results of 10 problems, deserve special comments:

1. BDEXP (n = 5000): LANCELOT obtained f(x) = 1.964 × 10−3 in 3.19 seconds,
whereas SPG1 and SPG2 got f(x) = 2.744×10−3 in 0.45 seconds. Since the gradient
norm is computed in LANCELOT only after each outer iteration, which involves
considerable computer effort, LANCELOT usually stops at points where this norm
is considerably smaller than the tolerance 10−5. On the other hand, SPG methods,
which test the projected gradient more frequently, stop when ‖g1(x)‖∞ is slightly
smaller than that tolerance. In a small number of cases this affects the quality of
the solution, reflected in the objective function value.

2. S368 (n = 100): LANCELOT, SPG1 and SPG2 arrived to different solutions, the
best of which was the one obtained by SPG2. SPG1 was the winner in terms of
computer time.
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Problem n ITout-FE GE ITin-CG Time f(x) ‖g1(x)‖∞

BDEXP 5000 10 11 26 3.19 1.964D−03 6.167D−06
EXPLIN 120 13 14 50 0.08 −7.238D+05 5.183D−09
EXPLIN2 120 11 12 24 0.07 −7.245D+05 1.012D−06
EXPQUAD 120 18 16 52 0.14 −3.626D+06 1.437D−06
MCCORMCK 10000 7 6 5 4.71 −9.133D+03 5.861D−06
PROBPENL 500 1 2 0 0.17 3.992D−07 3.424D−07
QRTQUAD 120 168 137 187 1.23 −3.625D+06 3.568D−06
S368 100 7 7 11 2.19 −1.337D+02 3.314D−06
HADAMALS 1024 33 34 5654 157.60 7.444D+02 7.201D−06
CHEBYQAD 50 65 48 829 5.41 5.386D−03 7.844D−06
HS110 50 1 2 0 0.02 −9.990D+09 0.000D+00
LINVERSE 1999 35 30 2303 77.52 6.810D+02 8.407D−06
NONSCOMP 10000 8 9 9 4.74 3.055D−14 9.749D−09
QR3DLS 610 255 226 25036 434.02 3.818D−08 4.051D−06
SCON1LS 1002 1604 1372 1357 56.51 7.070D−10 8.568D−06
DECONVB 61 17 16 233 0.40 1.236D−08 2.147D−06
BIGGSB1 1000 501 502 500 6.17 1.500D−02 4.441D−16
BQPGABIM 50 3 4 10 0.03 −3.790D−05 6.120D−06
BQPGASIM 50 3 4 9 0.03 −5.520D−05 5.733D−06
BQPGAUSS 2003 8 9 2345 42.60 −3.626D−01 4.651D−06
CHENHARK 1000 205 206 484 5.02 −2.000D+00 6.455D−06
CVXBQP1 10000 1 2 1 3.69 2.250D+06 0.000D+00
HARKERP2 100 1 2 2 0.11 −5.000D−01 7.514D−13
JNLBRNG1 15625 24 25 1810 217.19 −1.806D−01 4.050D−06
JNLBRNG2 15625 14 15 912 108.93 −4.150D+00 9.133D−07
JNLBRNGA 15625 21 22 1327 155.93 −2.685D−01 1.191D−06
JNLBRNGB 15625 10 11 329 42.58 −6.281D+00 2.602D−06
NCVXBQP1 10000 1 2 0 3.27 −1.986D+10 0.000D+00
NCVXBQP2 10000 3 4 407 6.62 −1.334D+10 5.821D−11
NCVXBQP3 10000 5 6 360 6.67 −6.558D+09 2.915D−06
NOBNDTOR 14884 36 37 790 117.34 −4.405D−01 2.758D−06
OBSTCLAE 15625 4 5 7409 1251.08 1.901D+00 1.415D−06
OBSTCLAL 15625 24 25 480 58.05 1.901D+00 5.323D−06
OBSTCLBL 15625 18 19 2761 397.58 7.296D+00 1.996D−06
OBSTCLBM 15625 5 6 1377 233.70 7.296D+00 2.243D−06
OBSTCLBU 15625 19 20 787 112.55 7.296D+00 1.529D−06
PENTDI 1000 1 2 0 0.20 −7.500D−01 0.000D+00
TORSION1 14884 37 38 793 96.88 −4.257D−01 1.237D−06
TORSION2 14884 9 10 4339 722.28 −4.257D−01 4.337D−06
TORSION3 14884 19 20 241 27.36 −1.212D+00 2.234D−06
TORSION4 14884 15 16 5639 894.13 −1.212D+00 6.469D−07
TORSION5 14884 9 10 72 10.48 −2.859D+00 3.186D−06
TORSION6 14884 10 11 4895 579.62 −2.859D+00 8.124D−07
TORSIONA 14884 37 38 795 103.70 −4.184D−01 9.590D−07
TORSIONB 14884 10 11 4025 722.79 −4.184D−01 1.329D−06
TORSIONC 14884 19 20 241 29.77 −1.205D+00 2.236D−06
TORSIOND 14884 9 10 9134 1369.14 −1.205D+00 5.184D−06
TORSIONE 14884 9 10 72 11.25 −2.851D+00 3.201D−06
TORSIONF 14884 10 11 5008 631.14 −2.851D+00 8.796D−07
ODNAMUR 11130 11 12 26222 1416.03 9.237D+03 7.966D−06

Table 2: Performance of LANCELOT.
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Problem n IT FE GE Time f(x) ‖g1(x)‖∞

BDEXP 5000 12 13 13 0.45 2.744D−03 7.896D−06
EXPLIN 120 66 75 67 0.01 −7.238D+05 3.100D−06
EXPLIN2 120 48 54 49 0.01 −7.245D+05 9.746D−07
EXPQUAD 120 92 107 93 0.03 −3.626D+06 4.521D−06
MCCORMCK 10000 16 17 17 1.78 −9.133D+03 4.812D−06
PROBPENL 500 2 7 3 0.01 3.992D−07 1.721D−07
QRTQUAD 120 1693 5242 1694 0.74 −3.625D+06 5.125D−06
S368 100 8 14 9 0.67 −1.200D+02 1.566D−07
HADAMALS 1024 33 42 34 1.49 3.107D+04 4.828D−08
CHEBYQAD 50 970 1545 971 35.52 5.386D−03 9.993D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 1707 2958 1708 45.42 6.810D+02 9.880D−06
NONSCOMP 10000 43 44 44 2.28 3.419D−10 7.191D−06
QR3DLS 610 50001 106513 50002 884.18 2.118D−04 9.835D−03
SCON1LS 1002 50001 75083 50002 882.43 1.329D+01 7.188D−03
DECONVB 61 1786 2585 1787 1.68 4.440D−08 9.237D−06
BIGGSB1 1000 6820 11186 6821 23.15 1.621D−02 9.909D−06
BQPGABIM 50 30 39 31 0.01 −3.790D−05 8.855D−06
BQPGASIM 50 32 39 33 0.01 −5.520D−05 9.100D−06
BQPGAUSS 2003 50001 86373 50002 930.52 −3.623D−01 1.930D−02
CHENHARK 1000 3563 6113 3564 14.89 −2.000D+00 9.993D−06
CVXBQP1 10000 1 2 2 0.10 2.250D+06 0.000D+00
HARKERP2 100 33 46 34 0.06 −5.000D−01 0.000D+00
JNLBRNG1 15625 1335 1897 1336 283.55 −1.806D−01 9.624D−06
JNLBRNG2 15625 1356 2121 1357 296.46 −4.150D+00 9.738D−06
JNLBRNGA 15625 629 933 630 116.77 −2.685D−01 9.809D−06
JNLBRNGB 15625 8531 13977 8532 1635.15 −6.281D+00 9.903D−06
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 0.000D+00
NCVXBQP2 10000 60 83 61 3.47 −1.334D+10 8.219D−06
NCVXBQP3 10000 112 118 113 5.31 −6.558D+09 6.019D−06
NOBNDTOR 14884 568 817 569 99.62 −4.405D−01 9.390D−06
OBSTCLAE 15625 749 1028 750 136.98 1.901D+00 7.714D−06
OBSTCLAL 15625 290 411 291 53.56 1.901D+00 7.261D−06
OBSTCLBL 15625 354 500 355 65.52 7.296D+00 9.024D−06
OBSTCLBM 15625 249 343 250 45.74 7.296D+00 9.139D−06
OBSTCLBU 15625 325 468 326 60.44 7.296D+00 7.329D−06
PENTDI 1000 12 14 13 0.07 −7.500D−01 8.523D−07
TORSION1 14884 574 832 575 101.00 −4.257D−01 9.525D−06
TORSION2 14884 586 862 587 102.79 −4.257D−01 9.712D−06
TORSION3 14884 231 350 232 41.47 −1.212D+00 9.593D−06
TORSION4 14884 190 259 191 32.66 −1.212D+00 8.681D−06
TORSION5 14884 83 101 84 13.84 −2.859D+00 9.169D−06
TORSION6 14884 82 97 83 13.58 −2.859D+00 7.987D−06
TORSIONA 14884 722 1057 723 147.94 −4.184D−01 8.590D−06
TORSIONB 14884 527 765 528 107.52 −4.184D−01 9.475D−06
TORSIONC 14884 190 270 191 38.50 −1.204D+00 9.543D−06
TORSIOND 14884 241 340 242 48.43 −1.204D+00 9.575D−06
TORSIONE 14884 57 76 58 11.42 −2.851D+00 8.700D−06
TORSIONF 14884 67 85 68 14.16 −2.851D+00 9.352D−06
ODNAMUR 11130 50001 82984 50002 4187.58 9.250D+03 9.690D−02

Table 3: Performance of SPG1.
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Problem n IT FE GE Time f(x) ‖g1(x)‖∞

BDEXP 5000 12 13 13 0.45 2.744D−03 7.896D−06
EXPLIN 120 54 57 55 0.01 −7.238D+05 4.482D−06
EXPLIN2 120 56 59 57 0.01 −7.245D+05 5.633D−06
EXPQUAD 120 92 110 93 0.03 −3.626D+06 7.644D−06
MCCORMCK 10000 16 17 17 1.78 −9.133D+03 4.812D−06
PROBPENL 500 2 6 3 0.01 3.992D−07 1.022D−07
QRTQUAD 120 598 1025 599 0.19 −3.624D+06 8.049D−06
S368 100 16 19 17 1.15 −1.403D+02 1.963D−08
HADAMALS 1024 30 42 31 1.27 3.107D+04 2.249D−07
CHEBYQAD 50 1240 2015 1241 45.73 5.386D−03 8.643D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 1022 1853 1023 26.75 6.810D+02 8.206D−06
NONSCOMP 10000 43 44 44 2.22 3.419D−10 7.191D−06
QR3DLS 610 50001 107915 50002 869.25 2.312D−04 1.599D−02
SCON1LS 1002 50001 76011 50002 835.10 1.416D+01 1.410D−02
DECONVB 61 1670 2560 1671 1.38 4.826D−08 9.652D−06
BIGGSB1 1000 7571 12496 7572 24.41 1.626D−02 9.999D−06
BQPGABIM 50 24 37 25 0.01 −3.790D−05 8.640D−06
BQPGASIM 50 33 46 34 0.01 −5.520D−05 8.799D−06
BQPGAUSS 2003 50001 87102 50002 902.26 −3.624D−01 2.488D−03
CHENHARK 1000 2464 4162 2465 9.60 −2.000D+00 9.341D−06
CVXBQP1 10000 1 2 2 0.10 2.250D+06 2.776D−17
HARKERP2 100 33 46 34 0.06 −5.000D−01 1.110D−16
JNLBRNG1 15625 1664 2524 1665 349.19 −1.806D−01 6.265D−06
JNLBRNG2 15625 1443 2320 1444 309.22 −4.150D+00 9.665D−06
JNLBRNGA 15625 981 1530 982 180.92 −2.685D−01 6.687D−06
JNLBRNGB 15625 17014 28077 17015 3180.14 −6.281D+00 1.000D−05
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 2.776D−17
NCVXBQP2 10000 84 93 85 4.00 −1.334D+10 2.956D−06
NCVXBQP3 10000 111 117 112 5.13 −6.558D+09 2.941D−06
NOBNDTOR 14884 566 834 567 98.52 −4.405D−01 8.913D−06
OBSTCLAE 15625 639 936 640 116.86 1.901D+00 9.343D−06
OBSTCLAL 15625 176 243 177 31.69 1.901D+00 6.203D−06
OBSTCLBL 15625 321 460 322 58.49 7.296D+00 3.731D−06
OBSTCLBM 15625 143 192 144 25.63 7.296D+00 8.294D−06
OBSTCLBU 15625 311 449 312 56.72 7.296D+00 9.703D−06
PENTDI 1000 1 3 2 0.01 −7.500D−01 0.000D+00
TORSION1 14884 685 1023 686 119.38 −4.257D−01 9.404D−06
TORSION2 14884 728 1117 729 127.62 −4.257D−01 9.616D−06
TORSION3 14884 183 264 184 31.72 −1.212D+00 6.684D−06
TORSION4 14884 226 325 227 38.99 −1.212D+00 9.398D−06
TORSION5 14884 73 105 74 12.68 −2.859D+00 8.751D−06
TORSION6 14884 63 75 64 10.39 −2.859D+00 9.321D−06
TORSIONA 14884 496 756 497 100.13 −4.184D−01 6.442D−06
TORSIONB 14884 584 866 585 116.70 −4.184D−01 7.917D−06
TORSIONC 14884 247 350 248 48.81 −1.204D+00 9.683D−06
TORSIOND 14884 226 317 227 44.62 −1.204D+00 9.467D−06
TORSIONE 14884 65 89 66 12.90 −2.851D+00 9.459D−06
TORSIONF 14884 68 84 69 13.07 −2.851D+00 9.302D−06
ODNAMUR 11130 50001 80356 50002 3927.97 9.262D+03 4.213D−01

Table 4: Performance of SPG2.
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3. HADAMALS (n = 1024): LANCELOT obtained f(x) = 74.44 in 157.6 seconds.
SPG1 and SPG2 obtained stationary points with f(x) = 31070 in less than 2 seconds.

4. NONSCOMP (n = 10000): As in BDEXP, the SPG methods found a solution
slightly worse than the one found by LANCELOT but used less computer time.

5. QR3DLS (n = 610): LANCELOT found a better solution (f(x) ≈ 4× 10−8 against
f(x) ≈ 2.3× 10−4) and used less computer time than the SPG methods.

6. SCON1LS (n = 1002): LANCELOT found the solution whereas the SPG methods
did not converge after 50000 iterations.

7. DECONVB (n = 61): LANCELOT found the (slightly) best solution and used less
computer time than the SPG methods.

8. BIGGSB1 (n = 1000): LANCELOT found f(x) = 0.015 in 6.17 seconds, whereas
the SPG methods got f(x) ≈ 0.016 in ≈ 24 seconds.

9. BQPGAUSS (n = 2003): LANCELOT beat SPG methods in this problem, both in
terms of computer time and quality of solution.

10. ODNAMUR (n = 11130): LANCELOT obtained a better solution than the SPG
methods for this problem, and used less computer time.

Four of the problems considered above (QR3DLS, SCON1LS, BQPGAUSS and ODNA-
MUR) can be considered failures of both SPG methods, since convergence to a stationary
point was not attained after 50000 iterations. In the four cases, the final point seems to
be in the local attraction basin of a local minimizer, but local convergence is very slow.
In fact, in the first three problems, the final projected gradient norm is ≈ 10−2 and in
ODNAMUR the difference between f(x) and its optimal value is ≈ 0.1 %. Slow conver-
gence of SPG methods when the Hessian at the local minimizer is very ill-conditioned is
expected and pre-conditioning schemes tend to alleviate this inconvenient. See [21].

In the remaining 40 problems, LANCELOT, SPG1 and SPG2 found the same solutions.
In terms of computer time, SPG1 was faster than LANCELOT in 29 problems (72.5 %)
and SPG2 outperformed LANCELOT also in 29 problems. There are no meaningful
differences between the performances of SPG1 and SPG2.

Excluding problems where the difference in CPU time was less than 10 %, SPG1 beat
LANCELOT 28-9 and SPG2 beat LANCELOT 28-11.

Excluding, from the 40 problems above, the ones in which the three algorithms con-
verged in less than 1 second, we are left with 31 problems. Considering this set, SPG1
beat LANCELOT 20-11 (or 19-9 if we exclude, again, differences smaller than 10 %) and
SPG2 beat LANCELOT 20-11 (or 19-11).

As we mentioned above, we also implemented the projected gradient algorithm PGA,
using the same framework as SPG in terms of interpolation schemes, both with mono-
tone and nonmonotone strategies. The performance of both alternatives is very poor, in
comparison to the algorithms SPG1, SPG2 and other box-constraint minimizers. The
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performance of the nonmonotone version is given in Table 5. This confirms that the spec-
tral choice of the steplength is the essential feature that puts efficiency in the projected
gradient methodology.

4 Final remarks

It is customary to interpret the first trial step of a minimization algorithm as the minimizer
of a quadratic model q(x) on the feasible region or an approximation to it. It is always
imposed that the first-order information at the current point should coincide with the first
order information of the quadratic model. So, the quadratic approximation at xk+1 should
be

q(x) =
1

2
〈x− xk+1, Bk+1(x− xk+1)〉+ 〈g(xk+1), x− xk+1〉+ f(xk+1)

and
∇q(x) = Bk+1(x− xk+1) + g(xk+1).

Secant methods are motivated by the interpolation condition ∇f(xk) = ∇q(xk). Let us
impose here the weaker condition

Dsk
q(xk) = Dsk

f(xk), (11)

where Ddϕ(x) denotes the directional derivative of ϕ along the direction d (so Ddϕ(x) =
〈∇ϕ(x), d〉). A short calculation shows that condition (11) is equivalent to

〈sk, Bk+1sk〉 = 〈sk, yk〉. (12)

Clearly, the spectral choice

Bk+1 =
〈sk, yk〉

〈sk, sk〉
I (13)

(where I is the identity matrix) satisfies (12). Now, suppose that z is orthogonal to sk
and that x belongs to Lk, the line determined by xk and xk+1. Computing the directional
derivative of q along z at any point x ∈ Lk, and using (13), we obtain

Dzq(x) = 〈Bk+1(x− xk+1) + g(xk+1), z〉 = 〈g(xk+1), z〉 = Dzf(xk+1).

Moreover, the properties (12) and

Dzq(x) = Dzf(xk+1) for all x ∈ Lk and z ⊥ sk (14)

imply that sk is an eigenvector of Bk+1 with eigenvalue 〈sk, yk〉/〈sk, sk〉. Clearly, (13) is
the most simple choice that satisfies this property. Another remarkable property of (13)
is that the resulting algorithms turn out to be invariant under change of scale of both f
and the independent variables.

In contrast to the property (14), satisfied by the spectral choice of Bk+1, models
generated by the secant choice have the property that the directional derivatives of the
model coincide with the directional derivatives of the objective function at xk. Property
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Problem n IT FE GE Time f(x) ‖g1(x)‖∞

BDEXP 5000 13065 13066 13066 459.99 3.464D−03 9.999D−06
EXPLIN 120 30608 200001 30609 15.08 −7.238D+05 7.768D−05
EXPLIN2 120 19581 126328 19582 9.87 −7.245D+05 8.192D−06
EXPQUAD 120 7899 200001 7900 22.06 −3.626D+06 3.875D−03
MCCORMCK 10000 16080 47939 16081 2755.50 −9.133D+03 2.485D−09
PROBPENL 500 888 10249 889 11.39 3.992D−07 7.265D−06
QRTQUAD 120 3464 38175 3465 3.76 −3.625D+06 5.303D−06
S368 100 2139 12532 2140 317.55 −7.085D+01 9.966D−06
HADAMALS 1024 1808 11468 1809 157.88 3.067D+04 9.611D−06
CHEBYQAD 50 5287 50893 5288 607.89 5.386D−03 9.918D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 19563 200001 19564 1465.91 6.820D+02 9.202D−02
NONSCOMP 10000 3737 25220 3738 559.04 7.632D−13 9.933D−06
QR3DLS 610 17272 200001 17273 735.62 3.051D−01 3.638D−01
SCON1LS 1002 40237 200001 40238 1512.18 6.572D+01 8.501D−02
DECONVB 61 6536 35665 6537 10.00 2.713D−03 1.814D−06
BIGGSB1 1000 50001 104775 50002 190.46 1.896D−02 1.362D−03
BQPGABIM 50 2222 22640 2223 1.68 −3.790D−05 9.972D−06
BQPGASIM 50 1247 12394 1248 0.94 −5.520D−05 9.334D−06
BQPGAUSS 2003 13482 200001 13483 986.07 −1.294D−01 1.037D+00
CHENHARK 1000 50001 173351 50002 323.09 −2.000D+00 5.299D−04
CVXBQP1 10000 1 2 2 0.10 2.250D+06 0.000D+00
HARKERP2 100 100 304 101 0.26 −5.000D−01 0.000D+00
JNLBRNG1 15625 13681 28689 13682 3332.51 −1.806D−01 5.686D−06
JNLBRNG2 15625 21444 107760 21445 8427.10 −4.150D+00 9.624D−06
JNLBRNGA 15625 12298 27172 12299 2666.47 −2.685D−01 5.388D−06
JNLBRNGB 15625 32771 200001 32772 12672.71 −5.569D+00 3.744D+00
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 0.000D+00
NCVXBQP2 10000 18012 200001 18013 4053.97 −1.334D+10 5.798D−01
NCVXBQP3 10000 15705 200001 15706 3955.02 −6.559D+09 2.609D+00
NOBNDTOR 14884 3649 7300 3650 718.13 −4.405D−01 8.604D−06
OBSTCLAE 15625 5049 11402 5050 1119.07 1.901D+00 1.000D−05
OBSTCLAL 15625 2734 6838 2735 634.97 1.901D+00 9.986D−06
OBSTCLBL 15625 3669 9084 3670 846.45 7.296D+00 9.995D−06
OBSTCLBM 15625 2941 7634 2942 694.42 7.296D+00 9.983D−06
OBSTCLBU 15625 3816 9403 3817 880.51 7.296D+00 9.981D−06
PENTDI 1000 50001 199995 50002 460.38 −7.500D−01 2.688D−05
TORSION1 14884 4540 9082 4541 890.47 −4.257D−01 6.673D−06
TORSION2 14884 8704 17294 8705 1703.87 −4.257D−01 6.599D−06
TORSION3 14884 1941 4525 1942 406.85 −1.212D+00 9.957D−06
TORSION4 14884 4273 9062 4274 862.93 −1.212D+00 9.897D−06
TORSION5 14884 672 1651 673 144.80 −2.859D+00 9.813D−06
TORSION6 14884 1569 3322 1570 316.06 −2.859D+00 9.908D−06
TORSIONA 14884 4155 8312 4156 953.30 −4.184D−01 8.980D−06
TORSIONB 14884 8274 16417 8275 1899.52 −4.184D−01 8.829D−06
TORSIONC 14884 1933 4563 1934 476.48 −1.204D+00 9.976D−06
TORSIOND 14884 4325 9218 4326 1013.10 −1.204D+00 9.854D−06
TORSIONE 14884 688 1695 689 172.87 −2.851D+00 9.727D−06
TORSIONF 14884 1493 3143 1494 349.72 −2.851D+00 9.712D−06
ODNAMUR 11130 13222 200001 13223 5249.00 1.209D+04 5.192D+00

Table 5: Performance of nonmonotone (M=10) projected gradient.
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(14) says that the model was chosen in such a way that the first order information with
respect to orthogonal directions to sk is the same as the first order information of the true
objective function at xk+1 for all the points on the line Lk. This means that first order
information at the current point is privileged in the construction of the quadratic model, in
relation to second order information that comes from the previous iteration. Perhaps this
is one of the reasons underlying the unexpected efficiency of spectral gradient algorithms
in relation to some rather arbitrary secant methods. Needless to say, the special form
of Bk+1 trivializes the problem of minimizing the model on the feasible set when this is
simple enough, a fact that is fully exploited in SPG1 and SPG2.

Boxes are not the only type of sets on which it is trivial to project. The norm-
constrained regularization problem [18, 23, 24, 32], defined by

Minimize f(x) subject to xTAx ≤ r (15)

where A is symmetric positive definite can be reduced to ball constrained minimization by
a change of variables and, in this case, projections can be trivially computed. A particular
case of (15) is the classical trust-region subproblem, where f is quadratic. Recently (see
[20, 25]) procedures for escaping from nonglobal stationary points of this problem have
been found and, so, it becomes increasingly important to obtain fast algorithms for finding
critical points especially in the large-scale case. (See [28, 29, 31].)

Perhaps the most important characteristic of SPG algorithms is that they are extremely
simple to code, at a point that anyone can write her/his own code using any scientific lan-
guage in a couple of hours. (Fortran, C and Matlab codes written by the authors are
available under request.) Moreover, their extremely low memory requirements make them
very attractive for large scale problems. It is quite surprising that such a simple tool can
be competitive with rather elaborate algorithms which use extensively tested subroutines
and numerical procedures. The authors would like to encourage readers to write their
own codes and verify for themselves the nice properties of these algorithms in practical
situations. The papers [6] and [4] illustrate the use of SPG methods in applications.
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