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Abstract

At each outer iteration of standard Augmented Lagrangian methods one tries to solve

a box-constrained optimization problem with some prescribed tolerance. In the continuous

world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility

of finishing the subproblem resolution without satisfying the theoretical stopping conditions

is not contemplated in usual convergence theories. However, in practice, one might not be

able to solve the subproblem up to the required precision. This may be due to different rea-

sons. One of them is that the presence of an excessively large penalty parameter could impair

the performance of the box-constraint optimization solver. In this paper a practical strategy

for decreasing the penalty parameter in situations like the one mentioned above is proposed.

More generally, the different decisions that may be taken when, in practice, one is not able

to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved

Augmented Lagrangian method is presented, which takes into account numerical difficulties

in a satisfactory way, preserving suitable convergence theory. Numerical experiments are pre-

sented involving all the CUTEr collection test problems.

Key words: Nonlinear Programming, Augmented Lagrangian methods, Penalty parameters,
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1 Introduction

The problem considered in this paper is

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω, (1)

where f : IRn → IR, h : IRn → IRm, g : IRn → IRp are sufficiently smooth and

Ω = {x ∈ IRn | ℓ ≤ x ≤ u}.
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The penalty-Lagrangian method implemented in Algencan [2, 3] employs the Powell-Hestenes-
Rockafellar [10, 24, 25, 27] augmented Lagrangian defined by

Lρ(x, λ, µ) = f(x) +
ρ

2

[ m
∑

i=1

(

hi(x) +
λi

ρ

)2

+

p
∑

i=1

max

{

0, gi(x) +
µi

ρ

}2]

, (2)

for ρ > 0, λ ∈ IRm, µ ∈ IRp
+, x ∈ Ω.

The k-th iterate of Algencan is an approximate minimizer of Lρk
(x, λ̄k, µ̄k) with respect to

x ∈ Ω. The vectors λ̄k ∈ IRm, µ̄k ∈ IRp
+ are safeguarded estimates of the Lagrange multipliers

associated with problem (1). The approximate minimizer xk should satisfy the condition

‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖ ≤ εk, (3)

where PΩ denotes the Euclidean projection on Ω and {εk} is a non-negative sequence that tends
to zero. Since Ω is compact and Lρk

is continuous, a global solution of

Minimize Lρk
(x, λ̄k, µ̄k) subject to x ∈ Ω (4)

necessarily exists. Usual bound-constraint solvers as Gencan [6, 8, 9] (the solver used in Algencan)
are guaranteed to find points that satisfy (3) up to any required precision εk > 0. Therefore,
in theory, xk is always well defined. However, in practice, it may be impossible to achieve the
condition (3). Several diagnostics are possible at Gencan exit, for example, the number of inner
iterations of the box-constraint solver could have been excessive, or the progress between consec-
utive iterates could have been very small. Sometimes, the condition (3) is impossible to obtain
in practice due to the natural lack of precision of floating point calculations. These observations
are also true for other popular box-constraint optimization methods like ASA-CG [23], FMINCON
[12, 13], L-BFGS-B [11, 29], SBMIN [15, 16] and many others.

In the first implementations of Algencan, all the diagnostics that implied a failure on the ful-
fillment of (3) were ignored. In the present paper we recognize the fact that the lack of fulfillment
of stopping criteria is a real problem that may be addressed with algorithmic tools, which should
involve a cautious strategy for increasing the penalty parameter and a more detailed convergence
theory. On the other hand, in many situations in which the method is progreding well and the
Lagrange multipliers are well approximated, the penalty parameter may be excessively large and
admits to be decreased. Moderate values of the penalty parameters generally cause a better behav-
ior of the box-constraint solver. Augmented Lagrangian functions with large penalty parameters
use to be dominated by the feasibility terms and, as a consequence, the objective function of the
subproblem may not decrease at Newtonian iterations of Gencan. The necessity of maintaining
moderate values of penalty parameters is more dramatic when one has a large-scale problem in
which Newton steps are not possible and one is forced to use low-memory iterations for solving
subproblems.

This paper is organized as follows. The basic algorithm is presented in Section 2, where its
termination properties are proved. Numerical implementation and experiments are given in Sec-
tion 3. Conclusions are stated in Section 4.

Notation. The symbol ‖ · ‖ denotes an arbitrary norm. We write εk ↓ 0 to indicate that {εk} is a
(not necessarily decreasing) sequence of non-negative numbers that tends to zero. For all v ∈ IRn,
we denote v+ = (max{v1, 0}, . . .max{vn, 0})T . We denote IN = {0, 1, 2, . . . }. If h : IRn → IRm, we
denote ∇h(x) = (∇h1(x), . . . ,∇hm(x)).
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2 Algorithms

In this section we define three algorithms with nonmonotone penalty parameters and we prove
basic termination results. The more general one is Algorithm 2.1, from which the other two are
modifications or particular cases.

Algorithm 2.1

Assume that {ρ̄k} is a sequence of positive numbers that tends to infinity. Let εk ↓ 0, λ̄1 ∈
[λmin, λmax]

m, µ̄1 ∈ [0, µmax]
p, ρ1 ≥ 0, r ∈ (0, 1). Set k ← 1.

Step 1. Compute xk ∈ Ω such that:

‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖ ≤ εk. (5)

Step 2. Define
λk+1 = λ̄k + ρkh(x

k) and µk+1 = (µ̄k + ρkg(x
k))+. (6)

Step 3. Define, for all i = 1, . . . , p,

V k
i = min{−gi(xk), µk+1

i }.

If k = 1 or
max{‖h(xk)‖, ‖V k‖} ≤ rmax{‖h(xk−1)‖, ‖V k−1‖}, (7)

define
ρk+1 ≥ 0. (8)

Else, define
ρk+1 ≥ ρ̄k+1. (9)

Step 4. Choose λ̄k+1 ∈ [λmin, λmax]
m and µ̄k+1 ∈ [0, µmax]

p.

Step 5. Set k ← k + 1 and go to Step 1.

Remark. Algorithm 2.1 is a modification of the Augmented Lagrangian algorithm with lower-
level constraints presented in [2]. The progress in terms of feasibility and complementarity at each
outer iteration is checked at (7). This test was introduced in [7], where it was proved that penalty
parameters are bounded under weaker conditions than the ones used in [2]. When sufficient im-
provement is detected at (7), we admit decreasing the penalty parameter in a way that will be
described later. The role of the sequence {ρ̄k} is to guarantee that penalty parameters go to infinity
in the case that (7) fails to hold infinitely many times. In practice {ρ̄k} should be a sequence that
tends slowly to infinity.

Let us prove now that, in a finite number of iterations, Algorithm 2.1 finds a stationary point
of the infeasibility up to an arbitrary precision. First, let us define, for all x ∈ Ω, the infeasibility
measure Φ(x) by:

Φ(x) =
1

2

(

‖h(x)‖22 + ‖g(x)+‖22
)

. (10)

Clearly,
∇Φ(x) = ∇h(x)h(x) +∇g(x)g(x)+ (11)
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for all x ∈ Ω.

Lemma 2.1. Assume that {xk} is a sequence generated by Algorithm 2.1, the sequence {ρk} is
bounded and ε > 0 is arbitrary. Then, there exists k0 ∈ IN such that

‖h(xk)‖ ≤ ε and ‖g(xk)+‖ ≤ ε

for all k ≥ k0.

Proof. Since limk→∞ ρ̄k = ∞ and ρk+1 ≥ ρ̄k when (7) does not hold, the boundedness of
{ρk} implies that there exists k0 ∈ IN such that (7) takes place for all k ≥ k0. Therefore,
limk→∞ ‖h(xk)‖ = 0 and limk→∞ ‖V k‖ = 0. Thus,

lim
k→∞

min{−gi(xk), µk+1
i } = 0

for all i = 1, . . . , p. Thus, limk→∞ gi(x
k)+ = 0 for all i = 1, . . . , p. This completes the proof. 2

Practical problems with empty feasible region may appear in applications. Therefore, it is
useful to predict the behavior of nonlinear programming algorithms in such situations. In the fol-
lowing lemma we prove that, when Algorithm 2.1 is not able to find feasible points (in particular,
when no feasible point exists) a stationary point of the infeasibility up to an arbitrary precision is
found in a finite number of iterations. This result may help to elaborate practical tests to stop the
algorithm declaring “possible infeasibility”.

Lemma 2.2. Assume that {xk} is a sequence generated by Algorithm 2.1 and ε > 0 is arbitrary.
Then, there exists a sequence of infinitely many indices K ⊂ IN such that, for all k ∈ K,

‖PΩ(x
k −∇Φ(xk))− xk‖ ≤ ε.

Proof. Consider first the case in which the sequence {ρk} is bounded. By Lemma 2.1 we have that
limk→∞ Φ(xk) = 0. Therefore,

lim
k→∞

‖h(xk)‖ = 0 and lim
k→∞

‖g(xk)+‖ = 0. (12)

Since h and g are continuously differentiable, xk ∈ Ω for all k, and Ω is compact, there exists c > 0
such that

‖∇h(xk)‖ ≤ c, ‖∇g(xk)‖ ≤ c (13)

for all k ∈ IN . By (12) and (13) we have that

lim
k→∞

‖∇h(xk)h(xk)‖ = 0 and lim
k→∞

‖∇g(xk)g(xk)+‖ = 0.

Therefore, by (11),
lim
k→∞

‖∇Φ(xk)‖ = 0.

Since xk ∈ Ω, this implies the desired result in the case that the sequence {ρk} is bounded.
Assume now that {ρk} is not bounded. Therefore there exists an infinite sequence of indices

K ⊂ IN such that limk∈K ρk = ∞. Suppose, by contradiction, that there exists an infinite set of
indices K1 ⊂ K such that

‖PΩ(x
k −∇Φ(xk))− xk‖ ≥ ε (14)
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for all k ∈ K1. Since Ω is compact, the sequence {xk}k∈K1
admits a convergent subsequence

{xk}k∈K2
. Say, limk∈K2

xk = x∗ ∈ Ω. Taking limits for k ∈ K2 in (14), we obtain

‖PΩ(x
∗ −∇Φ(x∗))− x∗‖ ≥ ε.

Therefore, there exists ε′ > 0 such that

‖PΩ(x
∗ −∇Φ(x∗))− x∗‖∞ ≥ ε′. (15)

By norm-equivalence and (5), since εk → 0 and ρk →∞ for k ∈ K, there exists k0 ∈ IN such that
for all k ∈ K, k ≥ k0, we have that ρk ≥ 1 and

‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖∞ ≤ ε′/2.

Therefore,

‖PΩ(x
k − [∇f(xk) + ρk∇h(xk)(h(xk) + λ̄k/ρk) + ρk∇g(xk)(g(xk) + µ̄k/ρk)+]− xk‖∞ ≤ ε′/2.

Since ρk ≥ 1, direct calculation shows that

‖PΩ(x
k− (1/ρk)[∇f(xk)+ρk∇h(xk)(h(xk)+ λ̄k/ρk)+ρk∇g(xk)(g(xk)+ µ̄k/ρk)+]−xk‖∞ ≤ ε′/2.

Thus,

‖PΩ(x
k − [∇f(xk)/ρk +∇h(xk)(h(xk) + λ̄k/ρk) +∇g(xk)(g(xk) + µ̄k/ρk)+]− xk‖∞ ≤ ε′/2.

Taking limits for k ∈ K2, by the continuity of projections, we obtain:

‖PΩ(x
∗ − [∇h(x∗)h(x∗) +∇g(x∗)g(x∗)+]− x∗‖∞ ≤ ε′/2.

This contradicts (15). Therefore, for all k ∈ K large enough we have that

‖PΩ(x
k −∇Φ(xk))− xk‖ ≤ ε

as we wanted to prove. 2

In the following theorem we predict the behavior of Algorithm 2.1 in a finite number of iter-
ations. We show that, when the penalty parameters are bounded, the algorithm finds a feasible
point with an arbitrary precision and an approximate KKT point. No constraint qualifications
are required for this result, which is true even in the case that no exact KKT points exist. (For a
discussion about approximate and exact KKT points see [1, 5].) In the case of unbounded penalty
parameters it is interesting to observe that, besides finding an approximate stationary point of
infeasibility, the algorithm also finds points that satisfies a condition that evokes KKT.

Theorem 2.1. Assume that {xk} is a sequence generated by Algorithm 2.1 and εfeas > 0, εopt > 0,
εcompl > 0 are arbitrary. Then, if the sequence {ρk} is bounded, there exists k0 ∈ IN such that

‖h(xk)‖ ≤ εfeas, ‖g(xk)+‖ ≤ εfeas (16)

and
‖PΩ(x

k − [∇f(xk) +∇h(xk)λk+1 +
∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)])− xk‖ ≤ εopt (17)

for all k ≥ k0. If the sequence {ρk} is unbounded and limk∈K ρk = ∞, there exists k0 ∈ IN such
that

‖P (xk −∇Φ(xk))− xk‖ ≤ εfeas (18)
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and (17) holds for all k ∈ K, k ≥ k0.

Proof. By (5) and the definitions of λk+1 and µk+1 given in (6) one has that, for all k = 1, 2, . . .,

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

p
∑

i=1

µk+1
i ∇gi(xk)])− xk‖ ≤ εk. (19)

Since Ω is compact, by the continuity of ∇g, there exists M > 0 such that ‖∇gi(x)‖ ≤ M for all
x ∈ Ω.

We consider first the case in which the sequence {ρk} is bounded. By Lemma 2.1, there exists
k1 ∈ IN such that (16) holds for all k ≥ k1. Moreover, there exists k0 ≥ k1 such that (7) holds for
all k ≥ k0. Thus, limk→∞ V k = 0. For all i = 1, . . . , p, we define Ki ⊂ IN by:

Ki = {k ∈ IN | gi(xk) < −εcompl}.

Therefore, if Ki contains infinitely many indices, since V k
i tends to zero, we have that

lim
k∈Ki

µk+1
i = 0.

Thus, by the boundedness of ‖∇gi(xk)‖ we have:

lim
k→∞

∑

gi(xk)<−εcompl

µk+1
i ∇gi(xk) = 0. (20)

Now, by (19),

‖PΩ(x
k−[∇f(xk)+∇h(xk)λk+1+

∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)+

∑

gi(xk)<−εcompl

µk+1
i ∇gi(xk)])−xk‖ ≤ εk.

(21)
By (20), (21) and the continuity of projections, it follows that

lim
k→∞

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)])− xk‖ = 0.

Then, (17) follows for all k large enough.
Let us consider now the case in which there exists an infinite sequence of indices K ⊂ IN such

that limk∈K ρk =∞. By Lemma 2.2, there exists k0 ∈ IN such that for all k ∈ K, k ≥ k0 we have
that (18) holds and

µ̄k
i − ρk εcompl < 0

for all i = 1, . . . , p. Therefore, by (6), if k ∈ K, k ≥ k0 and gi(x
k) < −εcompl we have that

µk+1
i = 0. This implies that (17) holds for all k ∈ K such that k ≥ k0. 2

The current available version of Algencan (June 2010) is a particular case of Algorithm 2.1.
The main difference is that, in that version, when (7) holds, we set ρk+1 = ρk and, when (7) does
not hold ρk+1 is chosen as a multiple of ρk. As a consequence, when (7) fails to hold infinitely
many times, the whole sequence {ρk} tends to infinity in the traditional Algencan method.

The results proved for Algorithm 2.1 predict the computational behavior in a finite number of
iterations, provided that computations are not subject to rounding errors. The main consequence
of the exact arithmetic assumption is the fact that the condition (5) can always be obtained by the
algorithm that solves the subproblem. The property (17) shows that Algorithm 2.1 satisfies an ap-
proximate KKT condition in the sense of [1], as the original Algencan does. Moreover, Theorem 2.1
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provides adequate criteria for stopping the algorithmic execution. The arguments of Theorems 4.1
and 4.2 of [2] may be used to prove that feasible limit points generated by the algorithm satisfy
the KKT conditions provided that the CPLD (constant positive linear dependence) constraint
qualification [4, 26] is fulfilled.

Roughly speaking, in Algorithm 2.1 one considers that an outer iteration failed to improve
feasibility-complementarity when the condition (7) does not hold. In practical computations we
feel the necessity of relaxing this condition. When feasibility-complementarity is already sat-
isfactory according to some given tolerance we may consider that the outer iteration has been
satisfactory. For example, if, at the end of the algorithm, we wish to satisfy feasibility-optimality
with tolerance 10−8 and, at two consecutive iterations, the feasibility-optimality levels are 10−10

and 10−9 respectively, it is sensible to consider that the latter outer iteration has been successful.
Decisions like this are usually presented as computational features that are necessary due to the
presence of inexact floating-point computations. In the following algorithm we will state explicitly
a new criterion for outer iteration success and we will derive rigorous termination (convergence)
results.

Algorithm 2.2

Assume, as in Algorithm 2.1, that {ρ̄k} is a sequence of positive numbers that tends to infinity.
Moreover, εk ↓ 0, λ̄1 ∈ [λmin, λmax]

m, µ̄1 ∈ [0, µmax]
p, ρ1 ≥ 0, r ∈ (0, 1) and εtol > 0. In addition,

let Sh ∈ IRm×m and Sg ∈ IRp×p diagonal positive-definite (scaling) matrices. Set k ← 1.

Step 1. Compute xk ∈ Ω such that (5) holds.

Step 2. Compute λk+1 and µk+1 as in (6).

Step 3. Define, for all i = 1, . . . , p,

V k
i = min{−gi(xk), µk+1

i }.

If k = 1 or (7) holds or

max{‖S−1
h h(xk)‖, ‖S−1

g g(xk)+‖, ‖V k‖∞} ≤ εtol (22)

choose ρk+1 ≥ 0. Else, define ρk+1 ≥ ρ̄k+1.

Step 4. Choose λ̄k+1 ∈ [λmin, λmax]
m and µ̄k+1 ∈ [0, µmax]

p.

Step 5. Set k ← k + 1 and go to Step 1.

Condition (22) says that, with some tolerance εtol, the point x
k is feasible and complementarity

conditions are satisfied. In this case, as in the case of (7), the algorithm considers that it is
not mandatory to increase the penalty parameter and, so, an arbitrary (possibly smaller) penalty
parameter may be chosen. The diagonal entries of Sh and Sg are scaling parameters whose practical
meaning will be given later.

In the following theorem we prove termination properties for Algorithm 2.2.

Theorem 2.2. Assume that {xk} is a sequence generated by Algorithm 2.2 and εtol > 0, εopt > 0,
εfeas ≥ εtol, εcompl ≥ εtol are arbitrary. Let M > 0 be such that

‖∇gi(x)‖2 ≤M, i = 1, . . . , p, (23)
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for all x ∈ Ω. Then, if the sequence {ρk} is bounded, we have that

‖S−1
h h(xk)‖ ≤ εfeas, ‖S−1

g g(xk)+‖ ≤ εfeas, (24)

‖Vk‖∞ ≤ εcompl (25)

and

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

p
∑

i=1

µk+1
i ∇gi(xk)])− xk‖ ≤ εopt (26)

for k large enough.
Moreover, when {ρk} is bounded, there exists k0 ∈ IN such that (24) holds and

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)])− xk‖2 ≤ εopt + pMεtol (27)

for all k ≥ k0. If the sequence {ρk} is unbounded and limk∈K ρk = ∞, there exists k0 ∈ IN such
that (18) and (17) hold for all k ∈ K, k ≥ k0.

Proof. If {ρk} is unbounded the desired result follows as in Theorem 2.1. Consider the case in
which {ρk} is bounded. By (7) and (22) we have that (24) holds and ‖V k‖∞ ≤ εtol < εcompl for k
large enough. By (5) and (19), (26) also holds for k large enough. Therefore, there exists k0 ∈ IN
such that, for all k ≥ k0, if gi(x

k) < −εcompl we have that

min{−gi(xk), µk+1
i } ≤ εtol.

Since −gi(xk) > εcompl, this implies that

min{εcompl, µ
k+1
i } ≤ εtol.

Since εcompl ≥ εtol, we have:
µk+1
i ≤ εtol.

Therefore, by (23),

‖
∑

gi(xk)<−εcompl

µk+1
i ∇gi(xk)‖2 ≤ pMεtol. (28)

Then, by the contraction property of projections,

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

p
∑

i=1

µk+1
i ∇gi(xk)])− PΩ(x

k − [∇f(xk) +∇h(xk)λk+1+

∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)])‖2 ≤ ‖

∑

gi(xk)<−εcompl

µk+1
i ∇gi(xk)‖2 ≤ pMεtol.

Therefore, by (5), and the triangle inequality,

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

∑

gi(xk)≥−εcompl

µk+1
i ∇gi(xk)])− xk‖2

≤ ‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

p
∑

i=1

µk+1
i ∇gi(xk)])− xk‖2 + pMεtol ≤ cεk + pMεtol,
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where c is a constant that depends only on the norm ‖ ·‖. Therefore, (27) holds for k large enough.
This completes the proof. 2

The third algorithm presented in this section is, essentially, a particular case of Algorithm 2.2,
for which we will report computational results. In this algorithm we will consider explicitly the
possibility of failure of the box-constraint minimization solver that tries to solve the inner iteration
subproblems. This solver will be called Gencan from now on, since Gencan [9] is the algorithm
used in our implementations, but it may be replaced by any other box-constraint solver generating
stationary cluster points. In Algorithm 2.3 we come closer to real practical computations by means
of a relaxation of the condition εk → 0.

Algorithm 2.3

Assume that εopt > 0, {εk} is a non-negative sequence such that εk ≤ εopt for k large enough, {ǫk}
is a non-negative sequence such that ǫk ≥ εk for all k, λ̄1 ∈ [λmin, λmax]

m, µ̄1 ∈ [0, µmax]
p, γ > 1,

εtol > 0, 0 < ρmin < ρmax and r ∈ (0, 1). Let Sh and Sg be as in Algorithm 2.2. Let x0 ∈ Ω be an
initial approximation to the solution of (1). Define Φ(x) as in (10) and compute

ρ1 = min

{

max

{

ρmin, 10
max{1, |f(x0)|}
max{1, |Φ(x0)|}

}

, ρmax

}

.

Set k ← 1.

Step 1. Compute xk ∈ Ω using Gencan applied to the subproblem

Minimize Lρk
(x, λ̄k, µ̄k) subject to x ∈ Ω. (29)

If (5) does not hold, we say that iteration k is “incomplete”.

Step 2. Compute λk+1 and µk+1 as in (6).

Step 3. Define, for all i = 1, . . . , p,

V k
i = min{−gi(xk), µk+1

i }.

Step 3.1. If k = 1, set νk = 0,

ρk+1 = min

{

max

{

ρmin, 10
max{1, |f(xk)|}
max{1, |Φ(xk)|}

}

, ρmax

}

,

and go to Step 4.

Step 3.2. If (22) does not hold, define νk+1 = νk and go to Step 3.4.

Step 3.3. (Procedure when max{‖S−1
h h(xk)‖, ‖S−1

g g(xk)+‖, ‖V k‖∞} ≤ εtol.)

Consider the following three conditions:

1. max{‖S−1
h h(xk−1)‖, ‖S−1

g g(xk−1)‖, ‖V k−1‖∞} ≤ εtol,

2. ‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖ > ǫk,

3. ‖PΩ(x
k−1 −∇Lρk−1

(xk−1, λ̄k−1, µ̄k−1))− xk−1‖ > ǫk−1 and k − 1 6= 1.
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If these three conditions are fulfilled, set νk+1 = νk+1, ρa ← min{γνkρmin, 1}, ρb ← max{γ−νkρmax, 1},
and compute

ρk+1 = min

{

max

{

ρa, 10
max{1, |f(xk)|}
max{1, |Φ(xk)|}

}

, ρb, ρk

}

. (30)

Otherwise, set νk+1 = νk and ρk+1 = ρk. Go to Step 4.

Step 3.4. If (7) holds, set ρk+1 = ρk. Otherwise, set

ρk+1 = max{γρk, γνkρmin}. (31)

Step 4. Set

λ̄k+1
i = max{λmin,min{λmax, λ̄

k
i + ρkhi(x

k)}}, i = 1, . . . ,m,

µ̄k+1
i = max{0,min{µmax, µ̄

k
i + ρkgi(x

k)}}, i = 1, . . . , p.

Step 5. Set k ← k + 1 and go to Step 1.

Remark. We take advantage of the possibility of reducing the penalty parameter when (22) holds
and the three conditions mentioned at Step 3.3 are fulfilled. This means that, for two consecutive
outer iterations, the sufficiente feasibility-complementarity condition (22) was verified but Gencan
was not able to obtain the desired optimality improvement. This is the case in which we think
that the failure of Gencan may be due to the presence of an unacceptably large penalty parameter
and that things may improve if the penalty parameter is reduced. The possible reduction of the
penalty parameter is performed using (30). The motivation for this reduction formula follows.
The Augmented Lagrangian function (2) for problem (1) and for the particular case (λ, µ) = (0, 0)
reduces to

Lρ(x, 0, 0) = f(x) +
ρ

2
Φ(x).

So, if Φ(x) 6= 0, the value of ρ that “keeps the Augmented Lagrangian well balanced” is given
by ρ = 0.5|f(x)|/Φ(x). In (30), a safeguarded value that gives one more order of magnitude to
the feasibility than to the objective function is considered. Note that the shrinking safeguarding
bounds ρa and ρb try to correct this rough guess if it shows to be inappropriate.

Theorem 2.3 below provides the theoretical justification for stopping the execution of the algo-
rithm declaring “Convergence”.

Theorem 2.3. Assume that {xk} is a sequence generated by Algorithm 2.3. Let εtol > 0, εopt > 0,
εfeas ≥ εtol, be arbitrary. Then:

1. If, at most, a finite number of iterations is incomplete, there exists k0 ∈ IN such that

‖PΩ(x
k − [∇f(xk) +∇h(xk)λk+1 +

p
∑

i=1

µk+1
i ∇gi(xk)])− xk‖ ≤ εopt (32)

for all k large enough.

2. If {ρk} is bounded, then

‖S−1
h h(xk)‖ ≤ εfeas, ‖S−1

g g(xk)+‖ ≤ εfeas (33)

and
min{−gi(xk), µk

i } ≤ εtol, i = 1, . . . , p (34)

for all k large enough.
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3. If {ρk} is unbounded (with limk∈K ρk =∞), then (34) takes place for all k ∈ K large enough.
Moreover, given an arbitrary ε > 0, there exists k0 ∈ IN such that, for all k ∈ K, k ≥ k0,

‖PΩ(x
k −∇Φ(xk))− xk‖∞ ≤ ‖PΩ(x

k −∇Lρk
(xk, λ̄k, µ̄k))− xk‖∞ + ε. (35)

Proof. Assume first that at most a finite number of iteration is incomplete. Therefore, (5) holds
for all k large enough. Then, since εk ≤ εopt for k large enough, the first part of the thesis holds.

Assume now that {ρk} is bounded. We consider two possibilities:

1. limk→∞ νk =∞;

2. νk is constant for k large enough.

In the first case, we have that limk→∞ γνkρmin = ∞. Therefore, since {ρk} is bounded, it turns
out that ρk+1 is chosen at (31) at most a finite number of times. In the second case, νk is increased
a finite number of times. Therefore, ρk+1 is chosen at (30) at most a finite number of times. This
means that, for k large enough, ρk+1 is chosen at (31) or ρk+1 = ρk. If the choice at (31) takes
place infinitely many times we would have that ρk → ∞. This is impossible since {ρk} has been
assumed to be bounded. Therefore, in both cases we have that ρk+1 is not chosen at (31) for
k large enough. This implies that, for k large enough, at least one of the conditions (7) or (22)
necessarily holds. This implies that (33) and (34) hold for k large enough. This completes the
proof of the second part of the thesis.

Now, assume that the sequence {ρk} is unbounded. By (6), we have that

µk+1
i = max{0, µ̄k

i + ρkgi(x
k)}.

By the boundedness of µ̄k, if gi(x
k) < −εtol we have that −gi(xk) > εtol and, thus, µ

k+1 = 0 if ρk
is large enough. This means that, for ρk sufficiently large, either −gi(xk) ≤ εtol or µ

k+1
i = 0. This

implies that for ρk large enough,

min{−gi(xk), µk+1
i } ≤ εtol.

Finally, let ε be an arbitrarily small positive number. By the uniform continuity of PΩ,∇h,∇g
on the compact set Ω, there exists k0 ∈ IN such that for k ∈ K, k ≥ k0, we have that ρk ≥ 1 and

∥

∥

∥

∥

PΩ

(

xk −
[

∇f(xk)
ρk

+∇h(xk)

(

h(xk) + λ̄k

ρk

)

+∇g(xk)

(

g(xk) + µ̄k

ρk

)

+

])

− xk

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

PΩ(x
k − [∇h(xk)h(xk) +∇g(xk)g(xk)])− xk

∥

∥

∥

∥

∞

+ ε.
(36)

Now,
∥

∥

∥

∥

PΩ

(

xk −
[

∇f(xk)
ρk

+∇h(xk)

(

h(xk) + λ̄k

ρk

)

+∇g(xk)

(

g(xk) + µ̄k

ρk

)

+

])

− xk

∥

∥

∥

∥

∞

=
∥

∥

∥

∥

PΩ

(

xk − 1
ρk

[

∇f(xk) + ρk∇h(xk)

(

h(xk) + λ̄k

ρk

)

+ ρk∇g(xk)

(

g(xk) + µ̄k

ρk

)

+

])

− xk

∥

∥

∥

∥

∞

.

Moreover, since ρk ≥ 1,
∥

∥

∥

∥

PΩ

(

xk − 1
ρk

[

∇f(xk) + ρk∇h(xk)

(

h(xk) + λ̄k

ρk

)

+ ρk∇g(xk)

(

g(xk) + µ̄k

ρk

)

+

])

− xk

∥

∥

∥

∥

∞

≤
∥

∥

∥

∥

PΩ

(

xk −
[

∇f(xk) + ρk∇h(xk)

(

h(xk) + λ̄k

ρk

)

+ ρk∇g(xk)

(

g(xk) + µ̄k

ρk

)

+

])

− xk

∥

∥

∥

∥

∞

=

‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖∞.
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Therefore, the desired result follows from (36). This completes the proof. 2

The theorems proved in this section justify the decision of stopping the execution of the Aug-
mented Lagrangian method with nonmonotone penalty parameters when conditions (32), (33) and
(34) take place. In exact arithmetic, the fulfillment of (32) is guaranteed, since the convergence
theory of reasonable box-constraint solvers ensure that (5) is eventually satisfied at every outer
iteration. Here we recognize that, due to several reasons, Gencan could fail to satisfy (5), therefore
we guarantee that (32) is fulfilled only if at most a finite number of iterations is incomplete. If the
sequence of penalty parameters is bounded both (33) and (34) necessarily hold. The first condition
means that approximate feasibility is satisfied and the second says that approximate complemen-
tarity holds. Observe that, with a bounded sequence of penalty parameters, the fulfillment of (33)
and (34) occurs even when the approximate Lagrangian condition (32) does not take place. The
non-fulfillment of (32) may be caused by poor scaling of the variables or by deficiencies of the
box-constraint solver in cases in which feasibility and complementarity are satisfactory.

The third part of Theorem 2.3 says that, with unbounded penalty parameters, the comple-
mentarity conditions are eventually fulfilled. We cannot guarantee the fulfillment of (33) because,
perhaps, the problem has no feasible points. Note that no assumption on the feasibility of the
original problem is required in the theorems. Therefore, discarding the possible failure of the box-
constraint solver, Lemma 2.2 indicates that, when ρk → ∞ and an approximately feasible point
is not found, we are in presence of an approximate stationary point of the infeasibility Φ. More-
over, the property (36) indicates that, when ρk →∞, the stationarity precision of the infeasibility
measure Φ coincides, eventually, with the precision obtained at the Gencan execution.

3 Numerical experiments

We coded Algorithm 2.3 with the following algorithmic parameters: εfeas = 10−8; εopt = 10−8;
εtol = 10−8; εk = εopt for all k; λmin = −1020, λmax = 1020, µmax = 1020; λ1 = 0, µ1 = 0; γ = 10
or γ = 2 (see discussion later); r = 0.5; ρmin = 10−8; and ρmax = 108. We used ‖ · ‖ = ‖ · ‖∞ in all
the calculations.

We defined the sequence {ǫk} in the following way:

ǫ1 =
√
εopt. (37)

For k > 1, if
max{‖h(xk)‖∞, ‖V k‖∞} ≤

√
εfeas (38)

and
‖PΩ(x

k −∇Lρk
(xk, λ̄k, µ̄k))− xk‖∞ ≤

√
εopt, (39)

we set
ǫk+1 = max{εopt,min{0.1ǫk, r‖PΩ(x

k −∇Lρk
(xk, λ̄k, µ̄k))− xk‖∞}}. (40)

Otherwise, we set
ǫk+1 = ǫk. (41)

At each outer iteration the convergence stopping criterion of the internal solver Gencan was:

‖PΩ(x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖ ≤ ǫk. (42)

The execution of Algorithm 2.3 is interrupted in the following situations: (C) Convergence:
(32), (33) and (34) were fulfilled; (T) Time exceeded: The algorithm ran during 5 minutes of CPU
time; (R) Huge penalty parameter: ρk ≥ 1020; and (I) Very large number of outer iterations:
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k = 100.

Remarks. In the practical implementation of Algorithm 2.3, complete iterations are the ones that
satisfy (5) but the box-constraint solver stopping criterion is based on the auxiliary sequence {ǫk},
defined by (37,40,41). The arguments that support these decisions are the following:

• At the first iteration we stop the box-constraint solver with a rather mild criterion because
it makes no sense to spend a lot of time solving accurately a subproblem whose solution may
be far from the solution of the original problem.

• If, at some iteration, we obtained reasonable values for feasibility-complementarity and opti-
mality, we require more precision at next call of the box-constraint solver (40). This decision
is sensible because in this case we are probably close to the solution of the original problem.

• If, on the contrary, either feasibility-complementarity or optimality measures are not satis-
factory, we maintain, at iteration k + 1, the box stopping criterion used at iteration k (41).
Note that, by Theorem 2.3, the complementarity condition will be ultimately satisfied inde-
pendently of problem feasibility. Therefore, (38) essentially indicates almost-feasibility. If
our original problem is (very) infeasible, (38) will never take place, and we will never solve
the box-constrained problem with high precision. On the other hand, if (39) does not hold,
we deduce that the subproblem is hard for the box-constraint solver and the decision of
maintaining the stopping criterion aims to save computer time that could be spent without
profit.

As we mentioned in previous sections, the algorithm used for box-constraint minimization at inner
iterations is Gencan [9] with its default parameters. Replacing Step 3.3 of Algorithm 2.3 by

Step 3.3. Set ρk+1 = ρk and go to Step 4, (43)

we obtain the current (June 2010) monotone version of Algencan.
Algorithm 2.3 was coded in double precision Fortran 77 and compiled with gfortran (GNU

Fortran (GCC) 4.4.1). The compiler optimization option -O4 was adopted. All the experiments
were run on a 2.4GHz Intel Core2 Quad Q6600 with 4.0GB of RAM memory and Linux Operating
System.

Our test problems are of the form

Minimize ftest(x) subject to htest(x) = 0, gtest(x) ≤ 0, x ∈ Ω. (44)

We define f , h, g, sf by:

f(x) ≡ sf ftest(x) and sf = 1/max(1, ‖∇ftest(x0)‖∞), (45)

hi(x) ≡ shi
[htest(x)]i and shi

= 1/max(1, ‖∇[htest]i(x
0)‖∞), for i = 1, . . . ,m, (46)

gi(x) ≡ sgi [gtest(x)]i and sgi = 1/max(1, ‖∇[gtest]i(x0)‖∞), for i = 1, . . . , p. (47)

We define Sh ∈ IRm×m as the diagonal matrix whose entries are shi
, i = 1, . . .m and Sg ∈ IRp×p

as the diagonal matrix whose entries are sgi , i = 1, . . . , p. Therefore, the feasibility criterion (33)
is equivalent to

‖htest(x)‖∞ ≤ εfeas, ‖gtest(x)+‖∞ ≤ εfeas. (48)

In the numerical experiments, we considered all the (644) nonlinear programming problems
from the CUTEr collection [22] in the form (44). We excluded pure feasibility problems (with
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no objective function), pure bound-constrained problems (only with constraints ℓ ≤ x ≤ u) and
unconstrained problems.

We stopped the execution of Algorithm 2.3 declaring convergence when, for some k, the con-
ditions (32), (48) and (34) were fulfilled. Therefore, as in [28], assuming that (44) is the original
problem and that (1) is the scaled one, our convergence criterion aims feasibility of the original
problem but KKT-optimality and complementarity for the scaled problem. We implicitly consider
that most users are interested in finding truly feasible points for their (original) problems with the
smallest possible value of the (original) objective function. Accurate fulfillment of KKT conditions
in terms of the original problem is not an objective in most cases, since one cannot predict the
degree in which precision will be affected by scaling. In most cases, using the KKT criterion with
respect to the scaled problem is quite satisfactory.

We consider that the result of a method M1 is more satisfactory than the result of a method M2

in two situations: When M1 finds a feasible point and M2 does not, and when both find feasible
points and the objective function value found by M1 is sufficiently smaller than the one found
by M2. In any of these two situations, we consider that M1 is more robust than M2. If both
methods found feasible points with similar functional values, we consider that the most efficient
method is the one that uses less CPU time.

By being widely accepted in the Optimization literature, we opted by presenting the numerical
comparisons using performance profiles graphics, formally described in [21]. Performance profiles
are useful to graphically represent a comparison between several methods on a large set of test
problems. They show the fraction ωM (τ) of problems a method M solved within a prescribed limit
on its performance measurement (like, for example, CPU time). For each problem, the imposed
limit is a proportion τ ≥ 1 of the performance measurement of the most efficient method for this
particular problem. It means that, for a method M , ωM (τ ≡ 1) represents the fraction of problems
for which the method was the most efficient over all the methods. On the other hand, ωM (τ ≡ ∞)
represents the fraction of problems for which method M was able to find a solution, independently
of the required effort. Therefore, the fraction ωM (τ ≡ 1) is usually associated with the efficiency
of method M , while ωM (τ ≡ ∞) is associated with the robustness of the method.

In the performance profiles of the forthcoming subsections, we use CPU time as performance
measurement. The CPU time of each pair method/problem was limited to 5 minutes. This
limitation should be taken into account in the global performance analysis. If, at the end of the
execution, an algorithm found a feasible point and obtained the smallest functional value, i.e., it
found a functional value f such that

[|f − fmin| ≤ max{10−10, 10−6|fmin|] or [fmin ≤ −1020 and f ≤ −1020], (49)

where fmin is the smallest functional value considering the algorithms that found a feasible point,
then we say the the algorithm solved the problem. Otherwise, we say that the algorithm failed
and we set its computer CPU time equal to +∞.

3.1 Choice of the increasing factor for the penalty parameter

In a first set of numerical experiments, we aim to give an answer to an old discussion between
the authors of this paper. When, in Algencan, the penalty parameter needs to be increased, it
is multiplied, in (31), by the increasing factor γ. Should we maintain the classical default choice
γ = 10 or a smaller increasing factor (say, γ = 2) could be better?

Figure 1 shows a comparison, using performance profiles, between Algencan (June 2010) with
γ = 10, which in the figure is identified as “Fast increase”, and Algencan with γ = 2, identified in
the figure as “Slow increase”. Analysing Figure 1, we see that, as expected, increasing the penalty
parameter faster makes the method more efficient. At the same time, it may be surprising that
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the efficiency gain was not followed by a robustness loss. Efficiencies of the methods (measured as
in the performance profiles graphic) are 73.13% and 56.83%, respectively; while robustness rates
are 84.31% and 84.16%, respectively.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Fast increase
Slow increase

Figure 1: Performance profile analysing the effect of a slow versus a fast increase of the penalty
parameter in Algencan.

Algencan (γ = 10) satisfied the stopping criterion associated with convergence in 537 problems,
while this figure is 532 for Algencan (γ = 2). In 7 problems, Algencan (γ = 10) found a feasible
point and Algencan (γ = 2) did not. The opposite situation occurred in only 4 problems. Table 1
shows the objective function value and the feasibility obtained by the two methods in those 11
problems. In the table, “SC” means stopping criterion (recall that “C” stands for convergence,
“T” stands for maximum of CPU Time achieved, “R” stands for very large penalty parameter,
and “I” stands for maximum number of outer iterations achieved). Considering that the desired
infeasibility tolerance required to the methods was εfeas = 10−8, and assuming that 10−4 would
also be “reasonable”, we have that: (a) Among the 4 cases in which Algencan (γ = 2) found a
feasible point up to the required feasibility tolerance and Algencan (γ = 10) failed, in 3 of them
Algencan (γ = 10) also found a feasible point up to a reasonable tolerance; (b) Among the 7
problems in which the opposite situation occurred, Algencan (γ = 2) found a feasible point up to
a reasonable feasibility tolerance in only 4 problems.

The methods found different local minimizers in 56 problems. Recall that we are considering
that two local minimizers are “different” if the associated functional values do not satisfy (49).
However, giving a look at the figures one concludes that, in fact, both function values are very
similar in many of the 56 cases considered as different local minimizers. In particular, if we consider
only those 34 problems in which both versions satisfied the convergence stopping criterion, we can
see that in 17 of them the objective function values coincide in the first three significant digits or
they are both “very small”. In the remaining 17 problems, the objective function value found by
Algencan (γ = 2) was smaller in 11 cases while the objective function value found by Algencan
(γ = 10) was smaller in 6 cases. Therefore, the slightly better robustness of Algencan (γ = 10) is
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Problem
Algencan (γ = 10) Algencan (γ = 2)
f Infeas SC f Infeas SC

A2NNDNSL 0.0000000000000000D+00 6.6D−09 C 1.3565210497370278D−18 6.9D−07 T
A5NNDNSL 2.1658343558888873D−19 4.6D−08 T 0.0000000000000000D+00 6.0D−09 C
BLOWEYC -1.5125584421372519D−02 8.1D−09 T -3.3359238019212872D−01 1.6D−04 T
EIGMAXB -9.6430075019150230D−01 7.4D−10 C -1.0000000000000000D+00 2.5D−03 R
LUKVLE17 3.3301399216443264D+04 4.3D−09 C 3.2765785814735147D+04 1.1D−07 T
LUKVLE18 1.1166032306410008D+04 5.1D−09 C 1.1112291278782071D+04 4.0D−08 T
NCVXQP8 -3.5752196837515464D+09 2.0D−09 T -3.5752196771244354D+09 1.3D−08 T
OPTMASS -6.6270588700032038D−02 3.4D−07 R -1.2054911205823790D−01 1.8D−12 I
ORTHRGDM 1.5138023236507604D+03 1.7D−13 C 1.5137510347931600D+03 6.3D−02 T
SNAKE -3.8390933196558115D+02 1.9D−02 R 1.1927912646214547D+00 0.0D+00 I
SSNLBEAM 3.4280013147090074D+02 8.6D−05 T 3.4003040424320614D+02 4.6D−09 T

Table 1: Problems in which only one method (Algencan (γ = 10) or Algencan (γ = 2)) found a
feasible point.

associated with the cases in which this method found a feasible point while Algencan (γ = 2) did
not.

Summing up, we consider that both versions have very similar robustness. The choice γ = 10
will remain to be the default one, due to its slightly better efficiency.

3.2 Monotone and nonmonotone versions of Algencan

The two versions of Algencan considered in this section use γ = 10. Algencan-Nonmonotone is a
particular case of Algorithm 2.3, while Algencan-Monotone coincides with Algorithm 2.3 with the
exception of Step 3.3, as indicated in (43).

Algencan-Monotone and Algencan-Nonmonotone have identical performances in 523 problems
(out of 644). In these 523 problems Gencan never failed to satisfy (42). Therefore, for comparing
these two algorithms we analyze the remaining 121 problems. Figure 2 shows the performance
profiles corresponding to this comparison. On this set of 121 problems, efficiencies of Algencan-
Monotone and Algencan-Nonmonotone are 49.58% and 55.37% respectively, while robustness rates
are 58.67% and 62.80%, respectively. The differences correspond to 15 problems in which the
methods stopped by different stopping criteria. Table 3 shows the details. Observe that Algencan-
Nonmonotone stopped satisfying the convergence stopping criterion (32,48,34) predicted by Theo-
rem 2.3 in 13 problems. In one problem the computer time was exhausted and in other problem the
penalty parameter became too large. On the other hand, Algencan-Monotone exhausted the al-
lowed number of iterations in 11 problems, exhausted the allowed computer time in 3 problems and
stopped because the penalty parameter was too large in one problem. Both versions of Algencan
found feasible points in these 15 problems. In 6 problems the final objective function value obtained
by Algencan-Nonmonotone was clearly better than the one obtained by Algencan-Monotone. In
the remaining 9 problems the objective function values were equivalent. This shows that in some
cases Algencan-Monotone finds a feasible point with a completely satisfactory functional value but
success is not detected due to the presence of very large penalty parameters. This inconvenient
seems to be overcome by the nonmonotone version of Algencan which, therefore, provides the user
with a more sensible criterion for evaluating computer results and decreases substantially computer
time. On the other hand, functional values obtained by Algencan-Nonmonotone are at least as
good, and sometimes better, than the ones obtained by Algencan-Monotone.

3.3 Reliability: Comparison with Lancelot

In order to assess the reliability of our present research concerning practical Augmented Lagrangian
algorithms we include a brief comparison with Lancelot B, the classical method described in [14,
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Problem
Algencan-Monotone (γ = 10) Algencan-Montone (γ = 2)

f Infeas SC f Infeas SC
AGG -2.2990957247723129D+07 7.0D−10 I -3.5954564166066706D+07 4.1D−10 I
ALLINITC 3.0493855226617473D+01 9.3D−09 C 3.0494130609237590D+01 7.5D−09 C
ANTWERP 2.4011655309634170D+04 5.0D−10 C 1.4806460914252022D+04 1.4D−09 C
BRAINPC0 1.8449906509642594D−01 0.0D+00 T 2.6142082908286878D−03 8.5D−16 T
BRAINPC3 1.6871306257665747D−04 8.5D−16 C 7.2911902901408808D−04 8.4D−16 T
BRAINPC8 1.6517785884798261D−04 5.0D−12 C 1.5858749786141775D−02 8.3D−16 T
BRAINPC9 8.2279625510597388D−04 6.2D−12 C 3.7029753889000006D−01 0.0D+00 T
C-RELOAD -1.0176523339413897D+00 5.7D−15 C -1.0120450328525714D+00 1.2D−14 C
CATMIX -4.6390233302641984D−02 3.4D−13 C -4.7870074064700951D−02 1.6D−13 C
CRESC132 7.0305410692936832D−01 1.1D−12 I 6.8811953876072174D−01 0.0D+00 T
CRESC100 5.6760270975788019D−01 2.5D−09 C 5.6949919577403563D−01 1.8D−12 I
CRESC50 5.9574413803188975D−01 6.4D−11 I 5.9493257189080140D−01 6.2D−10 I
DECONVC 9.5259578156744824D−12 5.2D−11 C 1.0968411110530883D−10 2.2D−09 C
DISC2 1.5624999999784881D+00 1.7D−10 I 2.9999999999338303D+00 1.3D−12 I
DTOC5 1.5351066559197541D+00 1.5D−09 C 1.5351092299540876D+00 7.0D−10 C
ELATTAR 1.4270794465602454D−01 1.7D−09 C -1.0000000000000000D+20 0.0D+00 I
HADAMARD 1.1311258042977002D+00 1.5D−13 C 1.1183216214976270D+00 6.2D−11 C
HELSBY 3.1478874207827026D+01 2.3D−13 C 3.1942356567463168D+01 5.7D−14 C
HS106 9.9170806040156276D+03 0.0D+00 R 7.0492480204991180D+03 9.3D−10 C
HS13 9.9591034349934426D−01 8.6D−09 C 9.9597959181017603D−01 8.1D−09 C
HS54 -9.0346861527760514D−01 9.1D−13 C -9.0355032730239404D−01 0.0D+00 C
HS88 1.3626561666022186D+00 6.1D−10 C 1.3626502095842203D+00 6.2D−09 C
HYDROELL -3.4911768122992502D+06 9.0D−10 I -3.5172849155203938D+06 2.2D−09 I
HYDROELM -3.5589430419582133D+06 4.1D−09 I -3.5820154956933586D+06 2.3D−13 C
HYDROELS -3.4847828631110410D+06 6.5D−12 I -3.5286111179147959D+06 8.0D−10 I
KISSING 8.4572014023730901D−01 3.4D−12 C 8.4569889810586663D−01 1.3D−09 C
KISSING2 5.2654915526236223D+00 6.2D−09 C 1.8021599830939685D+01 2.7D−10 I
LAUNCH 9.2725606178444941D+00 5.9D−11 R 9.1882356743470428D+00 5.8D−10 I
LISWET10 9.9662298580930191D+00 2.1D−09 C 9.8532126615545774D+00 5.7D−09 C
LISWET11 9.8926397317003563D+00 6.7D−09 C 9.9093183656594572D+00 1.8D−09 C
LISWET12 3.4709344322098713D+02 1.0D−08 C 3.4721740192539943D+02 7.3D−09 C
LISWET1 7.2019038599866461D+00 2.1D−09 C 7.1740310211058489D+00 5.1D−09 C
LISWET2 4.9980570122007109D+00 7.9D−09 C 4.9980458423987564D+00 9.4D−09 C
LISWET7 9.9662747117908211D+01 3.3D−09 C 9.9525825772813050D+01 5.3D−09 C
LISWET8 1.4322780542959848D+02 7.8D−10 C 1.4332510895482986D+02 2.3D−09 C
LISWET9 3.9259966012239528D+02 8.2D−09 C 3.9272705284407925D+02 4.9D−09 C
LUKVLE7 3.5983876291520530D+04 3.9D−12 C 3.9675098770982739D+04 1.3D−11 C
LUKVLE8 1.0403637938349537D+06 8.2D−09 I 1.0486000351324209D+06 4.5D−09 T
LUKVLI10 3.5361026317627657D+03 2.8D−14 C 3.5389868277869309D+03 7.8D−09 C
LUKVLI1 5.7987474494216094D+03 2.2D−16 T 5.7992640765681435D+03 8.9D−16 T
NGONE -6.4348050867845152D−01 9.8D−14 C -6.4347302413449969D−01 8.7D−13 C
OET7 4.4452266442450528D−05 9.3D−09 C 4.4453851764682694D−05 6.8D−09 C
POLYGON -7.8243156835493310D−01 5.8D−15 C -7.8486806357487338D−01 1.6D−09 C
QPNBOEI1 6.7568831386087807D+06 4.3D−09 C 6.7419534937518965D+06 8.4D−09 C
QPNSTAIR 5.6252707410574881D+06 4.3D−10 I 5.4718388856463023D+06 7.3D−10 I
SOSQP1 5.4609877946063766D−11 6.8D−12 C -1.9970420782059248D−10 9.4D−11 C
STEENBRB 9.2774436279666406D+03 5.7D−15 C 9.3084179029220286D+03 1.1D−13 C
STEENBRC 2.8978983336843317D+04 1.6D−13 C 2.8831390555633556D+04 1.8D−12 C
STEENBRE 3.2663483162186443D+04 2.3D−13 C 3.1892177723016997D+04 2.3D−13 C
STEENBRF 1.1059543817372878D+04 1.4D−13 C 1.1527833614525751D+04 2.3D−13 C
STEENBRG 2.8569900009167057D+04 7.5D−13 C 2.9039170882538445D+04 4.6D−13 C
TWIRIMD1 -1.0309527485186256D+00 3.1D−16 T -1.0323897668468400D+00 6.3D−12 C
TWIRISM1 -1.0066259146785668D+00 5.7D−15 C -1.0060853166082226D+00 6.9D−10 C
YAO 1.9781961726478093D+02 3.7D−11 C 1.9699630766406199D+02 6.1D−09 C

Table 2: 56 problems in which Algencan (γ = 10) and Algencan (γ = 2) found “different” local
minimizers.
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Figure 2: Performance profile comparing Algencan-Monotone versus Algencan-Nonmonotone.

17, 19, 20] and other papers. We consider the current (June, 2010) available version of Lancelot B
included in GALAHAD version 2.3.0000 compiled with gfortran (GNU Fortran (GCC) 4.4.1), using
all the HSL subroutines required to improve its performance and without Metis. We used all its
default parameters.

Algencan and Lancelot B have similar stopping criteria related to optimality, feasibility and
complementarity. Lancelot B has no explicit stopping criterion related to complementarity because
it adds slacks variables to the original problem, arriving to a problem with only equality constraints.
In Lancelot B, as well in Algencan, the sup-norm is used to measured primal and dual infeasibilities,
i.e, constraints and projected gradient of the Lagrangian. However, there are two differences
in the Algencan and Lancelot B stopping criteria related to success: (i) by default, Algencan
measures feasibility of the original problem (48) and optimality and complementarity of a scaled
problem (32,34), while Lancelot B, by default, does not scale the original problem; and (ii) the
default accuracy used by Algencan to check (32,34,48) is εopt = εtol = εfeas = ε = 10−8, while the
default accuracy used by Lancelot B to check primal and dual infeasibilities is ε = 10−5 (see [18]
p. 129 and p.138). Regarding (i), we think that the most fair choice is to use the default options
of each method. Regarding (ii), we performed two comparisons: in the first comparison we used
the default accuracy ε = 10−8 of Algencan for both methods, while in the second comparison we
used the default accuracy ε = 10−5 of Lancelot B for both methods.

As most comparisons between different methods, the current one required decisions that can
be beneficial or prejudicial to any of the competing methods. In order to claim that a method
“is better” than other method, a much careful analysis should be done. The only intention of the
present comparison is to show that Algencan is competitive with a well established NLP Augmented
Lagrangian solver like Lancelot B.

Disclaim made, let us go to the figures. Figure 3a shows the performance profile comparing
Algencan and Lancelot B using ε = 10−8. Efficiencies of the methods (measured as in the per-
formance profiles graphic) are 69.25% and 47.51%, respectively; while robustness rates are 82.14%
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Problem
Algencan-Nonmonotone Algencan-Monotone
f Infeas SC f Infeas SC

BIGBANK -4.2056932995377351D+06 2.3D−09 C -4.2056932995377351D+06 2.3D−09 I
CRESC132 6.8587506648012209D−01 1.9D−10 T 7.0305410692936832D−01 1.1D−12 I
DISC2 1.5624999998805678D+00 6.4D−09 C 1.5624999999784881D+00 1.7D−10 I
HS106 7.0492480205251013D+03 1.5D−11 C 9.9170806040156276D+03 0.0D+00 R
HS56 -3.4560000009041447D+00 6.3D−10 R -3.4560000019325057D+00 1.3D−09 I
HYDROELL -3.5855467985884924D+06 7.7D−10 C -3.4911768122992502D+06 9.0D−10 I
HYDROELM -3.5820154956963453D+06 1.9D−09 C -3.5589430419582133D+06 4.1D−09 I
HYDROELS -3.5822682998100105D+06 5.3D−14 C -3.4847828631110410D+06 6.5D−12 I
LUKVLE8 1.0403637938349537D+06 8.2D−09 C 1.0403637938349537D+06 8.2D−09 I
NCVXQP7 -5.2197395385006552D+09 1.8D−10 C -5.2197395385006552D+09 1.8D−10 T
NCVXQP8 -3.5752196837515464D+09 2.0D−09 C -3.5752196837515464D+09 2.0D−09 T
OPTCDEG2 2.2770230856395111D+02 1.5D−09 C 2.2770232533154612D+02 4.4D−13 I
OPTCDEG3 4.5790146143454415D+01 3.3D−10 C 4.5790147052809317D+01 2.7D−11 I
QPNSTAIR 5.1460330792520382D+06 2.8D−14 C 5.6252707410574881D+06 4.3D−10 I
TRAINH 1.2311903364620555D+01 1.0D−11 C 1.2311903364620555D+01 1.0D−11 T

Table 3: 15 problems in which Algencan-Nonmonotone and Algencan-Monotone stopped by a
different stopping criterion.

and 69.41%, respectively. Algencan satisfied the stopping criterion associated with convergence in
550 problems, while this figure is 354 for Lancelot B. Algencan stopped achieving the maximum
CPU Time in 65 cases and Lancelot B in 61 cases. In the remaining cases both methods stopped
by different stopping criteria. Both methods found equivalent minimizers in 395 problems and
different minimizers in 75 problems. Among these 75 cases, Lancelot B found a better minimizer
in 42 cases and the opposite situation occurred in the other 33 cases. In 62 problems, both methods
failed to find a feasible point, i.e., a point satisfying (48) with εfeas = ε = 10−8. Algencan found a
feasible point in 101 problems in which Lancelot B failed in finding a feasible point while the op-
posite situation occurred in 11 problems. Because of this difference regarding achieving feasibility,
both methods exhibit similar performance profiles curves with the one of Algencan being around
10% above the other. This result may be related to the relatively strict tolerance εfeas = ε = 10−8

used in (48) to declare that a given point is feasible.
Figure 3b shows the performance profile comparing Algencan and Lancelot B using ε = 10−5.

Efficiencies of the methods (measured as in the performance profiles graphic) are 58.85% and
51.55%, respectively; while robustness rates are 66.61% and 63.35%, respectively. Algencan sat-
isfied the stopping criterion associated with convergence in 559 problems, while this figure is 464
for Lancelot B. Algencan stopped achieving the maximum CPU Time in 59 cases and Lancelot B
in 48 cases. In the remaining cases both methods stopped by different stopping criteria. Both
methods found equivalent minimizers in 242 problems and different minimizers in 261 problems.
Among these 261 cases, Lancelot B found a better minimizer in 155 cases and the opposite situa-
tion occurred in the other 106 cases. In 48 problems, both methods failed to find a feasible point,
i.e., a point satisfying (48) with εfeas = ε = 10−5. Algencan found a feasible point in 81 problems
in which Lancelot B failed in finding a feasible point while the opposite situation occurred in 12
problems. Because of this difference regarding achieving feasibility, both methods exhibit similar
performance profiles curves with the one of Algencan a little bit above the other. Note that the
differences of this results with the ones of the paragraph above (related to the experiment with
ε = 10−8) reflect the usage of a looser accuracy for the stopping criterion. Note also that the
methods seem to have found different local minimizers in many cases. This is clearly connected to
the loss stopping criteria associated with the relatively strict criterion (49) used to decide whether
to functional values are equivalent or not. Anyway, the overall conclusion is similar the one ob-
tained in the previous experiment, i.e., Algencan performance is as least as good the performance
of Lancelot B.
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Figure 3: Performance profiles comparing Algencan and Lancelot B using different values for the
tolerance ε on their stopping criteria related to success: (a) ε = 10−8, and (b) ε = 10−5. In
Algencan, using tolerance ε means that we set εopt = εtol = εfeas = ε in (32,34,48). In Lancelot B,
it means that we set the primal and dual required accuracies equal to ε. Case (a) corresponds
to the default values used in Algencan while case (b) corresponds to the default values used in
Lancelot B.
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4 Conclusions

This work presented an improvement of the nonlinear programming solver Algencan. The improve-
ment is related to the possibility of reducing the penalty parameter in certain circumstances and
required modifications on the algorithm and its convergence theory. The modifications were strictly
motivated by numerical experience. We took into account the possible failure of the box-constraint
optimization solver when trying to solve Augmented Lagrangian subproblems. This possibility is
not contemplated in usual convergence theory because, theoretically, reasonable box-constraint
solvers always find almost stationary points. The proposed modifications lead to a new default
version of Algencan, being more efficient and robust than its predecessor.

Acknowledgements. The authors are indebted to two anonymous referees, whose comments
helped to improve the quality of the paper.
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