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Abstract

The complexity of solving feasibility problems is considered in this work. It is assumed
that the constraints that define the problem can be divided into two sets, namely, ex-
pensive and cheap constraints. It is also assumed that the set of solutions of the cheap
constraints is non-empty and bounded and that minimizing a pth-order model of the sum
of squares of the expensive constraints subject to the cheap constraints is an affordable
task. At each iteration, the introduced method minimizes a regularized pth-approximation
of the sum of squares of the expensive constraints subject to the cheap constraints. Un-
der a Hölder continuity property with constant β ∈ (0, 1] on the pth derivatives of the
expensive constraints, it is shown that finding a feasible point with precision ε > 0 or an
infeasible point that is stationary with tolerance γ > 0 of minimizing the Euclidean norm
of the expensive constraints residual subject to the cheap constraints has iteration com-

plexity O
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, where ζβp = −(p+β)/(p+β−1) and ωp = ε

if p = 1, while ωp = Φ(x0) if p > 1. When the pth derivatives of the expensive constraints

satisfy a Lipschitz condition, both complexities reduce to O
(
| log(ε)| γ−

p+1
p

)
. Still under the

Hölder continuity property on the pth derivatives of the expensive constraints, and under
a stronger regularity assumption with constant κ, that avoids KKT points of minimizing
the sum of squares of the expensive constraints subject to the cheap constraints of being

infeasible, the iteration complexity is shown to be O
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. When the pth deriva-

tives of the expensive constraints satisfy a Lipschitz condition, both complexities reduce
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to O (| log(ε)|), independently of p. If the Lipschitz condition is not satisfied but p > 1,
the iteration complexity reduces to O (| log(ε)|); while the evaluation complexity reduces to
O
(
| log(ε)|2

)
. The most costly case is the case p = 1 and β < 1 in which both complexities

reduce to O(| log(ε)| ε
β−1
2β ). The results introduced in the present work generalize the results

obtained for p even in [C. Cartis, N. I. M. Gould, and Ph. L. Toint, Improved worst-case eval-
uation complexity for potentially rank-deficient nonlinear least-Euclidean-norm problems us-
ing higher-order regularized models, Technical Report NA 15-17, University of Oxford, 2015].
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1 Introduction

Many practical problems require the solution of systems of equalities and inequalities. Socio-
economic models usually aim targets with respect to education, housing, eradication of poverty,
sustainability, and public health. (See, for example, [18].) Molecular dynamics is a powerful
technique for comprehension at the molecular level of a great variety of chemical processes. In
molecular dynamics, simulations need starting points with adequate energy requirements. If
the starting configuration has close atoms, the temperature scaling is disrupted by excessive
potentials that accelerate molecules over the accepted velocities for almost any reasonable inte-
gration time step. In Packmol [22], the problem of finding an adequate initial configuration for a
molecular dynamics simulation is tackled as a feasibility problem. The goal is to place molecules
within an arbitrary finite domain in such a way that distances between every pair of atoms
belonging to different molecules are larger than a given threshold tolerance. Matrix completion
(see, for example, [19, 20]) is another problem that can be classified as a feasibility problem
and that includes several practical applications. The problem consists of reconstructing a ma-
trix possessing certain properties knowing only a subset of its entries. Properties may include
positive semidefinite matrices, Euclidean distance matrices, contraction matrices, matrices of a
given rank, correlation matrices, doubly stochastic matrices, and Hadamard matrices, among
others. (See, [2] for details.)

In this work, it is assumed that the constraints that define the problem can be divided
into expensive and cheap constraints. It is also assumed that the set of solutions of the cheap
constraints is non-empty and bounded, that it is relatively easy to maintain feasibility with
respect to the cheap constraints, and that minimizing a regularized model of the sum of squares
of the expensive constraints subject to the cheap constraints is affordable. In contrast, it is
assumed that expensive constraints are expensive to evaluate. Thus, at each iteration, the
proposed method computes a new iterate as an approximate minimizer of a regularized model
of the sum of squares of the expensive constraints subject to the cheap constraints. Examples of
cheap constraints are bounds on the variables, linear constraints, spherical and ball constraints,
intersections of balls and polytopes, and matrices with some property such as idempotency or
semidefiniteness, among others.

Feasibility problems that come from linear parameter estimation in the case that prior infor-
mation on the parameters is represented by the level set of a nonconvex function was considered
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in [4]. The problem of minimizing a sum of squares subject to convex constraints was con-
sidered in [11, 12]. In [11], a cubic regularization scheme of ARC-type [9, 10] was employed
and complexity results were given, considering stopping criteria based on the residual norm and
on the gradient of the residual norm. In [12], the approach of [11] was extended in order to
consider arbitrary pth order Taylor approximations of the objective function in the sense of [8].
The case in which p is odd (including p = 1) was not addressed in [12]. In the present paper
p ≥ 1 is arbitrary and only Hölder conditions are assumed to be satisfied by pth derivatives of
the expensive constraints as in [13, 15, 16, 21]. In fact, results presented in the present work
are a direct consequence of recent developments on the minimization of functions with Hölder
continuity assumptions introduced in [21]. In the present work, it is shown that finding a feasible
point with precision ε > 0 or an infeasible point that is stationary of minimizing the Euclidean
norm of the expensive constraints residual subject to the cheap constraints with tolerance γ > 0
has iteration complexity

O
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where β ∈ (0, 1] is the constant in the Hölder continuity property of the pth derivatives of the

expensive constraints, ζβp = − p+β
p+β−1 and

ωp =

{
ε, if p = 1,
Φ(x0), if p > 1.

When the pth derivatives of the expensive constraints satisfy a Lipschitz condition (so, β = 1),
both complexities reduce to O

(
| log(ε)| γ−(p+1)/p

)
. Still under the Hölder continuity property

on the pth derivatives of the expensive constraints, and under a gradient-domination property
(see [23]) with constant κ, which guarantees that KKT points of the sum of squares of the
expensive constraints subject to the cheap constraints are feasible, the iteration complexity is
shown to be

O
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;

while the evaluation complexity is given by

O

(
| log(ε)|
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.

When the pth derivatives of the expensive constraints satisfy a Lipschitz condition (so, β = 1),
both complexities reduce to O (| log(ε)|), independently of p. When the pth derivatives of the
expensive constraints do not satisfy a Lipschitz condition (so, β < 1), the iteration complexity
reduces to O (| log(ε)|) and the evaluation complexity reduces to O

(
| log(ε)|2

)
if p > 1. The most

costly case is the case β < 1 and p = 1, in which both complexities reduce to O(| log(ε)| ε
β−1
2β ).
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Similar bounds for the ARC-like method, with convex cheap constraints and using (p + 1)-
regularized pth order Taylor models with p even, have been presented in [12, Thm.3.6].

The rest of this work is organized as follows. Section 2 introduces the proposed algorithms.
Section 3 presents the complexity results. At the end of the section, it is presented an example
showing that the bound | log(ε)| is sharp; and, thus, it provides a reliable estimation of the
computer work in practical cases. Illustrative numerical examples are given in Section 4. Final
remarks are given in Section 5.

Notation. ‖ ·‖ denotes the Euclidean norm. If v ∈ Rn is a vector with components vi, v+ is the
vector with components max{0, vi}, i = 1, . . . , n. If ψ(x) is a vectorial function, we denote its

Jacobian by ψ′(x) =
(
∂ψi
∂xj

(x)
)

. R+ denotes the set of nonnegative elements of R. If v and w are

vectors with components vi and wi, respectively, min{v, w} denotes the vector with components
min{vi, wi}. If C is a set, we denote its diameter by diam(C).

2 Proposed algorithm

The problem tackled in this work consists in finding x ∈ Rn such that

h(x) = 0, g(x) ≤ 0, (1)

h(x) = 0, and g(x) ≤ 0, (2)

where h : Rn → Rm, g : Rn → Rq, h : Rn → Rm, and g : Rn → Rq have continuous first
derivatives for all x ∈ Rn. Constrains (2) are considered to be “cheap;” while constraints (1) are
considered “expensive” constraints. It is assumed that the set of points x ∈ Rn satisfying (2) is
non-empty and bounded. For all x ∈ Rn, we define

Φ(x) =
1

2
(‖h(x)‖2 + ‖g(x)+‖2). (3)

Thus, problem (1,2) can be reformulated as

Minimize Φ(x) subject to h(x) = 0 and g(x) ≤ 0. (4)

The connection between the feasibility problem (1,2) and its reformulation (4) as an optimization
problem is that a solution to (4) at which the objective function vanishes is also a solution
to (1,2). Unfortunately, under standard assumptions, stationary points of (4) that do not
satisfy the expensive constraints (1) are also a possible outcome of a method concerned with the
resolution of (4), even in the case in which the feasibility problem (1,2) has a solution. Certificates
of infeasibility could only be obtained using additional assumptions on the constraints or using
global optimization algorithms.

The method considered in this paper for solving (4) is iterative. Each iteration k rests upon
the resolution of a sequence of subproblems of the form

Minimize Mxk,`(x) + σk,`‖x− xk,`‖p+1 subject to h(x) = 0 and g(x) ≤ 0 (5)
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for ` = 0, 1, 2, . . . ; where σk,` > 0 and Mxk,`(x) is a pth-order model of Φ(x) at xk,` (for some
integer p ≥ 1), in a sense that will be defined later. The motivation for this approach relies
on the characterization of constraints (1,2) as cheap and expensive constraints. Constraints (2)
are said to be cheap in the sense that it is assumed that obtaining a feasible point which is
an approximate solution to (5) is affordable. Constraints (1) are said to be expensive in the
sense that it is assumed that evaluating them is much more expensive than evaluating the cheap
constraints. The description of the algorithm follows.

Algorithm 2.1. Assume that ε > 0, γ > 0, p ∈ {1, 2, . . . }, α ∈ (0, 1), σmin > 0, θ > 0, and
x0 ∈ Rn such that h(x0) = 0, g(x0) ≤ 0, and Φ(x0) > ε are given. Initialize k ← 0.

Step 1. Compute xk+1 ∈ Rn, λk+1 ∈ Rm, and µk+1 ∈ Rq+ satisfying

h(xk+1) = 0, g(xk+1) ≤ 0 and min{µk+1,−g(xk+1)} = 0 (6)

and such that either

Φ(xk+1) ≤ 1

2
Φ(xk) (7)

or ∥∥∥∇Φ(xk+1) + h′(xk+1)Tλk+1 + g′(xk+1)Tµk+1
∥∥∥ ≤ γ√Φ(xk). (8)

Step 2. If (7) holds and Φ(xk+1) > ε, update k ← k + 1, and go to Step 1. Otherwise, stop.

We now analyze the situation in which, at iteration k, Algorithm 2.1 stops. This means that
xk+1 ∈ Rn, λk+1 ∈ Rm, and µk+1 ∈ Rq+ are such that (6) holds and either Φ(xk+1) ≤ ε or (7)
does not hold. In the first case, xk+1 is the feasible point with precision ε we were looking for.
In the latter case, by definition of the algorithm, if (7) does not hold, we must have that (8)
holds. Dividing both sides of (8) by

√
Φ(xk+1), we obtain∥∥∥∥∥∇Φ(xk+1)√

Φ(xk+1)
+ h′(xk+1)T

(
λk+1√
Φ(xk+1)

)
+ g′(xk+1)T

(
µk+1√
Φ(xk+1)

)∥∥∥∥∥ ≤ γ
√

Φ(xk)√
Φ(xk+1)

. (9)

But, since (7) does not hold, one has that
√

Φ(xk)/
√

Φ(xk+1) ≤
√

2. Moreover,

∇
[√

Φ(xk+1)

]
=

1

2

∇Φ(xk+1)√
Φ(xk+1)

.

Therefore, by (9),∥∥∥∥∥2∇
[√

Φ(xk+1)

]
+ h′(xk+1)T

(
λk+1√
Φ(xk+1)

)
+ g′(xk+1)T

(
µk+1√
Φ(xk+1)

)∥∥∥∥∥ ≤ γ√2. (10)

Thus,∥∥∥∥∥∇
√

Φ(xk+1) + h′(xk+1)T

(
λk+1

2
√

Φ(xk+1)

)
+ g′(xk+1)T

(
µk+1

2
√

Φ(xk+1)

)∥∥∥∥∥ ≤ γ
√

2

2
=

γ√
2
. (11)
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By (6), (11) means that xk+1, with multipliers λk+1/(2
√

Φ(xk+1)) and µk+1/(2
√

Φ(xk+1)), is a
KKT point with tolerance γ for the minimization of

√
Φ(x) subject to h(x) = 0 and g(x) ≤ 0.

If γ is chosen to be much smaller than ε, this stopping criterion may be a symptom of the fact
that xk+1 is an approximate infeasible local minimizer of infeasibility. This is not a guarantee
that the original feasibility problem is infeasible. Certificates of infeasibility could only be
obtained using additional properties on the constraints or using global optimization algorithms.
Unfortunately, all practical algorithms for constrained optimization stop when infeasible points
that are almost stationary with respect to infeasibility are found.

Algorithm 2.2 below is used at Step 1 of Algorithm 2.1 to compute xk+1, λk+1, and µk+1.
The description of Algorithm 2.2 below is an instantiation of [21, Alg.1] applied to the minimiza-
tion of Φ(x) subject to h(x) = 0 and g(x) ≤ 0, using xk as initial guess, 1

2Φ(xk) as a target for

the functional value, and min{0.99, γ
√

Φ(xk)} as the tolerance for the norm of the gradient of
the Lagrangian. Note that, in (8), a precision of γ

√
Φ(xk) is required. The min{0.99, ·} appears

because this quantity plays the role of a tolerance that, in [21, Alg.1], is assumed to be in (0, 1).
In this sense, the constant 0.99 could be replaced with any other value in (0, 1). The constant
1
2 in (7) could also be replaced with any other value in (0, 1). It is implicit that, every time
Algorithm 2.2 is used, its parameters γ, p, α, σmin, and θ correspond to those of Algorithm 2.1,
i.e. the same at every call. This is why some of those values, that are not explicitly used in
Algorithm 2.1, appear in its list of parameters.

Algorithm 2.2. Assume that γ > 0, p ∈ {1, 2, . . . }, α ∈ (0, 1), σmin > 0, θ > 0 are given.
Initialize xk,0 = xk, σk,0 = σmin, and `← 0.

Step 1. Choose a pth-order model Mxk,`(x) for Φ(x) at xk,`.

Step 2. Find x ∈ Rn, λ ∈ Rm, and µ ∈ Rq+ such that

Mxk,`(x) + σk,`‖x− xk,`‖p+1 ≤Mxk,`(x
k,`), (12)∥∥∥∇(Mxk,`(x) + ‖x− xk,`‖p+1) + h′(x)Tλ+ g′(x)Tµ
∥∥∥ ≤ θ‖x− xk,`‖p, (13)

h(x) = 0, g(x) ≤ 0, and ‖min{µ,−g(x)}‖ = 0. (14)

Step 3. If

Φ(x) ≤ 1

2
Φ(xk) (15)

or ∥∥∇Φ(x) + h′(x)Tλ+ g′(x)Tµ
∥∥ ≤ min

{
0.99, γ

√
Φ(xk)

}
, (16)

stop returning x, λ, and µ.

Step 4. Test the sufficient descent condition

Φ(x) ≤ Φ(xk,`)− α

(2p+ 4)
p+1
p

min
{

0.99, γ
√

Φ(xk)
} p+1

p

σk,`
. (17)
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If (17) does not hold, redefine σk,` ← 2σk,` and go to Step 2. Otherwise, define xk,`+1 = x
and σk,`+1 = σk,`, update `← `+ 1, and go to Step 1.

Remark. In the case p = 1, model Mxk,` may take the form

Mxk,`(x) = Φ(xk,`) +∇Φ(xk,`)T (x− xk,`) +
1

2
(x− xk,`)TBk,`(x− xk,`),

with arbitrary choices of the matrix Bk,`. Even the null matrix may be chosen. This opens the
possibility of using problem-oriented safeguarded quasi-Newton approximations of ∇2Φ(x). The
Gauss-Newton approximation

m∑
i=1

∇hi(x)∇hi(x)T +
∑

gi(x)≥0

∇gi(x)∇gi(x)T ,

that only involves first-order information of the derivatives of h and g, is an interesting alter-
native due to its positive semidefiniteness and the fact that it approximates ∇2Φ(x) when x is
almost feasible. Other possibilities in the quasi-Newton field are the rank-one correction SR1
and structured quasi-Newton approximations [14].

An attentive reader familiar with [21, Alg.1] may have noticed that parameter δ > 0 of [21,
Alg.1] is missing in the description of Algorithm 2.2. Parameter δ in [21, Alg.1] is a tolerance
for the satisfaction of the constraints and the complementarity. In the current work, we are
assuming that constraints h and g are cheap. This is why, at Step 2 of Algorithm 2.2, it is
possible to require (14) instead of

‖h(x)‖ ≤ δ, ‖g(x)+‖ ≤ δ, and ‖min{µ,−g(x)}‖ ≤ δ. (18)

Since, naturally, (14) implies (18) for any δ > 0, properties of [21, Alg.1] are preserved in
Algorithm 2.2.

3 Complexity results

By the continuity of the derivatives of h(x) and g(x), function Φ(x) also has continuous first
derivatives. However, in general, second derivatives of Φ(x) do not exist. This fact could restrict
the applicability of the proposed method to the case p = 1. However, modifying the constraints
gi(x) ≤ 0 by means of the introduction of slack variables, all expensive constraints become
equalities and function Φ(x) inherits all the differentiability properties of the functions that
define the expensive constraints.

Assumption A1 Let C0 be an open, convex, and bounded set that contains all solutions to (2).
There exist β ∈ (0, 1] and L > 0 such that for all x̄, x ∈ C0,

‖∇Φ(x)−∇Mx̄(x)‖ ≤ L‖x− x̄‖p+β−1,

Mx̄(x̄) = Φ(x̄), and Φ(x) ≤Mx̄(x) + L‖x− x̄‖p+β.
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Assumption A1 corresponds to assumptions (2) and (3) in [21, p.2448]. Note that constants L
and β in Assumption A1 may depend on the diameter of C0. Assumption A1 holds assuming
Hölder continuity of the pth-derivatives of Φ if the modelMx̄ is built as the pth Taylor polynomial
around x̄ plus an homogeneous polynomial of order p+ 1. See, for example, [13], [21], and [25,
Lem.1].

Assumption A2 below ensures that Step 2 of Algorithm 2.2 is well defined.

Assumption A2 For all θ > 0, σ ≥ 0, and x̄ ∈ Rn satisfying h(x̄) = 0 and g(x̄) ≤ 0, there

exist x ∈ Rn, λ ∈ Rm, and µ ∈ Rq+ such that

Mx̄(x) + σ‖x− x̄‖p+1 ≤Mx̄(x̄),∥∥∇(Mx̄(x) + σ‖x− x̄‖p+1) + h′(x)Tλ+ g′(x)Tµ
∥∥ ≤ θ‖x− x̄‖p,

‖h(x)‖ = 0, ‖g(x)+‖ = 0, and ‖min{µ,−g(x)}‖ = 0.

Step 2 of Algorithm 2.2 relies on the approximate minimization of the subproblem given by

Minimize Mx̄(x) + σ̄‖x− x̄‖p+1 subject to h(x) = 0 and g(x) ≤ 0,

with x̄ = xk,` and σ̄ = σk,` for some k and some `. Since x̄ is a feasible point at which the
subproblem’s objective function value is Mx̄(x̄), the first condition in Assumption A2 must be
satisfied at every minimizer of the subproblem. If the cheap constraints (that are the constraints
of the subproblem) satisfy a constraint qualification then the KKT conditions hold at every
minimizer of the subproblem; and, thus, every minimizer also satisfies the second and the third
conditions in Assumption A2. Therefore, under the assumption that the cheap constraints satisfy
a constraint qualification, the minimizers of the subproblem satisfy Assumption A2. Since it is
assumed that the set of points that satisfy the cheap constraints is non-empty and bounded, the
subproblem has at least a minimizer; and, thus, under the assumption that the cheap constraints
satisfy a constraint qualification, at least a point that satisfies Assumption A2 exists.

The following theorem, that is a particular case of [21, Thm.2.3], limits the number of
iterations of Algorithm 2.2 when it is called at iteration k of Algorithm 2.1.

Theorem 3.1 Suppose that Assumptions A1 and A2 hold. Then, there exists cp > 0, only
dependent on α, β, θ, L, and p such that, when Algorithm 2.2 is called at iteration k of Algo-
rithm 2.1, after at most

Φ(xk)

2

(
min

{
0.99, γ

√
Φ(xk)

})− p+β
p+β−1

αcp
(19)

iterations, Algorithm 2.2 computes x ∈ Rn, λ ∈ Rm, and µ ∈ Rq+ verifying

‖h(x)‖ = 0, ‖g(x)+‖ ≤ 0, and ‖min{µ,−g(x)}‖ = 0 (20)

that also satisfies either

Φ(x) ≤ 1

2
Φ(xk) (21)

or ∥∥∇Φ(x) + h′(x)Tλ+ g′(x)Tµ
∥∥ ≤ min

{
0.99, γ

√
Φ(xk)

}
. (22)
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Proof: The proof follows from [21, Thm.2.3]. The expression of cp is given in [21, (26)]. �

The following theorem, that is a particular case of [21, Thm.2.4], provides a bound for the
number of evaluations of Φ and its derivatives made by Algorithm 2.2 when it is called at
iteration k of Algorithm 2.1.

Theorem 3.2 Suppose that Assumptions A1 and A2 hold. Then, the number of evaluations
of Φ and its derivatives made when Algorithm 2.2 is called at iteration k of Algorithm 2.1 is
bounded above by

Φ(xk)

2

(
min

{
0.99, γ

√
Φ(xk)

})− p+β
p+β−1

αcp
+

1− β
p+ β − 1

∣∣log2(γ
√
ε)
∣∣+ ca, (23)

where cp and ca only depends on α, β, θ, L, p, and σmin.

Proof: By Theorem 3.1, when Algorithm 2.2 is called at iteration k of Algorithm 2.1, a maximum
of

Φ(xk)

2

(
min

{
0.99, γ

√
Φ(xk)

})− p+β
p+β−1

αcp
(24)

iterations is performed; and, by [21, Thm.2.4], the maximum number of function and derivatives
evaluations of Φ is given by (24) plus

max

{
log(θ),

(
1− β

p+ β − 1
log

((
min

{
0.99, γ

√
Φ(xk)

})−1
)

+ ce

)}
+ |log2(σmin)|+ 1, (25)

where cp and ce only depends on α, β, θ, L, and p. (In fact, as already mentioned in the proof
of Theorem 3.1, constant cp is given by [21, (26)]; while ce corresponds to c` in the statement
of [21, Thm.2.4].) If we define

ca = ce + |log(θ)|+
(

1− β
p+ β − 1

)
log(0.99−1) + |log(σmin)|+ 1 (26)

then (23) follows from straightforward calculations using that, before termination of Algo-
rithm 2.1, one has that Φ(xk) > ε. �

The following theorem limits the total number of iterations of Algorithm 2.2, as well as the
total number of evaluations of Φ and its derivatives, during the whole execution of Algorithm 2.1.

Theorem 3.3 Suppose that Assumptions A1 and A2 hold. Then, during the execution of Al-
gorithm 2.1, the total number of iterations of Algorithm 2.2 is bounded above by

1

2αcp

∣∣log2

(
ε/Φ(x0)

)∣∣max

{
0.99ζ

β
p Φ(x0), γζ

β
p ω

1+ 1
2
ζβp

p

}
(27)
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and the total number of evaluations of Φ and its derivatives performed by Algorithm 2.2 is
bounded above by

1

2αcp

∣∣log2

(
ε/Φ(x0)

)∣∣ (max

{
0.99ζ

β
p Φ(x0), γζ

β
p ω

1+ 1
2
ζβp

p

}
+

1− β
p+ β − 1

∣∣log2

(
γ
√
ε
)∣∣+ ca

)
, (28)

where

ωp =

{
ε, if p = 1,
Φ(x0), if p > 1,

ζβp = − p+β
p+β−1 , and cp, given by [21, (26)], and ca, defined in (26), depend only on α, β, θ, L,

p, and σmin.

Proof: Theorem 3.1 gives the upper bound (19) for the number of iterations performed by
Algorithm 2.2 when it is called at iteration k of Algorithm 2.1. Note that

Φ(xk)

2

(
min

{
0.99, γ

√
Φ(xk)

})ζβp
αcp

=
1

2αcp
max

{
0.99ζ

β
p Φ(xk), γζ

β
p Φ(xk)1+ 1

2
ζβp
}
. (29)

If p = 1 then p + β ≤ 2 and, therefore, 1 + 1
2ζ
β
p = p+β−2

2(p+β−1) ≤ 0. So, using that Φ(xk) > ε, we
have that

Φ(xk)1+ 1
2
ζβp ≤ ε1+ 1

2
ζβp . (30)

On the other hand, if p > 1 then p + β ≥ 2 and, therefore, 1 + 1
2ζ
β
p = p+β−2

2(p+β−1) ≥ 0. So, since

Φ(xk) ≤ Φ(x0), we have that

Φ(xk)1+ 1
2
ζβp ≤ Φ(x0)1+ 1

2
ζβp . (31)

Thus, (27) follows from (29), Φ(xk) ≤ Φ(x0), (30), (31), and the fact that the number of times
Algorithm 2.1 calls Algorithm 2.2 is obviously bounded by | log2(ε/Φ(x0))|. Bound (28) follows
by using the same arguments but starting from the upper bound (23), given by Theorem 3.2, on
the number of evaluations of Φ and its derivatives performed by Algorithm 2.2 when it is called
at iteration k of Algorithm 2.1. �

Let us examine the result of Theorem 3.3 under the light of the new assumption below.

Assumption A3 There exists κ > 0 such that, for all x ∈ Rn, λ ∈ Rm, and µ ∈ Rq+ satisfying
h(x) = 0, g(x) ≤ 0, min{µ,−g(x)} = 0, and Φ(x) > 0, we have that∥∥∥∥∥∇Φ(x)√

Φ(x)
+ h′(x)Tλ+ g′(x)Tµ

∥∥∥∥∥ ≥ κ. (32)

Consider the problem

Minimize
√

Φ(x) subject to h(x) = 0 and g(x) ≤ 0. (33)

10



Since ∇
[√

Φ(x)
]

= 1
2
∇Φ(x)√

Φ(x)
, Assumption A3 means that, if (x, λ, µ) ∈ Rn × Rm × Rq+ is such

that x is a feasible point of problem (33) at which Φ(x) does not vanish and µ satisfies the
complementarity conditions of problem (33) then the gradient of the Lagrangian of problem (33)
evaluated at (x, λ, µ) is bounded away from zero. Thus, KKT points of (33) must satisfy Φ(x) =
0; and this means that they must be solutions to the original feasibility problem (1,2). If
problem (1,2) has no cheap constraints then (32) represents a uniform regularity assumption of
the constraints (1). Moreover, if problem (1,2) has no cheap constraints and it has a solution
then (32) coincides with the gradient-domination property of degree 2 and constant τΦ = κ2 as
defined in [23, p.191].

Lemma 3.1 Suppose that Assumption A3 holds. Then, given Φ(xk) > 0, for all x ∈ Rn,
λ ∈ Rm, and µ ∈ Rq+ satisfying h(x) = 0, g(x) ≤ 0, and min{µ,−g(x)} = 0, whenever

∥∥∇Φ(x) + h′(x)Tλ+ g′(x)Tµ
∥∥ ≤ κ√

2

√
Φ(xk) (34)

we have that

Φ(x) ≤ 1

2
Φ(xk). (35)

Proof: Let x ∈ Rn, λ ∈ Rm, and µ ∈ Rq+ be such that h(x) = 0, g(x) ≤ 0, and min{µ,−g(x)} =
0. If Φ(x) = 0 then the thesis follows trivially. We consider Φ(x) > 0 from now on. Assume
that (34) holds and, by contradiction, that (35) does not hold. Then, Φ(x) > 1

2Φ(xk) or,

equivalently,
√

Φ(xk) <
√

2
√

Φ(x). Thus, by (34),∥∥∇Φ(x) + h′(x)Tλ+ g′(x)Tµ
∥∥ ≤ κ√

2

√
Φ(xk) < κ

√
Φ(x). (36)

Dividing both sides of (36) by
√

Φ(x), we obtain the negation of Assumption A3 with multipliers
λ/
√

Φ(x) and µ/
√

Φ(x). �

The purpose of tests (8) and (16) in Algorithms 2.1 and 2.2 is to detect convergence to
an infeasible stationary point of the infeasibility, that no longer exists under Assumption A3.
Therefore, under Assumption A3, these two tests and parameter γ should be eliminated from
the algorithms. The consequence of Lemma 3.1 is that, if Assumption A3 holds, Algorithms 2.1
and 2.2 with tests (8) and (16) suppressed behave exactly as in the case in which the two tests
are not suppressed and γ is chosen satisfying γ = κ/

√
2. Thus, the theorem below follows.

Theorem 3.4 Suppose that Assumptions A1, A2, and A3 hold, and that, in Algorithms 2.1
and 2.2, parameter γ and tests (8) and (16) are suppressed. Then, during the execution of
Algorithm 2.1, the total number of iterations of Algorithm 2.2 is bounded above by

1

2αcp

∣∣log2

(
ε/Φ(x0)

)∣∣max

{
0.99ζ

β
p Φ(x0),

(
κ√
2

)ζβp
ω

1+ 1
2
ζβp

p

}
(37)
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and the total number of evaluations of Φ and its derivatives performed by Algorithm 2.2 is
bounded above by

1

2αcp

∣∣log2

(
ε/Φ(x0)

)∣∣(max

{
0.99ζ

β
p Φ(x0),

(
κ√
2

)ζβp
ω

1+ 1
2
ζβp

p

}
+

1− β
p+ β − 1

∣∣∣∣log2

(
κ√
2

√
ε

)∣∣∣∣+ ca

)
,

(38)
where

ωp =

{
ε, if p = 1,
Φ(x0), if p > 1,

ζβp = − p+β
p+β−1 , and cp, given by [21, (26)], and ca, defined in (26), depend only on α, β, θ, L,

p, and σmin.

Proof: The bounds in the thesis of this theorem are the bounds given in Theorem 3.3 with γ
substituted by κ/

√
2. So the thesis follows from Theorem 3.3 and Lemma 3.1. �

The Corollary 3.1 below summarizes the results for the case in which Assumption A3 holds. It
should be noted that when Assumption A1 holds with β = 1, i.e. when the pth order derivatives
of Φ satisfy a Lipschitz condition, the complexity bounds do not depend on p.

Corollary 3.1 Suppose that Assumptions A1, A2, and A3 hold, and that, in Algorithms 2.1
and 2.2, parameter γ and tests (8) and (16) are suppressed. Then, during the execution of
Algorithm 2.1:

(a) The total number of iterations of Algorithm 2.2 and the total number of evaluations of Φ
and its derivatives performed by Algorithm 2.2 are both bounded by O(|log(ε)|) if β = 1
and independently of p;

(b) The total number of iterations of Algorithm 2.2 is bounded by O(|log(ε)|) and the total
number of evaluations of Φ and its derivatives performed by Algorithm 2.2 is bounded by
O(| log(ε)|2) if β < 1 and p > 1.

(c) The total number of iterations of Algorithm 2.2 and the total number of evaluations of Φ and

its derivatives performed by Algorithm 2.2 are both bounded by O(| log(ε)| ε
β−1
2β ) if β < 1

and p = 1.

Proof: The proof follows from Theorem 3.4 by substituting p and β in (37) and (38) by the
corresponding values and eliminating all the terms that do not depend on ε. �

It is easy to see that the complexity bound given by Corollary 3.1 is sharp when p = 1 and
β = 1. For that purpose, consider problem (1,2) given by m = 1, h(x) = x, and q = m = q = 0,
i.e. Φ(x) = x2. Given x0 arbitrary and considering σk,0 = 2 and Bk,0 = 0 for all k, we have that
x = xk,0− 1

2σk,0
∇Φ(xk,0) satisfies (12) and (13). But x = 1

2x
k,0 and, thus, by the definition of Φ,

(15) holds. Therefore, x = xk,1 = xk+1. This implies that, xk+1 = 1
2x

k and Φ(xk+1) = 1
4Φ(xk)

for all k ∈ N. Then, for all k ∈ N, Φ(xk) = 1
4k

Φ(x0). So, Φ(xk) ≤ ε if and only if 1
4k

Φ(x0) ≤ ε

or, equivalently, k ≥ 1
2 log2(Φ(x0)/ε) = 1

2 | log2(ε/Φ(x0)|.
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4 Illustrative examples

In this section, we aim to illustrate with numerical examples the theoretical result given by Corol-
lary 3.1 item (a), i.e. the O(| log(ε)|) iterations and evaluations complexity of Algorithm 2.1–2.2
to find x satisfying Φ(x) ≤ ε, h(x) = 0, and g(x) ≤ 0 under Assumptions A1 (with p = 1 and
β = 1), A2, and A3. With this purpose, we implemented Algorithms 2.1 and 2.2 in Fortran 90.
In the implementation, the underlying problem at Step 2 of Algorithm 2.2, that consists in
minimizing a quadratic function with arbitrary constraints, is solved using Algencan [1, 5]. In
the numerical experiments, we set α = 10−8, σmin = 10−8, and θ = 100.

4.1 Toy illustrative examples

Example 1. Consider the feasibility problem with m = 2, q = 0, m = 0, q = 4, and n = 2
given by

h(x) =

(
10(x2 − x2

1)
1− x1

)
and

g(x) =


x1 − 2
x2 − 2
−x1 − 2
−x2 − 2

 .

This means that Φ(x) = 100(x2 − x2
1)2 + (1− x1)2 is the popular Rosenbrock function and the

cheap constraints (2) are x ∈ [−2, 2]. Assumption A3 holds with κ = 0.66. We employed Algo-
rithm 2.1–2.2 for minimizing Φ(x) with x ∈ [−2, 2] using Bk,0 as the Barzilai-Borwein-Raydan
diagonal estimation of the Hessian as in [3, 7, 24] and Bk,` = Bk,0 + ξk,`I, where ξk,` > 0 for
` = 1, 2, . . . is given by a safeguarded backtracking procedure. Starting from x0 = (−1.2, 1)T ,
Table 1 displays the sequence Φ(xk) together with the accumulated number of iterations of
Algorithm 2.2 (#it in the table) and evaluations of Φ (#Φ in the table). The correlations be-
tween the values of | log(ε)| and the accumulated number of iterations and functional evaluations
performed by Algorithm 2.2 are 0.85 and 0.80, respectively, corroborating that the logarithmic
estimation is reliable.

Example 2. Let A ∈ Rn×n be symmetric and positive definite. Consider the feasibility problem
with m = 1, q = 0, m = 0, and q = 0 given by

h(x) =

√
1

2
(x− x̄)TA(x− x̄).

Then Φ(x) = 1
2(x−x̄)TA(x−x̄); thus,∇Φ(x) = A(x−x̄) and ‖∇Φ(x)‖2 =

√
(x− x̄)TATA(x− x̄).

Then, for all x ∈ Rn,
‖∇Φ(x)‖ ≥ λmin‖x− x̄‖

and √
Φ(x) ≤ λmax‖x− x̄‖,
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k #it #Φ Φ(xk)

0 0 1 2.42000000E+01
1 2 5 4.56006286E+00
2 9 17 1.74588298E+00
3 18 31 6.72291440E−01
4 24 38 1.69811030E−01
5 30 46 4.81342844E−02
6 36 54 3.57124613E−03
7 40 58 5.98641542E−04
8 46 65 1.88139425E−05
9 56 76 1.23125395E−06
10 59 79 4.75271921E−10

Table 1: Details of the execution of Algorithm 2.1–2.2 in the toy illustrative Example 1.

where λmin and λmax are the smallest and the largest eigenvalues of A, respectively. Thus, for
all x 6= x̄,

‖∇Φ(x)‖√
Φ(x)

≥ λmin

λmax
.

Therefore, Assumption A3 holds with κ equal to the inverse of the condition number of A. We
solved this problem being A the diagonal matrix with eigenvalues 1/2, 1/3, . . . , n/(n + 1) and
x̄i = 1 for all i, employing Algorithm 2.1–2.2 with the definition of Bk,` for all k and ` given
in the previous example. Starting from x0 = 0, Table 2 displays the sequence Φ(xk) together
with the accumulated number of iterations of Algorithm 2.2 (#it in the table) and evaluations
of Φ (#Φ in the table). As it can be observed, for every k, Algorithm 2.2 performs a single
model minimization to obtaining a point that reaches the desired target on Φ(·). The number
of evaluations is always equal to the number of iterations plus one. The “plus one” corresponds
to the evaluation of Φ(x0). The fact that the number of evaluations is equal to the number of
iterations plus one also means that the regularization parameter was never increased. Using the
data in the table, we can see that the correlation between | log(ε)| and the accumulated number
of iterations of Algorithm 2.2 is 0.99. (Of course, the same is true for the accumulated number
of function evaluations.)

Example 3. Consider the feasibility problem with m = m = 1, q = q = 0, and n = 2 given by

h(x) =
π

2
− 4

π

p̃∑
j=1

cos((2j + 1)(x1 + x2))/(2j + 1)2,

h(x) = 100(x2 − x2
1)2 + (1− x1)2 − 1,

and
−π ≤ x1 + x2 ≤ π,
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k #it #Φ Φ(xk)

0 0 1 3.99006133D+00
1 1 2 9.67457272D-02
2 2 3 9.07733377D-03
3 3 4 3.54371350D-04
4 4 5 2.25072660D-06
5 5 6 3.86115181D-07
6 6 7 1.35021882D-08
7 7 8 9.67220885D-11

Table 2: Details of the execution of Algorithm 2.1–2.2 in the toy illustrative Example 2.

where p̃ = 108. Clearly, the cost of evaluating h, that approximates |x1 + x2|, is O(p̃); while the
cost of evaluating h is O(1). This means that h is a costly-to-evaluate, when compared to h,
but topologically simple function. Thus, it makes sense, as an illustrative example, to solve this
feasibility problem by minimizing a model of h(x)2 subject to h(x) = 0 and −π ≤ x1 + x2 ≤ π.

In this example, we considered Bk,` = ∇2Φ(xk,`) when ∇2Φ(xk,`) is positive definite; and
Bk,` = ∇2Φ(xk,`)+ξk,`I, otherwise. In the latter case, ξk,` is the smallest power of 10, not smaller
than 10−8, such that Bk,` is numerically positive definite. Starting from a point that satisfies the
cheap constraints, Table 3 displays the sequence Φ(xk) together with the accumulated number
of iterations of Algorithm 2.2 (#it in the table) and evaluations of Φ (#Φ in the table). The
behavior of the method in this example is identical to the one observed in the previous example,
i.e. the correlation between | log(ε)| and the accumulated number of iterations of and evaluations
performed by Algorithm 2.2 is 0.99.

k #it #Φ Φ(xk)

0 0 1 1.1781930563200053E−01
1 1 2 1.6522725284161665E−02
2 2 3 6.1041411149626642E−04
3 3 4 5.0318577198977945E−06
4 4 5 7.2445391801959614E−07
5 5 6 1.1568585375673346E−07
6 6 7 2.1071181599933004E−09

Table 3: Details of the execution of Algorithm 2.1–2.2 in the toy illustrative Example 3.

4.2 Illustration with problems of the CUTEst collection

In this section, we illustrate the behavior of Algorithm 21–2.2 in 40 feasibility problems from
the CUTEst collection [17] with no bound constraints. Selected problems are problems for
which Algencan [1, 5] was able to find a feasible point. (Problems for which a solution is
found when looking for a point that satisfies the cheap constraints were discarded.) Constraints
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were arbitrarily divided into two sets: constraints with odd indices were considered expensive
constraints; while constraints with even index were considered cheap constraints.

For all k and `, we considered Bk,` as the Gauss-Newton approximation to ∇2Φ(xk,`) plus
ξk,`I, where ξk,` is the smallest power of 10, not smaller than 10−8, such that Bk,` is numerically
positive definite.

For each one of the 40 problem, we recorded the accumulated number of iterations of Algo-
rithm 2.2 and the accumulated number of evaluations of Φ(·) that were needed to find x such that
Φ(x) ≤ ε, with ε ∈ {10−1, 10−2, . . . , 10−8}. Table 4 shows the details. Comparing the number
of iterations and the number of evaluations of Φ required to reach Φ(x) ≤ 10−8, it can be seen
that there are only 10 problems (HIMMELBC, POWELLBS, HELIXNE, HEART6, HEART8,
HYDCAR6, HYDCAR20, VANDERM1, VANDERM2, and SPIN2) in which the number of
function evaluations is greater than the number of iterations plus one, meaning the sufficient
descent condition (17) was not satisfied and the regularization parameter had to be increased
at Step 4 of Algorithm 2.2. Columns “Correlation #it” and “Correlation #Φ” show the cor-
relation between the achieved value of | log(Φ(·))| and the cumulative number of iterations and
evaluations of Φ performed by Algorithm 2.2, respectively. It is easy to see that, when correla-
tions are not close to 1, it is because relations are even better than linear. The last column in
the table, named κ̂, shows a rough estimate of the constant κ in Assumption A3, computed as
min{‖∇Φ(x) +h′(x)Tλ+ g′(x)Tµ‖2/

√
Φ(x)} over all the triplets (x, λ, µ) computed at Step 2 of

Algorithm 2.2. Note that the computed estimate κ̂ suggests that κ is bounded away from zero
in all problems.

16



P
ro

b
le

m
n

m
p

Φ
(x
∗ )

N
u

m
b

er
of

it
er

at
io

n
s

b
ef

or
e

re
ac

h
in

g
Φ

(·)
≤
ε

C
or

re
la

ti
on

#
it

N
u

m
b

er
of

ev
al

u
at

io
n

s
of

Φ
b

ef
or

e
re

ac
h

in
g

Φ
(·)
≤
ε

C
or

re
la

ti
on

#
Φ

κ̂
10
−

1
10
−

2
10
−

3
10
−

4
10
−

5
10
−

6
10
−

7
10
−

8
10
−

1
1
0−

2
10
−

3
1
0−

4
1
0−

5
10
−

6
1
0
−

7
10
−

8

B
O

O
T

H
2

2
0

5.
6E
−

16
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
1.

9E
+

00
C

L
U

S
T

E
R

2
2

0
1.

3E
−

10
0

0
0

0
1

2
2

3
1.

00
0

0
0

0
2

3
3

4
1.

00
1.

8E
−

0
1

C
U

B
E

N
E

2
2

0
2.

2E
−

14
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
4.

8E
−

0
1

G
O

T
T

F
R

2
2

0
1.

9E
−

11
0

0
0

0
1

2
2

3
0.

99
0

0
0

0
2

3
3

4
0.

99
1.

3E
+

00
H

IM
M

E
L

B
A

2
2

0
1.

1E
−

16
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
5.

7E
+

00
H

IM
M

E
L

B
C

2
2

0
2.

9E
−

15
2

3
3

3
3

4
4

4
0.

78
11

12
1
2

12
12

1
3

13
13

0.
41

8.
6E

+
00

H
S

8
2

2
0

3.
0E
−

16
1

2
2

2
2

2
3

3
0.

94
2

3
3

3
3

3
4

4
0.

94
1.

4E
+

01
H

Y
P

C
IR

2
2

0
3.

3E
−

09
1

1
1

2
2

2
2

2
1.

00
2

2
2

3
3

3
3

3
1.

00
2.

8E
+

00
P

O
W

E
L

L
B

S
2

2
0

4.
8E
−

14
8

8
8

8
9

9
9

9
0.

78
10

10
1
0

10
11

1
1

11
11

0.
73

1.
8E

+
03

S
IN

V
A

L
N

E
2

2
0

2.
0E
−

18
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
1.

4E
+

01
H

A
T

F
L

D
F

3
3

0
1.

1E
−

09
0

0
1

1
7

9
10

11
0.

94
0

0
2

2
8

1
0

11
12

0.
94

3.
2E

+
00

H
E

L
IX

N
E

3
3

0
2.

6E
−

20
7

7
7

7
8

8
8

8
0.

11
47

47
4
7

47
48

4
8

48
48

0.
06

1.
5E

+
00

H
IM

M
E

L
B

E
3

3
0

2.
5E
−

17
1

2
2

2
2

2
2

2
1.

00
2

3
3

3
3

3
3

3
1.

00
1.

0E
+

00
R

E
C

IP
E

3
3

0
4.

6E
−

13
1

2
2

2
2

2
2

2
1.

00
2

3
3

3
3

3
3

3
1.

00
2.

8E
−

0
1

Z
A

N
G

W
IL

3
3

3
0

1.
0E
−

12
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
1.

6E
+

00
P

O
W

E
L

L
S

E
4

4
0

1.
3E
−

09
3

4
5

5
6

7
8

9
0.

92
4

5
6

6
7

8
9

10
0.

92
4.

5E
−

0
2

H
E

A
R

T
6

6
6

0
4.

1E
−

14
40

26
0

31
6

33
4

34
8

36
0

36
0

36
0

0.
80

22
3

1
53

4
18

70
1
97

8
20

62
21

23
2
12

3
21

23
0.

80
1.

8E
+

00
H

E
A

R
T

8
8

8
0

1.
1E
−

09
18

18
18

19
19

19
19

19
0.

29
12

6
12

6
1
26

12
7

12
7

1
27

1
27

12
7

0.
32

3.
9E

+
00

C
O

O
L

H
A

N
S

9
9

0
2.

2E
−

14
0

0
0

2
2

2
2

3
0.

88
0

0
0

3
3

3
3

4
0.

88
6.

0E
+

01
M

O
R

E
B

V
N

E
10

10
0

3.
9E
−

16
0

1
1

1
1

1
2

2
1.

00
0

2
2

2
2

2
3

3
1.

00
3.

8E
+

00
O

S
C

IP
A

N
E

10
10

0
5.

7E
−

16
1

1
1

1
1

1
2

2
1.

00
2

2
2

2
2

2
3

3
1.

00
2.

9E
+

03
V

A
R

D
IM

N
E

10
12

0
1.

7E
−

24
0

0
0

0
1

1
1

1
1.

00
0

0
0

0
2

2
2

2
1.

00
1.

2E
+

01
IN

T
E

Q
N

E
12

12
0

4.
2E
−

16
0

1
1

1
1

1
2

2
1.

00
0

2
2

2
2

2
3

3
1.

00
1.

6E
+

00
W

A
T

S
O

N
N

E
12

31
0

3.
2E
−

11
0

0
0

0
0

0
1

1
1.

00
0

0
0

0
0

0
2

2
1.

00
1.

3E
+

10
H

A
T

F
L

D
G

25
25

0
2.

7E
−

13
3

4
4

4
4

5
5

5
0.

82
4

5
5

5
5

6
6

6
0.

82
2.

1E
+

00
H

Y
D

C
A

R
6

29
29

0
6.

1E
−

14
8

16
26

36
47

57
57

57
0.

98
19

41
8
1

1
21

1
65

19
8

1
98

1
98

0.
98

9.
2E

+
00

M
E

T
H

A
N

B
8

31
31

0
4.

0E
−

11
1

1
1

1
2

2
2

2
1.

00
2

2
2

2
3

3
3

3
1.

00
2.

2E
+

02
M

E
T

H
A

N
L

8
31

31
0

1.
4E
−

09
3

4
4

4
4

4
4

4
0.

17
4

5
5

5
5

5
5

5
0.

17
3.

6E
+

02
C

H
N

R
S

B
N

E
50

98
0

2.
6E
−

17
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
7.

9E
+

00
H

Y
D

C
A

R
20

99
99

0
9.

9E
−

09
4

7
9

12
25

13
5

22
6

52
4

0.
85

6
1
4

20
29

6
8

3
96

5
78

1
16

5
0.

87
4.

4E
−

0
1

V
A

N
D

E
R

M
1

10
0

10
0

99
2.

1E
−

09
0

0
0

1
1

2
3

4
1.

00
0

0
0

2
2

3
4

5
1.

00
2.

3E
−

0
1

V
A

N
D

E
R

M
2

10
0

10
0

99
2.

1E
−

09
0

0
0

1
1

2
3

4
1.

00
0

0
0

2
2

3
4

5
1.

00
2.

3E
−

0
1

V
A

N
D

E
R

M
3

10
0

10
0

99
7.

8E
−

09
0

0
0

1
2

3
4

4
1.

00
0

0
0

2
3

4
5

5
1.

00
3.

1E
−

0
1

S
P

IN
2

10
2

10
0

0
8.

1E
−

09
3

3
3

3
3

4
4

5
0.

61
4

4
4

4
4

7
7

10
0.

70
5.

3E
+

00
A

R
G

T
R

IG
20

0
20

0
0

7.
0E
−

11
1

1
1

2
2

2
2

2
1.

00
2

2
2

3
3

3
3

3
1.

00
1.

6E
+

02
B

R
O

W
N

A
L

E
20

0
20

0
0

1.
2E
−

18
0

0
0

1
1

1
1

1
1.

00
0

0
0

2
2

2
2

2
1.

00
7.

0E
+

02
C

H
A

N
D

H
E

U
50

0
50

0
0

2.
2E
−

09
3

4
5

5
6

7
7

8
0.

76
4

5
6

6
7

8
8

9
0.

76
6.

0E
−

0
1

E
IG

E
N

A
U

25
50

25
50

0
8.

1E
−

12
1

1
1

1
1

1
1

1
1.

00
2

2
2

2
2

2
2

2
1.

00
1.

1E
+

02
B

R
O

Y
D

N
3
D

50
00

50
00

0
4.

8E
−

09
3

3
3

4
4

4
4

4
0.

38
4

4
4

5
5

5
5

5
0.

38
8.

3E
+

00
B

R
O

Y
D

N
B

D
50

00
50

00
0

4.
8E
−

14
4

4
4

5
5

5
5

5
0.

56
5

5
5

6
6

6
6

6
0.

56
5.

7E
+

00

Table 4: Performance of Algorithm 2.1–2.2.
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5 Final remarks

The objective of Optimization is to find a point in the feasible region at which the objective
function takes a value as small as possible. Optimality conditions, which relate the local variation
of the objective function with the local variations of the constraints, are tools for recognizing
whether a point is close to a solution or not, but do not have an intrinsic value for most users.
Lagrange multipliers are generally used to estimate the variation of the minimum with respect
to the variation of different constraints but this utility is challenged in the case that constraint
qualifications do not hold or when the set of Lagrange multipliers is infinity. As a matter of
fact, the variation of the minimum with respect to constraints is more reliably estimated by
means of running the solver with the desired modification of constraints, that does not need to
be small. This is the reason why the default version of many constrained optimization solvers,
after satisfying a (successful or unsuccessful) stopping criterion at some iterate x, try to find a
very accurate point in the feasible region, starting with x as initial approximation. Alternatively,
these solvers address the problem of finding a feasible point subject to the additional feasibility
constraint f(z) ≤ f(x).

Constrained optimization problems are usually formulated in the form

Minimize f(x) (39)

subject to
h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) = 0, (40)

where the constraints h(x) = 0 and g(x) = 0 are cheap in the sense discussed in this work.
Augmented Lagrangian (AL) methods are appropriate for these formulations. At each outer
iteration of an AL method the augmented Lagrangian function, which combines f , h, and g, is
approximately minimized subject to the cheap constraints. See, for example, [5] and [1], where
this approach is developed and analyzed. The complexity of solving each subproblem by means
of regularization methods is similar to the complexity of solving unconstrained optimization
problems. The difficulty of extending this result to the whole constrained minimization process
relies on the fact that, in the worst situation, penalty parameters could grow indefinitely, af-
fecting the Lipschitz constants associated with each subproblem. (See [6].) However, in many
practical cases, users do not need to “minimize” f(x) and would be happy after finding a feasible
point for which f(x) is smaller than a given target ftarget. In this case, the requirement (39)
may be replaced by the inequality f(x) − ftarget ≤ 0, so far defining a feasibility problem to-
gether with the constraints (40). In this work, we showed that solving this feasibility problem
may be overwhelmingly easier than solving (39,40) by means of constrained optimization solvers.
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