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Abstract

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear pro-

gramming problems. At each outer iteration a minimization subproblem with simple con-

straints, whose objective function depends on updated Lagrange multipliers and penalty pa-

rameters, is approximately solved. When the penalty parameter becomes very large the sub-

problem is difficult, therefore the effectiveness of this approach is associated with boundedness

of penalty parameters. In this paper it is proved that, under more natural assumptions than

the ones up to now employed, penalty parameters are bounded. For proving the new bound-

edness result, the original algorithm has been slightly modified. Numerical consequences of

the modifications are discussed and computational experiments are presented.
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1 Introduction

We consider the nonlinear programming problem in the form:

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω, (1)

where
Ω = {x ∈ IRn | h(x) = 0, g(x) ≤ 0} (2)

and f : IRn → IR, h : IRn → IRm, g : IRn → IRp, h : IRn → IRm, g : IRn → IRp have continuous
first derivatives.

The constraints defined by h(x) = 0 and g(x) ≤ 0 will be included in the augmented Lagrangian
definition. On the other hand, the constraints that define the set Ω are generally simple, in the
sense that efficient methods for optimization within Ω are available. In many practical cases Ω is
a box or a bounded polytope.
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Given x ∈ IRn, λ ∈ IRm, µ ∈ IRp, µ ≥ 0, we define the Powell-Hestenes-Rockafellar (PHR)
[11, 12, 20, 29, 32] augmented Lagrangian by:

Lρ(x, λ, µ) = f(x) +
ρ

2

[ m∑

i=1

(
hi(x) +

λi

ρ

)2

+

p∑

i=1

max

{
0, gi(x) +

µi

ρ

}2]
. (3)

PHR-like augmented Lagrangian methods are based on the iterative minimization of Lρ(x, λ, µ)
with respect to x ∈ Ω, followed by convenient updates of λ, µ and ρ. In this paper we consider
variations of the implementation introduced in [1], by means of which it is possible to prove that
feasible limit points that satisfy the Constant Positive Linear Dependence (CPLD) constraint
qualification [3, 30] fulfill the Karush-Kuhn-Tucker (KKT) conditions1. The CPLD condition was
introduced in [30] and its status as a constraint qualification was elucidated in [3]. This condition is
weaker than the Mangasarian-Fromovitz (MFCQ) constraint qualification [25] and, thus, it is also
weaker than the Linear Independence constraint qualification (LICQ) [17]. Therefore, first-order
convergence results based on the CPLD constraint qualification are stronger than results based on
LICQ or MFCQ.

The method introduced in [1] has been implemented as Algencan, a freely available software
that can be found in http://www.ime.usp.br/∼egbirgin/tango/. Algencan is especially effective in
problems with many inequality constraints and in problems in which the structure of the Lagrangian
Hessian matrix is not suitable for sparse matrix factorizations. A version of Algencan for global
optimization has been described in [8]. Modifications with convergence to points that satisfy second
order optimality conditions were given in [2].

When the penalty parameter is very large, the subproblem associated with the minimization
of the augmented Lagrangian may be very difficult, in the sense that unitary stabilized Newtonian
steps corresponding to this problem may not provide decrease of the augmented Lagrangian, which
makes it hard to evaluate progress during the subproblem resolution process. For this reason, it
is important to develop strategies that preserve convergence maintaining moderate values of the
penalty parameters. Under stronger conditions than the ones required for proving that limit points
satisfy the KKT conditions, it was proved in [1] that penalty parameters remain bounded.

In the present paper we prove that, for a modified form of Algencan, penalty parameters remain
bounded under more natural assumptions than the ones used in [1]. We will present numerical
experiments showing that the modifications introduced here do not impair the performance of
previous versions of Algencan. We will show that first-order convergence results proved in [1]
are preserved for the new version of Algencan. From the point of view of penalty parameter
boundedness, the differences between the new results and the ones proved in [1] are:

1. In [1] the LICQ condition is assumed to hold at a limit point x∗. Here we only assume that
MFCQ holds and the vector of Lagrange multipliers associated with x∗ is unique.

2. In [1] it is assumed that strict complementarity holds at x∗, with respect to the active
constraints of type gi(x) ≤ 0. Moreover, for obtaining the boundedness results of [1], it is
assumed that the Hessian of the Lagrangian is positive definite on the orthogonal subspace
to the gradients of all active constraints. In the present paper we employ a second order
sufficient optimality condition that does not involve strict complementarity at all.

The paper is organized as follows. In Section 2 we describe the PHR augmented Lagrangian
method considered in this research and we prove that this method preserves the global convergence

1The CPLD condition says that whenever some gradients of active constraints are linearly dependent at a feasible
point, and the coefficients corresponding to inequality constraints are non-negative, then the same gradients remain
linearly dependent in a neighborhood of the point.
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properties of [1]. In Section 3 we prove boundedness of the penalty parameter and some results
on the speed of convergence. Section 4 is devoted to numerical questions and implementation.
Conclusions and lines for future research are stated in Section 5.

Notation. Vectors will be denoted by columns. For any vector v with components vi we denote
v+ the vector whose components are max{0, vi}. Given h : IRn → IRm, we denote ∇h(x) =
(∇h1(x), . . . ,∇hm(x)). The symbol ‖·‖ denotes an arbitrary norm. The closed ball {x ∈ IRn | ‖x−
x∗‖ ≤ δ} will be denoted B(x∗, δ). We denote IR+ = {x ∈ IRn | x ≥ 0}. If v, w ∈ IRn we denote
min{v, w} ∈ IRn the vector whose components are min{vi, wi}. We write εk ↓ 0 to denote that
{εk} is a sequence of nonnegative numbers that tends to zero.

2 Algorithm

Given x ∈ IRn, λ ∈ IRn, µ ∈ IRp
+, v ∈ IRm, w ∈ IR

p

+ we define the Lagrangian L(x, λ, µ, v, w) by

L(x, λ, µ, v, w) = Lupper(x, λ, µ) +

m∑

i=1

vihi(x) +

p∑

i=1

wigi(x),

where

Lupper(x, λ, µ) = f(x) +

m∑

i=1

λihi(x) +

p∑

i=1

µigi(x).

We also define:

S(x, λ, µ, v, w) =




∇L(x, λ, µ, v, w)
h(x)

min{−g(x), µ}
h(x)

min{−g(x), w}


 (4)

and σ(x, λ, µ, v, w) = ‖S(x, λ, µ, v, w)‖. The Karush-Kuhn-Tucker (KKT) conditions may be writ-
ten:

σ(x, λ, µ, v, w) = 0.

Algorithm 2.1. Let εk ↓ 0, λmin ≤ λmax, µmax ≥ 0, λ̄1 ∈ [λmin, λmax]
m, µ̄1 ∈ [0, µmax]

p, ρ1 > 0,
r ∈ (0, 1), γ > 1. Initialize k ← 1.

Step 1. Compute xk as an approximate stationary point of

Minimize Lρk
(x, λ̄k, µ̄k) subject to h(x) = 0, g(x) ≤ 0. (5)

We use, as approximate minimization criterion, the existence of vk ∈ IRm, wk ∈ IR
p

+, such that:

‖∇Lρk
(xk, λ̄k, µ̄k) +∇h(xk)vk +∇g(xk)wk‖ ≤ εk, (6)

‖h(xk)‖ ≤ εk, ‖min{−g(xk), wk}‖ ≤ εk. (7)

Step 2. Compute
λk+1 = λ̄k + ρkh(x

k) (8)

and
µk+1 = (µ̄k + ρkg(x

k))+. (9)
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Step 4. If σ(xk, λk+1, µk+1, vk, wk) = 0, stop. (In this case xk satisfies the KKT conditions of the
problem.)

Step 5. If k = 1 or

σ(xk, λk+1, µk+1, vk, wk) ≤ rσ(xk−1, λk, µk, vk−1, wk−1) (10)

we define
ρk+1 ≥ ρk. (11)

Else, we define
ρk+1 ≥ γρk. (12)

Step 6. For all i = 1, . . . ,m, j = 1, . . . , p, compute λ̄k+1
i ∈ [λmin, λmax] and µ̄k+1

j ∈ [0, µmax] in
such a way that

λ̄k+1
i = λk+1

i if λk+1
i ∈ [λmin, λmax] (13)

and
µ̄k+1
j = µk+1

j if µk+1
j ∈ [0, µmax]. (14)

Set k ← k + 1 and go to Step 1.

In the following lemma we give a sufficient condition for well-definiteness of the sequence gen-
erated by Algorithm 2.1.

Lemma 2.1 Assume that Ω is bounded and that, for all x ∈ Ω a constraint qualification with
respect to the constraints h(x) = 0, g(x) ≤ 0 is satisfied. Then, for all k = 1, 2, . . . there exists

xk ∈ IRn satisfying (6) and (7).

Proof. Let x be a solution of (5). The existence of x is guaranteed by the compactness of Ω and the
continuity of Lρk

, h, g. Since x satisfies a constraint qualification, the KKT conditions are fulfilled

at this point. This implies that (6) and (7) hold with xk = x. 2

Note that xk does not need to be a global minimizer of (5), since we only need the fulfillment
of (6) and (7). If Ω is simple enough there exist practical algorithms that find KKT points of
(5) with arbitrarily high precision. For example, in Algencan, when Ω is a box, one employs the
globally convergent algorithm Gencan [9] that satisfies the desired convergence requirements.

The main difference between Algorithm 2.1 and Algorithm 3.1 of [1] is that in [1] one uses the
test ∥∥∥∥

(
h(xk)

min{−g(xk), µ̄k/ρk}

)∥∥∥∥ ≤ r

∥∥∥∥
(

h(xk−1)
min{−g(xk−1), µ̄k−1/ρk−1}

)∥∥∥∥ (15)

instead of (10) to decide how to update the penalty parameter ρk. Note that, by (6), (7), (8) and
(9), one has that ‖∇L(xk, λk+1, µk+1, vk, wk)‖ ≤ εk, ‖h(x

k)‖ ≤ εk, and ‖min{−g(xk), wk}‖ ≤ εk
for all k. Therefore, by (4), since εk tends to zero, the test (10) essentially verifies feasibility and
complementarity with respect to the penalized constraints. Dual-feasibility progress and feasibility-
complementarity improvement with respect to the simple subproblem constraints is guaranteed by
(6) and (7), respectively.

Another minor difference is that, in [1] one defines ρk+1 = ρk instead of (11) and ρk+1 = γρk
instead of (12). Obviously, (11) and (12) are more general than the corresponding choices in [1].
We decided to use (11-12) here because we want to consider the possibility of increasing the penalty
parameter even in situations in which (10) holds. The use of (11) and (12) does not alter at all
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the global convergence results of [1].

Lemma 2.2. Assume that {xk} is generated by Algorithm 2.1. Then, for all k = 1, 2, . . ., i =
1, . . . , p, we have:

|min{−gi(x
k), µk+1

i }| ≤
|µk+1

i − µ̄k
i |

ρk
. (16)

Proof. If gi(x
k) ≥ 0, since µk+1

i ≥ 0 we have that

min{−gi(x
k), µk+1

i } = −gi(x
k). (17)

Since µ̄k
i + ρkgi(x

k) ≥ 0, we have that µk+1 = µ̄k
i + ρkgi(x

k) in this case. Therefore,

µk+1
i − µ̄k

i

ρk
= gi(x

k). (18)

By (17) and (18), the thesis holds in the case gi(x
k) ≥ 0.

If gi(x
k) ≤ −µ̄k

i /ρk, we have that µk+1 = 0. Therefore, min{−gi(x
k), µk+1

i } = 0 and (16) is
also fulfilled. Consider, finally, the case in which

−µ̄k
i /ρk < gi(x

k) < 0.

In this case µk+1 = µ̄k
i + ρkgi(x

k) and (18) takes place. Therefore, if (17) holds, the thesis follows
trivially. It remains to consider the case in which

min{−gi(x
k), µk+1

i } = µk+1
i . (19)

Then, µk+1
i ≤ |gi(x

k)|. So, by (18) and (19), the thesis also follows in this case. 2

Lemma 2.3. Assume that {xk} is generated by Algorithm 2.1 and {xk}k∈K is a subsequence that
converges to x∗ ∈ IRn. Assume that gi(x

∗) < 0 for all i ∈ I and g
j
(x∗) < 0 for all j ∈ J . Then,

there exists a sequence {ε′k}k∈K such that ε′k ↓ 0 and, for all k ∈ K large enough:

‖∇f(xk) +∇h(xk)λk+1 +
∑

i/∈I

µk+1
i ∇gi(x

k) +∇h(xk)vk +
∑

j /∈J

wk
j∇gj(x

k)‖ ≤ ε′k, (20)

‖h(xk)‖ ≤ ε′k and ‖g(xk)+‖ ≤ ε′k. (21)

Moreover, if, in addition, the point x∗ is feasible and satisfies the Mangasarian-Fromovitz
constraint qualification (MFCQ), the sequences {λk+1, µk+1, vk, wk}k∈K are bounded. In this case,
x∗ satisfies the KKT conditions and, if there is only one vector of multipliers (λ∗, µ∗, v∗, w∗)
associated with x∗, we have:

lim
k∈K

(λk+1, µk+1, vk, wk) = (λ∗, µ∗, v∗, w∗). (22)

Proof. By (6), (8) and (9) we have that

‖∇Lupper(x
k, λk+1, µk+1) +∇h(xk)vk +∇g(xk)wk‖ ≤ εk (23)

for all k ∈ K. By (7) and the continuity of g we have that limk∈K wk
j = 0 for all j ∈ J . Therefore,

by the continuity of ∇g,

lim
k∈K
∇g

j
(xk)wk

j = 0
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for all j ∈ J . Therefore, by (23),

lim
k∈K
‖∇Lupper(x

k, λk+1, µk+1) +∇h(xk)vk +
∑

j /∈J

∇g
j
(xk)wk

j ‖ = 0. (24)

Now suppose that {ρk} is bounded. In this case, by (10), we have that

lim
k∈K

min{−gi(x
k), µk+1

i } = 0

for all i = 1, . . . , p. Since gi(x
∗) < 0 for all i ∈ I, by the continuity of g we have that

lim
k∈K

µk+1
i = 0 for all i ∈ I.

By the continuity of ∇g this implies that

lim
k∈K
∇gi(x

k)µk+1
i = 0 for all i ∈ I.

Then, by (24),

lim
k∈K
‖∇f(xk) +∇h(xk)λk+1 +

∑

i/∈I

∇gi(x
k)µk+1

i +∇h(xk)vk +
∑

j /∈J

∇g
j
(xk)wk

j ‖ = 0. (25)

Finally, suppose that {ρk} tends to infinity. Since {µ̄k} is bounded and gi(x
∗) < 0 for i ∈ I,

we have that µ̄k
i + ρkgi(x

k) < 0 for i ∈ I and k ∈ K large enough. This implies that, µk+1
i = 0 for

i ∈ I and k ∈ K large enough. This completes the proof of the first part of the Lemma.
For proving the second part, assume that the sequence {λk+1, µk+1, vk, wk}k∈K is not bounded.

Therefore, limk∈K Mk =∞, where

Mk = max{‖λk+1‖∞, ‖µk+1‖∞, ‖vk‖∞, ‖wk‖∞}.

Then, the sequence {λk+1/Mk, µ
k+1/Mk, v

k/Mk, w
k/Mk}k∈K is bounded. It turns out that some

subsequence is convergent and its limit cannot be null, since, by the choice of Mk infinitely many
elements have modulus equal to 1. Taking limits for this subsequence and using the first part of
the theorem, we obtain that MFCQ cannot hold.

Then, if MFCQ holds, every limit of a convergent subsequence of (λk+1, µk+1, vk, wk) defines
a set of KKT multipliers. Therefore, (22) holds in the case that the multipliers are unique. 2

Lemma 2.3 makes it easy to prove the following global convergence theorem employing several
arguments used in Theorems 4.1 and 4.2 of [1].

Theorem 2.1. Assume that {xk} is a sequence generated by Algorithm 2.1 and x∗ is a limit point.
Then:

1. The subproblem constraints h(x) = 0, g(x) ≤ 0 hold at x∗. Moreover, if {ρk} is bounded, x∗

is feasible.

2. If x∗ satisfies the CPLD constraint qualification with respect to the subproblem constraints,
then the KKT conditions of the problem

Minimize ‖h(x)‖22 + ‖g(x)+‖
2
2 subject to h(x) = 0, g(x) ≤ 0 (26)

hold at x∗.
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3. If x∗ is feasible and satisfies the CPLD constraint qualification with respect to all the con-
straints of problem (1), then x∗ fulfills the KKT conditions of this problem.

Proof. By (7), since εk tends to zero, we have that h(x∗) = 0, g(x∗) = 0. If the sequence {ρk} is
bounded, then, for all k large enough, (10) holds. Therefore,

lim
k→∞

σ(xk, λk+1, µk+1, vk, wk) = 0.

Thus,

lim
k→∞

‖h(xk)‖ = lim
k→∞

‖h(xk)‖ = lim
k→∞

‖min{−g(xk), µk+1}‖ = lim
k→∞

‖min{−g(xk), wk}‖ = 0.

This implies that
‖h(x∗)‖ = ‖h(x∗)‖ = ‖g(x∗)+‖ = ‖g(x

∗)+‖ = 0.

Thus, x∗ is feasible.
Let us prove now the third part of the thesis. Assume that K is an infinite sequence of indices

such that limk∈K xk = x∗ and x∗ is feasible. By Lemma 2.3, (20) holds for k ∈ K large enough
(say, k ∈ K1). Define, for all k ∈ K1,

Gk = ∇h(xk)λk+1 +
∑

i/∈I

µk+1
i ∇gi(x

k) +∇h(xk)vk +
∑

j /∈J

wk
j∇gj(x

k). (27)

By (20) we have that
‖∇f(xk) +Gk‖ ≤ ε′k (28)

for all k ∈ K1. By the convergence of {xk} for k ∈ K1 and the continuity of ∇f , we have that
{Gk} is bounded.

By Caratheodory’s Theorem ([6], page 689), for all k ∈ K1 there exist λ̂k+1 ∈ IRm, µ̂k+1 ∈ IRp
+,

v̂k ∈ IRm, ŵk ∈ IR
p

+, I1(k) ⊆ {1, . . . ,m}, I2(k) ⊆ {1, . . . , p} − I, I3(k) ⊆ {1, . . . ,m}, I4(k) ⊆
{1, . . . , p} − J such that

Gk =
∑

i∈I1(k)

λ̂k+1
i ∇hi(x

k) +
∑

i∈I2(k)

µ̂k+1
i ∇gi(x

k) +
∑

i∈I3(k)

v̂k∇hi(x
k) +

∑

i∈I4(k)

ŵk
j∇gj(x

k) (29)

and the gradients ∇hi(x
k), i ∈ I1(k), ∇gi(x

k), i ∈ I2(k), ∇hi(x
k), i ∈ I3(k) and ∇gi(x

k), i ∈ I4(k)
are linearly independent.

Taking an appropriate subsequence K2 ⊆ K1 we may assume that Ij = Ij(k) for all k ∈ K2,
j = 1, 2, 3, 4.

Define, for all k ∈ K1,

bk = max{max{|λ̂k+1
i |, i ∈ I1},max{|uk

i |, i ∈ I3},max{µ̂k+1
i , i ∈ I2},max{v̂ki , i ∈ I4}}.

If {bk} is bounded, taking limits on both sides of (28) and using (29) for an appropriate subsequence,
we obtain the KKT condition.

Let us assume now that the CPLD constraint qualification relative to all the constraints of (1)
is satisfied at x∗. Assume that {bk} is unbounded. By (29), dividing both sides of (28) by {bk},
we obtain:

Gk

bk
=

∑

i∈I1

λ̂k+1

bk
∇hi(x

k) +
∑

i∈I2

µ̂k+1
i

bk
∇gi(x

k) +
∑

i∈I3

v̂k

bk
∇g

i
(xk) +

∑

i∈I4

ŵk
j

bk
∇g

i
(xk). (30)
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Since {Gk} is bounded, the left-hand side of (30) tends to zero. Therefore, taking limits
for an appropriate subsequence we obtain that a nontrivial linear combination of the gradients
∇hi(x

∗), i ∈ I1, ∇gi(x
∗), i ∈ I2, ∇hi(x

∗), i ∈ I3 and ∇g
i
(x∗), i ∈ I4, is null, with non-negative

coefficients corresponding to the gradients ∇gi(x
∗) and ∇g

i
(x∗). Thus, by the CPLD condition,

the gradients∇hi(x), i ∈ I1, ∇gi(x), i ∈ I2, ∇hi(x), i ∈ I3 and∇gi(x), i ∈ I4 are linearly dependent
in a neighborhood of x∗. This contradicts the linear independence of the gradients that appear in
the second term of (29).

Finally, let us prove the second part of the thesis. By (8), (9) and (20), if limk∈K xk = x∗, for
k ∈ K large enough we have:

‖∇f(xk) +

m∑

i=1

(λ̄k
i + ρkhi(x

k))∇hi(x
k) +

∑

gi(x∗)≥0

(µ̄k
i + ρkgi(x

k))+∇gi(x
k)

+

m∑

i=1

vki∇hi(x
k) +

∑

g
i
(x∗)≥0

wk
i∇gi(x

k)‖ ≤ ε′k. (31)

If {ρk} is bounded the thesis follows from the first part of the theorem. Assuming that ρk tends
to infinity, dividing both sides of (31) by ρk, using that λ̄k and µ̄k are bounded and that f,∇h,∇g
are continuous we deduce that there exists a sequence ε′′k ↓ 0 such that

‖

m∑

i=1

hi(x
k)∇hi(x

k) +
∑

gi(x∗)≥0

gi(x
k)+∇gi(x

k) +

m∑

i=1

(vki )
′∇hi(x

k) +
∑

g
i
(x∗)≥0

(wk
i )

′∇g
i
(xk)‖ ≤ ε′′k ,

(32)
where (vki )

′ = vki /ρk for all i = 1, . . . ,m and (wk
i )

′ = wk
i /ρk for all i such that g

i
(x∗) ≥ 0.

Let us define Φ(x) = 1
2 (‖h(x)‖

2
2 + ‖g(x)+‖

2
2). Then, by (32),

‖∇Φ(xk) +

m∑

i=1

(vki )
′∇hi(x

k) +
∑

g
i
(x∗)≥0

(wk
i )

′∇g
i
(xk)‖ ≤ ε′′k . (33)

Assume that the CPLD condition relative to the constraints that define Ω is satisfied at x∗. Then,
we deduce that x∗ is a KKT point of (26) as in the proof of the third part of the thesis, using
Caratheodory’s Theorem in (33). 2

3 Penalty Boundedness and Order of Convergence

In this section we use the following assumptions.

Assumption A1. The set Ω is compact and a constraint qualification with respect to h(x) =
0, g(x) ≤ 0 is satisfied for all x ∈ Ω. (Then, by Lemma 2.1, the sequence {xk}, generated by
Algorithm 2.1, is well defined.)

Assumption A2. {xk} converges to a feasible point x∗.

Assumption A3. The Mangasarian-Fromovitz constraint qualification is satisfied at x∗ and there
is only one vector (λ∗, µ∗, v∗, w∗) of associated multipliers.
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Assumption A4. The functions f, h, g, h, g are twice continuously differentiable at x∗ and the
second order sufficient optimality condition is fulfilled at x∗. This means that KKT conditions
hold at x∗ and that there exist associated Lagrange multipliers {λ∗, µ∗, v∗, w∗} such that

dT∇2L(x∗, λ∗, µ∗, v∗, w∗)d > 0

for all non-null vector d ∈ IRn satisfying

∇f(x∗)T d ≤ 0,

∇h(x∗)T d = 0,∇gi(x
∗)T d ≤ 0 for i ∈ {1, . . . , p} with gi(x

∗) = 0,

∇h(x∗)T d = 0,∇g
i
(x∗)T d ≤ 0 for i ∈ {1, . . . , p} with g

i
(x∗) = 0.

Assumption A5. For all k = 2, 3, . . ., we define εk → 0 in such a way that

εk ≤ χ(σ(xk−1, λk, µk, vk−1, wk−1)),

where χ : IR+ → IR+ is such that limt→0 χ(t)/t = 0.

Assumption A6. For all k = 1, 2, . . ., when (10) holds, we choose ρk+1 = ρk in (11).

Remark. Assume that the feasible point x∗ is such that gi(x
∗) = 0 if and only if i ∈ A ⊆ {1, . . . , p},

g(x∗) < 0 and x∗ satisfies KKT with multipliers λ∗, µ∗, v∗, w∗. Suppose that x∗ satisfies the
conditions employed in [1] to prove boundedness of the penalty parameters. Let us prove that, in
this case, Assumption A4 necesarily holds. Let d ∈ IRn, d 6= 0, be such that

∇f(x∗)T d ≤ 0 (34)

and
∇h(x∗)T d = 0,∇gi(x

∗)T d ≤ 0 for i ∈ A,∇h(x∗)T d = 0. (35)

By the KKT conditions,

∇f(x∗) +∇h(x∗)λ∗ +∇h(x∗)v∗ +
∑

i∈A

∇g(x∗)µ∗
i = 0. (36)

By the strict complementarity assumption used in [1], we have that µ∗ > 0. Thus, by (35) and
(36), if there exists i ∈ A such that ∇gi(x

∗)T d < 0, we obtain that ∇f(x∗)T d > 0, contradicting
(34). Therefore, ∇gi(x

∗)T d = 0 for all i ∈ A. Thus, the second order assumption of [1] implies
that

dT∇2L(x∗, λ∗, µ∗, v∗, w∗)d > 0.

This means that Assumption A4 holds. On the other hand, Assumption A4 is satisfied in trivial
situations in which the assumptions of [1] are not fulfilled. For example, consider the problem

Minimize x2 subject g1(x) ≤ 0,

with g1(x) ≡ x. In this case, the strict complementarity assumption of [1] does not hold, but
Assumption A4 is trivially verified.

Lemma 3.1. Let Assumptions A1, A2 and A3 hold. Then,

lim
k→∞

λk = λ∗, lim
k→∞

µk = µ∗, lim
k→∞

vk = v∗, lim
k→∞

wk = w∗.

9



Proof. The result follows from (22) using the convergence of the whole sequence {xk}. 2

Lemma 3.2. Let Assumptions A1, A2, A3 and A4 hold. Then, there exist k0 ∈ {1, 2, . . .},
β1, β2 > 0 such that, for all k ≥ k0,

β1‖(x
k, λk+1, µk+1, vk, wk)− (x∗, λ∗, µ∗, v∗, w∗)‖

≤ σ(xk, λk+1, µk+1, vk, wk)

≤ β2‖(x
k, λk+1, µk+1, vk, wk)− (x∗, λ∗, µ∗, v∗, w∗)‖

Proof. The result follows from Lemma 3.1 and Assumption A4, using the local error bound theory
[16, 19] 2

By Lemma 3.1, under Assumptions A1, A2 and A3, the sequences {λk} and {µk} are bounded.
Therefore, by (13) and (14), if µmax, λmax and −λmin are large enough, we will have that, asymp-
totically,

λk = λ̄k, and µk = µ̄k (37)

This fact justifies the following assumption which, in turn, will be used in several of the forthcom-
ing results.

Assumption B. There exists k0 ∈ IN such that λk = λ̄k and µk = µ̄k for all k ≥ k0.

The fulfillment of Assumption B depends on the choice of the safeguarding parameters λmin,
λmax and µmax. Algorithm 2.1 admits arbitrary choices for these parameters, and the first-order
convergence results are independent of these choices. However, if we fail to choose sufficiently large
safeguards and, consequently, Assumption B fails to hold, boundedness of the penalty parameters
will not be guaranteed.

The technique of safeguarding the Lagrange multiplier estimates allows one to prove the first-
order convergence results of Section 2. This technique is also used in [1]. If one decides not to
use safeguards at all, convergence to KKT points can only be guaranteed assuming boundedness
of the multipliers estimates, or providing a sufficient assumption on the problem that implies such
boundedness. Unfortunately, problem assumptions that imply boundedness of {λk, µk} tend to
be very strong. Many times it is assumed that the gradients of active and violated constraints at
all the limit points of the algorithmic sequence are linearly independent [12]. Since, in principle,
every point in Ω might be a limit point, in order to ensure linearly independence at the cluster
points we would need to assume that the gradients of active and violated constraints are linearly
independent at all the points of Ω. This property does not hold even in very simple cases. There-
fore, we consider, as in [1], that safeguarding multipliers is a reasonable price to pay for obtaining
first-order convergence under weak problem assumptions. On the other hand, we are able to prove
boundedness of the sequence {λk, µk} under MFCQ, but we need sufficiently large safeguarding
parameters to contain that sequence. Again, we think that this is a reasonable price to pay. Last,
but not least, sensible computer implementations do not accept extremely large multiplier esti-
mates, which would impair the performance of subproblem solvers.

Lemma 3.3. Suppose that Assumptions A1–A5 and B hold. Then, there exists k1 ∈ {1, 2, . . .}, c1, c4 >
0 and a sequence ηk → 0 such that, for all k ≥ k1,

(
1−

c4
ρk

)
σ(xk, λk+1, µk+1, vk, wk) ≤

(
c1ηk +

c4
ρk

)
σ(xk−1, λk, µk, vk−1, wk−1), (38)
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where

ηk =
χ(σ(xk−1, λk, µk, vk−1, wk−1))

σ(xk−1, λk, µk, vk−1, wk−1)
. (39)

Proof. By (6), (7), (8), (9), Assumption A1 and norm equivalences, there exists c > 0 such that

∥∥∥∥



∇L(xk, λk+1, µk+1, vk, wk)

h(xk)
min{−g(xk), wk}




∥∥∥∥ ≤ cεk

for all k = 1, 2, . . .. Therefore, there exist c1, c2 > 0 such that, for all k = 1, 2, . . .,

σ(xk, λk+1, µk+1, vk, wk) ≤ c1εk + c2(‖h(x
k)‖+ ‖min{−g(xk), µk+1}‖).

Thus, by (8), (16) and Assumption B, there exists c3 > 0 such that, for all k ≥ k1,

σ(xk, λk+1, µk+1, vk, wk) ≤ c1εk +
c3
ρk

(‖λk+1 − λk)‖+ ‖µk+1 − µk‖).

Therefore, for all k ≥ k1,

σ(xk, λk+1, µk+1, vk, wk) ≤ c1εk +
c3
ρk

(‖λk+1 − λ∗‖+ ‖λk − λ∗‖+ ‖µk+1 − µ∗‖+ ‖µk − µ∗‖).

Thus, by Lemma 3.2, there exists c4 > 0 such that, for all k ≥ k1,

σ(xk, λk+1, µk+1, vk, wk) ≤ c1εk +
c4
ρk

[σ(xk, λk+1, µk+1, vk, wk) + σ(xk−1, λk, µk, vk−1, wk−1)].

Therefore, by Assumption A5, for all k ∈ k1 we have:
(
1−

c4
ρk

)
σ(xk, λk+1, µk+1, vk, wk) ≤ c1χ(σ(x

k−1, λk, µk, vk−1, wk−1))+
c4
ρk

σ(xk−1, λk, µk, vk−1, wk−1).

By Lemma 3.1, Lemma 3.2 and Assumption A5 we have that

lim
k→∞

ηk = 0,

where ηk is defined by (39). Therefore, for k ≥ k1,
(
1−

c4
ρk

)
σ(xk, λk+1, µk+1, vk, wk) ≤

(
c1ηk +

c4
ρk

)
σ(xk−1, λk, µk, vk−1, wk−1),

as we wanted to prove. 2

Theorem 3.1 Suppose that Assumptions A1–A6 and B hold. Then, the sequence of penalty pa-
rameters {ρk} is bounded.

Proof. Assume, by contradiction, that limk→∞ ρk =∞. By Lemma 3.3, there exists k1 such that
(38) holds for k ≥ k1. Let k2 ≥ k1 be such that

(
1−

c4
ρk

)
>

1

2

for all k ≥ k2. Then, by (38), for k ≥ k2 we have:

σ(xk, λk+1, µk+1, vk, wk) ≤ 2

(
c1ηk +

c4
ρk

)
σ(xk−1, λk, µk, vk−1, wk−1). (40)
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Let k3 ≥ k2 be such that

2

(
c1ηk +

c4
ρk

)
≤ r

for all k ≥ k3. Then, for all k ≥ k3,

σ(xk, λk+1, µk+1, vk, wk) ≤ rσ(xk−1, λk, µk, vk−1, wk−1).

Therefore, by (10) and Assumption A6, one has that ρk+1 = ρk for all k ≥ k3. This contradicts
the assumption that ρk tends to infinity. So, the theorem is proved. 2

Corollary 3.1.Under the assumptions of Theorem 3.1, the sequence (xk, λk+1, µk+1, vk, wk) con-
verges to (x∗, λ∗, µ∗, v∗, w∗) with R-linear convergence rate equal to r.

Proof. By Theorem 3.1 and Assumption A6, for all k large enough one has:

σ(xk, λk+1, µk+1, vk, wk) ≤ rσ(xk−1, λk, µk, vk−1, wk−1).

Therefore, the result follows from Lemma 3.2. 2

The necessity of maintaining bounded penalty parameters is controversial. The linear systems
associated with the solution of the subproblem (6-7) may be decomposed in such a way that ill-
conditioning due to large ρk disappears. As a consequence, the inconveniences associated with big
penalty parameters are limited to the following fact: when ρk is large, unitary Newtonian steps
associated with (6-7) are less likely to give penalty function decrease than in the cases in which ρk
is small.

However, if arbitrary large penalty parameters are employed, higher convergence orders can
be obtained. It is not clear which of these effects is preponderant. With the aim of establishing
the benefits that can be obtained from large penalty parameters we introduce the following As-
sumption C, which may replace Assumption A6. Note that Assumption C is compatible with the
updates (11) and (12).

Assumption C. The sequence of penalty parameters {ρk} tends to infinity.

Theorem 3.2 Suppose that Assumptions A1–A5 and C hold. Then, (xk, λk+1, µk+1, vk, wk) con-
verges to (x∗, λ∗, µ∗, v∗, w∗) Q-superlinearly. Moreover, if χ(t) = O(t2) and

1

ρk
= O(σ(xk−1, λk, µk, vk−1, wk−1))

the convergence is Q-quadratic.

Proof. Since ρk →∞ we obtain (40) as in the proof of Theorem 3.1. This shows that the sequence
σ(xk, λk+1, µk+1, vk, wk) tends to zero superlinearly. By Lemma 3.2 the Q-superlinear convergence
of (xk, λk+1, µk+1, vk, wk) follows.

Moreover, by (39), for k ≥ k2 we have:

σ(xk, λk+1, µk+1, vk, wk) ≤ 2

(
c1

χ(σ(xk−1, λk, µk, vk−1, wk−1))

σ(xk−1, λk, µk, vk−1, wk−1)
+

c4
ρk

)
σ(xk−1, λk, µk, vk−1, wk−1)

for all k ≥ k2.
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If χ(t) = O(t2) and 1
ρk

= O(σ(xk−1, λk, µk, vk−1, wk−1)) we have:

σ(xk, λk+1, µk+1, vk, wk) ≤ O(σ(xk−1, λk, µk, vk−1, wk−1)2).

for all k ≥ k2. Therefore, the desired result follows from Lemma 3.2. 2

Now we want to show that well-definiteness of the algorithm is plausible even if we do not
assume compactness of Ω, provided that the initial point is close enough to an isolated solution
x∗. We are going to make use of the following Assumption D.

Assumption D. The point x∗ is feasible with respect to (1) and satisfies the CPLD constraint
qualification.

Lemma 3.4. Suppose that Assumption D holds. Then, there exists δ > 0 such that x satisfies
the CPLD constraint qualification corresponding to the constraints of (1) for all feasible point x
belonging to B(x∗, δ).

Proof. Assume, without loss of generality, that the constraints of (1) are h(x) = 0, g(x) ≤ 0.
Suppose that the thesis is not true. Therefore, there exists a sequence of feasible points {xk} that
converges to x∗ and such that its members do not satisfy the CPLD constraint qualification. Thus,
for all k = 1, 2, . . . there exists Ik ⊆ {1, . . . ,m}, Jk ⊆ {1, . . . , p}, λ

k
i , i ∈ Ik, µ

k
j ≥ 0, j ∈ Jk such

that
∑

i∈Ik
|λk

i |+
∑

j∈Jk
µk
j > 0,

∑

i∈Ik

λk
i∇hi(x

k) +
∑

j∈Jk

µk
j∇gj(x

k) = 0 (41)

and the gradients ∇hi(y
k), i ∈ Ik, ∇gj(y

k), j ∈ Jk are linearly independent for some yk such that
‖yk − xk‖ ≤ 1/k.

Since the number of constraints is finite, we may assume, without loss of generality, that
Ik = I, Jk = J for all k.

Dividing (41) by max{|λk
i |, µ

k
j , i ∈ I, j ∈ J} we may consider that all the coefficients of (41)

are in a compact set and that the maximum modulus is equal to 1 for all k. Then, taking limits
in (41) for an appropriate subsequence, we obtain that there exist λi, i ∈ I, µj , j ∈ J with∑

i∈I |λi|+
∑

j∈J µj > 0 such that

∑

i∈I

λi∇hi(x
∗) +

∑

j∈J

µj∇gj(x
∗) = 0. (42)

However, the sequence yk tends to x∗ and the gradients ∇hi(y
k), i ∈ I, ∇gj(y

k), j ∈ J are
linearly independent. Thus, by (42), the CPLD condition does not hold at x∗. 2

Lemma 3.5. Suppose that Assumption D holds. Then, there exists δ > 0 such that x satisfies
the CPLD constraint qualification corresponding to the constraints Ω for all x ∈ Ω belonging to
B(x∗, δ).

Proof. By Assumption D and the definition of the constant linear dependence condition, x∗ satis-
fies the CPLD constraint qualification with respect to the subset of constraints Ω. Therefore, the
thesis follows from Lemma 3.4 2

Without loss of generality, we assume that the same δ appears in Lemmas 3.4 and 3.5.
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Theorem 3.3. Suppose that Assumptions A4 and D hold. Then, there exists ρ > 0 such that, if

ρ1 ≥ ρ, there exists a sequence {xk} generated by Algorithm 2.1 that converges to x∗.

Proof. By Assumption A4 and Theorem 2.2 of [31], there exist γ, δ > 0 such that

f(x) ≥ f(x∗) + γ‖x− x∗‖2 (43)

for all x ∈ Ω such that h(x) = 0, g(x) ≤ 0 and ‖x − x∗‖ ≤ δ. Hence, x∗ is the unique global
minimizer of the auxiliary problem

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ Ω, ‖x− x∗‖ ≤ δ/2. (44)

Define
I = {i ∈ {1, . . . , p} | gi(x

∗) < 0}.

Shrinking δ, by the continuity of g, we may assume that gi(x) < 0 for all i ∈ I, x ∈ B(x∗, δ). For
all ρ > 0, λ̄ ∈ [λmin, λmax]

m, µ̄ ∈ [0, µmax]
p we define x(ρ, λ̄, µ̄) as a global minimizer of Lρ(x, λ̄, µ̄)

subject to x ∈ Ω, ‖x − x∗‖ ≤ δ/2. By the compactness of the domain and the continuity of the
objective function, x(ρ, λ̄, µ̄) is well defined.

We want to show that, if ρ is large enough, one has

‖x(ρ, λ̄, µ̄)− x∗‖ < δ/2. (45)

If this is not the case, there exists ρk →∞, λ̄k ∈ [λmin, λmax]
m, µ̄k ∈ [0, µmax]

p such that, defining

zk = x(ρk, λ̄
k, µ̄k),

we have
‖zk − x∗‖ = δ/2

for all k. However, by standard adapted arguments of external penalty methods (see, for example,
Theorem 2 of [8]) the sequence {zk} converges to x∗, the unique global minimizer of (44). This
is a contradiction. Therefore, there exists ρ > 0 such that for ρ ≥ ρ, we have that (45) holds,

independently of λ̄, µ̄. Now, taking ρ1 > ρ and defining xk = x(ρk, λ̄
k, µ̄k) for all k, by Lemma 3.5

and (45) one has that (6) and (7) are trivially satisfied. Therefore, the sequence xk may be thought
as being generated by Algorithm 2.1.

If remains to prove that limxk = x∗. If ρk tends to infinity, this is a consequence of the penalty
argument (Theorem 2 of [8]). Assume now that {ρk} is bounded. Then, by (10) we have that

lim
k→∞

‖h(xk)‖ = lim
k→∞

‖min{−g(xk), µk+1}‖ = 0.

Let x̄ be a limit point of {xk}. Let K be an infinite sequence of indices such that limk∈K xk = x̄.
Clearly, x̄ is feasible and belongs to B(x∗, δ/2). Let K1 ⊆ K be an infinite sequence of indices
such that limk∈K1

λ̄k = λ̄, limk∈K1
µ̄k = µ̄. By the boundedness of {ρk} there exists ρ̄ > 0 such

that ρk = ρ̄ for k large enough. By the definition of xk we have that:

Lρk
(xk, λ̄k, µ̄k) ≤ Lρk

(x∗, λ̄k, µ̄k)

for all k. Therefore,

f(xk) +
ρk
2

( m∑

i=1

(
hi(x

k) +
λ̄k
i

ρk

)2

+

p∑

i=1

(
gi(x

k) +
µ̄k
i

ρk

)2

+

)
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≤ f(x∗) +
ρk
2

( m∑

i=1

(
hi(x

∗) +
λ̄k
i

ρk

)2

+

p∑

i=1

(
gi(x

∗) +
µ̄k
i

ρk

)2

+

)

for all k. Taking limits for k ∈ K1 we get:

f(x̄) +
ρ̄

2

( m∑

i=1

(
hi(x̄) +

λ̄i

ρ̄

)2

+

p∑

i=1

(
gi(x̄) +

µ̄i

ρ̄

)2

+

)

≤ f(x∗) +
ρ̄

2

( m∑

i=1

(
hi(x

∗) +
λ̄i

ρ̄

)2

+

p∑

i=1

(
gi(x

∗) +
µ̄i

ρ̄

)2

+

)
. (46)

By the boundedness of {ρk} we have that (10) holds for all k large enough. Therefore,

lim
k→∞

‖h(xk)‖ = lim
k→∞

‖min{−g(xk), µk+1}‖ = 0. (47)

By (47), µk+1
i = 0 for i ∈ I and k large enough. By (13) and (14), this implies that µ̄k

i = 0 for
i ∈ I and k large enough. So, µ̄i = 0 for all i ∈ I. Clearly, we also have that ‖h(x∗)‖ = ‖h(x̄)‖ = 0,
g(x∗) ≤ 0 and g(x̄) ≤ 0. Therefore, by (46),

f(x̄) +
ρ̄

2

( m∑

i=1

(
λ̄i

ρ̄

)2

+
∑

i/∈I

(
µ̄i

ρ̄

)2

+

)
≤ f(x∗) +

ρ̄

2

( m∑

i=1

(
λ̄i

ρ̄

)2

+
∑

i/∈I

(
µ̄i

ρ̄

)2

+

)
.

Thus, f(x̄) ≤ f(x∗). Since x∗ is the unique global minimizer of (44) this implies that x̄ = x∗.
Since x̄ was defined as an arbitrary limit point of the bounded sequence {xk}, it turns out that
limk→∞ xk = x∗, as we wanted to prove. 2

4 Numerical Experiments

Since the introduction of Algencan in [1], many modifications were made, so that the 2010 version
of this software is considerably better than the one that was described and tested in [1]. In the
present paper, theoretical arguments motivate some additional modifications. Section 3 of the
present paper indicate that Algorithm 2.1 possesses more natural convergence properties than
the previous version of Algencan. It is natural, therefore, to test the new version against the
former one. Essentially, we want to report three types of experiments. Firstly, we want to test
whether experiments corroborate the hypothesis that the new algorithm is, at least, as efficient
as the traditional Algencan. Secondly, we employ a large set of classical test problems to study
the practical behavior of penalty parameters when Algencan converges to a KKT point. In a final
set of of experiments we compare the new version of Algencan to a well established Interior Point
method, in order to place our solver within the context of NLP algorithms. Subsections 4.1 and 4.2
correspond to the first objective of the experimentation. In Subsection 4.3 the practical behavior
of the penalty parameter is analysed. Subsection 4.4 corresponds to the comparison.

4.1 Criterion for Increasing the Penalty Parameter

The point of view of Algorithm 2.1 is that one aims to solve the nonsmooth system of equations
(with unknowns x, λ, µ, v, w) given by

∇f(x) +∇h(x)λ+∇g(x)µ+∇h(x)v +∇g(x)w = 0, (48)
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h(x) = 0, min{−g(x), µ} = 0, (49)

h(x) = 0, min{−g(x), w} = 0. (50)

If, using a penalty parameter ρk, one obtains enough decrease of the residual of this system, the
penalty parameter is maintained (or increased slowly). Otherwise, we quickly increase the penalty
parameter.

In Algorithm 3.1 of [1] one maintains the penalty parameter if the quantity

∥∥∥∥
(

h(xk)

min{−g(xk), µ̄k

ρk

}

)∥∥∥∥ (51)

decreased enough with respect to its value at the previous iteration.
Therefore, there are two main differences between the criteria used in [1] and the one used in

this paper. On one hand, in Algorithm 3.1 of [1] the increasing-penalty criterion does not involve
(48) and (50). The reason is that, in [1], it is considered that the progress with respect to dual
feasibility (48), feasibility with respect to Ω, and complementarity (50) is already guaranteed by
the subproblem requirements (6) and (7). On the other hand, the main difference between the
increasing criteria of [1] and Algorithm 2.1 of the present paper is that, in [1], the quantity that
measures feasibility-complementarity with respect to a penalized inequality constraint is

min

{
− gi(x

k),
µ̄k
i

ρk

}
(52)

whereas in Algorithm 2.1 we use
min{−gi(x

k), µk+1
i } (53)

for the same purpose.
The employment of (53) does not need further explanation since it is obviously connected with

the residual of the KKT system. On the other hand, the employment of (52) is more subtle and
may be connected with the essence of the Augmented Lagrangian idea. By (3), at each subproblem
resolution one minimizes the objective function penalized by the non-fulfillment of the constraints,
where the constraints are shifted by the scaled Lagrange multipliers λ̄/ρ and µ̄/ρ. This means
that xk is the result of minimizing a penalized function with shifted constraints. Note that the
comparison between −gi(x

k) and µ̄k
i /ρk involved in (52) is, in this sense, well scaled, whereas the

comparison in (53) could be badly scaled.
If xk was obtained using a tiny shift µ̄k

i /ρk then the quantity (52) is small (in modulus) if and
only if xk is almost feasible with respect to gi. On the other hand, if xk was obtained using a
big shift we can be happy with gi(x

k) only if this value is close to zero. (A very negative value of
gi(x

k) could have been caused merely by the size of the shift.)
In this experiment we aim to observe the practical differences between Algorithm 3.1 of [1] and

Algorithm 2.1. With this objective in mind, we implemented Algorithm 2.1 as a minor modification
of Algencan 2.3.2 (the current available implementation of Algorithm 3.1 of [1]). This means that
in the numerical experiments of the present subsection, as well as in the remaining of the paper,
we will restrict ourselves to the case in which the simple constraints constraints are given only by
bounds. In other words, we assume that Ω in (2) is defined by

Ω = [ℓ, u] ≡ {x ∈ IRn | ℓ ≤ x ≤ u},

defining m = 0, p = 2n, g
i
(x) = li − xi and g

n+i
(x) = xi − ui for i = 1, . . . , n. All the other

constraints of the problem will be considered in the definition of the augmented Lagrangian.

16



Algencan solves the bound-constrained Augmented Lagrangian subproblem using Gencan [9]
with some modifications suggested in [4, 10]. We used as a stopping criterion of Gencan

‖P[ℓ,u](x−∇Lρk
(x, λ̄k, µ̄k))− x‖∞ ≤ εk. (54)

Given xk that satisfies (54), there exists wk ≥ 0 such that (6) and (7) hold. In fact, we may
compute wk ≥ 0 such that

∥∥∥∥
(
∇L(xk, λk+1, µk+1, wk)

min{−g(xk), wk}

)∥∥∥∥
∞

= ‖P[ℓ,u](x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk‖∞.

Moreover, if we set εk ≤ r‖P[ℓ,u](x
k−1−∇Lρk−1

(xk−1, λ̄k−1, µ̄k−1))−xk−1‖∞, we have that (6)
and (7) imply

∥∥∥∥
(
∇L(xk, λk+1, µk+1, wk)

min{−g(xk), wk}

)∥∥∥∥
∞

≤ r

∥∥∥∥
(
∇L(xk−1, λk, µk, wk−1)
min{−g(xk−1), wk−1}

)∥∥∥∥
∞

.

The convergence theory of Gencan guarantees that an approximate solution of the subproblem xk

that satisfies (54) can always be found [9]. Therefore, the test (10) reduces to

∥∥∥∥
(

h(xk)
min{−g(xk), µk+1}

)∥∥∥∥
∞

≤ r

∥∥∥∥
(

h(xk−1)
min{−g(xk−1), µk}

)∥∥∥∥
∞

. (55)

In the implementation of Algorithm 2.1, we set

εk = min{ε̄k, r‖P[ℓ,u](x
k−1 −∇Lρk−1

(xk−1, λ̄k−1, µ̄k−1))− xk−1‖∞},

where {ε̄k} is a sequence of positive numbers than tends to zero employed in the current Algencan
version. The test (10) was implemented in the form (55). When (55) is fulfilled, we choose
ρk+1 = ρk in (11). This version of the algorithm will be called Algorithm 2.1.v1 from now on.

We compared Algorithm 2.1.v1 against Algorithm 3.1 of [1] using all the (648) nonlinear pro-
gramming problems from the Cuter collection. We excluded only feasibility problems, bound-
constrained and unconstrained problems. Both methods used all the Algencan default parameters.
The CPU time of each pair method/problem was limited by 60 secs. (This limitation should be
taken into account in the global performance analysis.)

The numerical performances of the methods were very similar. Using performance profiles [14]
and number of iterations of the inner solver as performance measurement, we verified that the
efficiency of both methods is 78% and 77%, respectively, while their robustness is 81% in both
cases (a performance profile graphic would show two superimposed curves). The two methods
found equivalent minima in 521 problems. (We say that f1 and f2 are equivalent if

[|f1 − f2| ≤ max{10−10, 10−6 min{|f1|, |f2|}}] or [f1 ≤ −10
20 and f2 ≤ −10

20].)

Both methods found infeasible final iterates in 122 problems and found different minima in 4 cases.
In 2 cases one version found better solutions while the other method found better solutions in the
other 2 cases. In one problem Algorithm 2.1.v1 found a solution while Algorithm 3.1 of [1] failed
to find a feasible point. We warn that these results may be quantitatively different if one increases
the 60-seconds time tolerance. However, if we increase the time tolerance both methods seem to
improve their performance in the same proportion. From these experiments we conclude that the
two algorithms compared in this section are essentially equivalent from the practical point of view.
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4.2 Boundedness of Penalty Parameter and Rate of Convergence

In Section 3 we showed that, in the implementation of Algorithm 2.1 we must choose between a
strategy that tries to maintain boundedness of penalty parameters getting a linear rate of con-
vergence or an strategy that allows penalty parameter growth achieving superlinear convergence.
Here we wish to design an experiment that aims to indicate which strategy is the best.

Let us define Algorithm 2.1.v2 and Algorithm 2.1.v3. Algorithm 2.1.v2 uses

εk = min

{
ε̄k,

∥∥∥∥




P[ℓ,u](x
k−1 −∇Lρk−1

(xk−1, λ̄k−1, µ̄k−1))− xk−1

h(xk−1)
min{−g(xk−1), µk}




∥∥∥∥
∞

}
,

while Algorithm 2.1.v3 uses

εk = min

{
ε̄k,

∥∥∥∥




P[ℓ,u](x
k−1 −∇Lρk−1

(xk−1, λ̄k−1, µ̄k−1))− xk−1

h(xk−1)
min{−g(xk−1), µk}




∥∥∥∥
2

∞

}
.

In Algorithm 2.1.v2 we set
ρk+1 = 2ρk

in (11), while in Algorithm 2.1.v3 we set

ρk+1 = max

{
2ρk,

∥∥∥∥




P[ℓ,u](x
k −∇Lρk

(xk, λ̄k, µ̄k))− xk

h(xk)
min{−g(xk), µk+1}




∥∥∥∥
−1

∞

}

in (11). Roughly speaking, by the theory of Section 3, Algorithm 2.1.v2 converges superlinearly
and the convergence of Algorithm 2.1.v3 is quadratic. We compared Algorithm 2.1.v2 and Al-
gorithm 2.1.v3 against Algorithm 2.1.v1 under the same conditions and using the same set of
problems of the previous subsection.

Figure 1 shows the performance profiles comparing the superlinear and quadratic versions
of Algorithm 2.1 against the original linearly convergent version. As expected, there is gain of
approximately 5% in efficiency at the cost of a small robustness deterioration. This evokes the
common knowledge about the behavior of shortcut penalty methods, where one uses a very large
external penalty parameter from the beginning. The shortcut strategy may find very quickly
suitable minimizers in many easy problems but fails to solve many difficult problems in which
more conservative penalty strategies succeed [17].

Algorithm 2.1.v1 and Algorithm 2.1.v2 found the same minimum in 486 problems and infeasible
final iterates in 119 problems (recall the rather severe time limitation). They found different
minima in 36 cases (23 better solutions were found by Algorithm 2.1.v1 while 13 better solutions
were found by Algorithm 2.1.v2). Algorithm 2.1.v1 was the only method to find a solution in 4
problems (Algorithm 2.1.v2 found no feasible point in these cases), while the opposite situation
occurred in 3 problems. Comparing Algorithm 2.1.v1 and Algorithm 2.1.v3, both found the same
minimum in 474 problems and infeasible final iterates in 115 problems. They found different
minima in 41 cases (23 better solutions were found by Algorithm 2.1.v1 while 18 better solutions
were found by Algorithm 2.1.v3). Algorithm 2.1.v1 was the only method to find a solution in 11
problems (Algorithm 2.1.v3 found no feasible point in these cases), while the opposite situation
occurred in 7 problems.

The efficiency gain of Algorithm 2.1.v2 and Algorithm 2.1.v3 with respect to Algorithm 2.1.v1
was approximately 5%, in terms of performance profiles. Roughly speaking, this means that if our
time tolerance is very small, the superlinear and quadratic algorithms solve 5% more problems
than the linearly convergent algorithm that maintains bounded penalty parameters.
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Algorithm 2.1.v1 employed, on average, 12% more outer iterations than its superlinear counter-
part and 18% more outer iterations than the quadratic algorithm, considering only the problems
where the algorithms obtained the same solution. However, the increased difficulty of the subprob-
lems used in the superlinear methods was reflected by the fact that the number of inner (Gencan)
iterations employed by Algorithms 2.1.v2 and 2.1.v3 was 21% and 44% greater than the total
number of Gencan iterations used by Algorithm 2.1.v1.

Considering that, in general, the capacity of solving more problems in reasonable time (robust-
ness) is more important than the capacity of solving many problems in minimal time (efficiency),
our conclusion from these experiments is that the version of Algorithm 2.1 that has the chance of
maintaining bounded penalty parameters (v1) should be preferred over the ones in which penalty
parameters go to infinity.

4.3 Behavior of the Penalty Parameter in Experiments

In this experiment we aim to evaluate the asymptotic behavior of the penalty parameter on Al-
gorithm 2.1.v1. With this purpose, we consider the 465 problems (out of 648) for which Algo-
rithm 2.1.v1 satisfied its stopping criterion related to success, i.e., it found an approximate KKT
point. Recall the sixty-seconds CPU time limit.

Figure 2 shows the distribution of the 465 problems for which Algorithm 2.1.v1 found a KKT
point, according to the number of times the penalty parameter was increased during the execution
of the method. The penalty parameter can potentially be increased at every iteration of the
method. Therefore, it is important to stress that while the average number of outer iterations
was approximately 9.69, the average number of times the penalty parameter was increased is 1.76.
Moreover, the penalty parameter remains constant, in average, in the last 4.36 iterations of the
method.

4.4 Location and Packing Problems

One of the most noticeable practical features of Algencan is its ability to deal efficiently with
problems with many inequality constraints and problems in which the Hessian of the Lagrangian
does not exhibit a friendly structure. Many Packing and Location problems involve those charac-
teristics. Our interest in those problems comes from its application to the first stage of Molecular
Dynamics processes, in which we are involved [26, 28].

Given a function Φ : IRnd → IR, and a set of np points pi ∈ IRnd, i = 1, . . . , np, the type of
problems considered in this section is

Maximize d subject to Φ(pi) ≤ 0, ∀i and ‖pi − pj‖ ≥ d, ∀j > i. (56)

In problem (56) we have n = nd×np+1, p = np× (np− 1)/2+np, m = 0. Therefore, the number
of variables and, especially, inequality constraints, may be very large.

We compared Algencan with the interior-point solver Ipopt [33] for problems of this type. In
the numerical experiments below we considered Algencan 2.3.5 and Ipopt 3.8.3. Ipopt was installed
with all the required ASL, Blas, Lapack and Harwell subroutines (including MA57) and without
Methis and Mumps. The experiments were performed in a 2.4GHz Intel Core2 Quad Q6600 with
8.0GB of RAM memory and Linux Operating System.

Consider the problem

Maximize d
subject to d(pi, pj) ≥ d, ∀ j > i,

Φ(pi) ≤ 2, ∀ i,
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Figure 1: Performance profile comparing the (a) superlinear and (b) quadratic versions of Algo-
rithm 2.1 against the linearly convergent version. As expected, there is a 5% efficiency gain at
the cost of a small robustness deterioration; resembling the empirical knowledge about short-cut
strategies.
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Figure 2: Analysis of the asymptotic behavior of the penalty parameter on Algorithm 2.1.v1.

where d(·, ·) represents the squared Euclidean distance and Φ(x, y) = 10(y − x2)2 + (1− x)2 is the
Rosenbrock function with ρ = 10.

We ran Algencan and Ipopt with the AMPL formulation of the problem. All the default
Algencan and Ipopt parameters were used, including a feasibility tolerance of 10−8. We generated
15 different instances varying the number of points np ∈ {10, 20, . . . , 150}. For each instance,
we ran Algencan and Ipopt starting from a random initial point with pi ∈ [−1, 3] × [−1, 7] and
d = 0. Table 1 shows, for each problem, the number of points np, the number of variables n and
the number of constraints m, and, for each method, the CPU Time in seconds (Time) and the
reported objective function value at the final point, that corresponds with the smallest squared
Euclidean distance d ≡ dist2min between every pair of points.

Table 1 shows that in the nine instances with up to 90 points, Ipopt was faster than Algencan but
Algencan found slightly better solutions in eight out of the nine instances. In those nine instances
both methods stopped satisfying their own stopping criteria related to success. In the remaining
six larger instances Algencan also stopped declaring success, while the Ipopt exit deserves further
explanations. In instances with np = 100, 110, 120, 130 Ipopt stopped declaring EXIT: Solved To
Acceptable Level which means that feasibility is not strictly satisfied. In the instance with np = 140
a solution similar to the one obtained by Algencan was found. In the instance with np = 150 Ipopt
was abruptly terminated with the exit message EXIT: Not enough memory. Ipopt 3.8.3: Unknown
Error. In an additional instance with np = 200 (n = 401 and m = 20100), Ipopt stopped after

21



633.52 seconds of CPU time declaring EXIT: Converged to a point of local infeasibility. Problem
may be infeasible.. On the other hand, Figure 3 illustrates the solution found by Algencan for this
instance, with dist2min = 0.0138687 using 2897.68 seconds of CPU time.

Problem data Algencan Ipopt
np n m Time d ≡ dist2min Time d ≡ dist2min

10 21 55 0.74 0.7346560 0.05 0.7186290
20 41 210 1.82 0.2523750 0.27 0.2334550
30 61 465 2.31 0.1366320 0.62 0.1327630
40 81 820 4.01 0.0957827 1.40 0.0939190
50 101 1275 6.34 0.0701519 2.10 0.0700105
60 121 1830 11.89 0.0569928 3.10 0.0557956
70 141 2485 15.46 0.0478792 5.50 0.0481858
80 161 3240 31.69 0.0410347 28.44 0.0293272
90 181 4095 43.86 0.0356818 33.80 0.0296515

100 201 5050 98.44 0.0312704 11.90 7.06e−09
110 221 6105 73.58 0.0277161 8.14 3.95e−09
120 241 7260 83.03 0.0254531 13.40 -1.25e−06
130 261 8515 210.20 0.0228939 16.93 -3.36e−08
140 281 9870 796.93 0.0210594 146.21 0.0208684
150 301 11325 274.53 0.0195162

Table 1: Performance of Algencan and Ipopt in a set of packing problems.
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Figure 3: Solution found by Algencan for the problem of maximizing the smallest distance between
every pair of np = 200 points within a given level curve of the Rosenbrock function.
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5 Final Remarks

The main objectives of numerical optimization theory are to explain practical behavior and to
suggest improvements of computational methods. When, in the Augmented Lagrangian framework,
penalty parameters become very large, the theoretical order of convergence improves but the
subproblems become more difficult. As a consequence, when penalty parameters are allowed to
grow indefinitely, the number of outer iterations tends to decrease but the total number of inner
iterations increases. It is possible to solve subproblems with very large penalty parameters by means
of Newtonian stabilized decomposition of optimality conditions [5, 15, 18, 27, 34]. However, these
procedures do not eliminate completely the inconveniences of using extreme penalty parameters
because the objective function of the subproblems decreases at the trial point computed by the
stabilized iteration only when the inner iterate is very close to the solution. As a consequence,
short steps are taken far from the solution of the subproblem and subproblems are hard to solve.
Our experiments seem to indicate that strategies that maintain bounded penalty parameters tend
to be more robust than strategies in which the penalty parameters go to infinity. Therefore, it
is important to study sufficient conditions under which one can guarantee that the sequence of
penalty parameters computed by Augmented Lagrangian algorithms like Algencan is bounded.

In this paper we proved that a variation of the available (March 2010) version of Algencan
produces bounded penalty parameters under more natural conditions than the ones given in the
paper in which Algencan was introduced [1]. We investigated numerically whether the conditions
given here can be relaxed. The answer seems to be affirmative: In numerical experiments the
penalty parameters remained bounded even in conditions in which weak constraint qualifications
do not hold. Therefore, finding weaker conditions for penalty parameter boundedness seems to be
a promising research area with theoretical and practical significance.

Many alternative Augmented Lagrangian methods, not based on the PHR function, exist. See
[7] for an exhaustive comparison among many methods of this type and [22, 23, 24] for very recent
variations of the basic scheme. Some of these methods may be more efficient than the PHR scheme
for specific families of nonlinear programming problems. It would be interesting to discover weak
sufficient conditions under which these methods preserve bounded penalty parameters.

Acknowledgements: We are indebted to two anonymous referees whose comments helped us to
improve the paper.
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