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Abstract

A novel idea is proposed for solving optimization problems with equality con-
straints and bounds on the variables. In the spirit of Sequential Quadratic Pro-
gramming and Sequential Linearly-Constrained Programming, the new proposed
approach approximately solves, at each iteration, an equality-constrained optimiza-
tion problem. The bound constraints are handled in outer iterations by means of
an Augmented Lagrangian scheme. Global convergence of the method follows from
well-established nonlinear programming theories. Numerical experiments are pre-
sented.
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1 Introduction

Although nonlinearly constrained optimization is a well-established area of numerical
mathematics, many challenges remain and stimulate the development of new methods.
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Frequently, novel algorithms are firstly developed for equality-constrained optimization
and, later, their extension to equality and inequality constraints is introduced. Han-
dling inequality constraints may lead to cumbersome combinatorial problems, if one de-
cides to rely on active-set strategies. In Sequential Quadratic Programming (SQP) algo-
rithms [16, 29], a quadratic function is minimized on a polytope at each iteration. As
a consequence, the behavior of SQP algorithms is strongly affected by the performance
of the Quadratic Programming solver. In Sequential Linearly-Constrained Programming
[28], one minimizes a (non-necessarily quadratic) Lagrangian (or Augmented Lagrangian)
on the polytope that represents the linearization of the constraints. Again, this is a consid-
erably complicated subproblem in which all the combinatorial issues are incorporated to
handle inequalities. In the most popular Augmented Lagrangian (AL) methods [1, 9, 13]
equality constraints (and sometimes also inequality constraints [1]) are incorporated into
the objective function of the subproblems, so that the only inequality constraints of sub-
problems are represented by the bounds on the variables, thus simplifying the combina-
torial difficulties. Finally, in some Interior-Point methods [32], subproblems involve the
minimization of a barrier function that tends to infinity on the boundaries, subject to
the equality constraints. In this case, the behavior near the boundary is problematic. In
Linear Programming, long experience with Interior-Point methods taught software devel-
opers how to deal with this inconvenience switching to the “central trajectory”, but this
is not so simple when we deal with nonlinear constraints.

On the other hand, minimization with only equality constraints is a very attractive sub-
problem. The main reason is that the standard optimality condition for this problem is a
nonlinear system of equations, instead of the system with equalities and inequalities that
appear in the KKT conditions of general optimization. In many cases, solving equality
constrained subproblems is less difficult than solving quadratic programming subproblems
with inequalities of similar dimensions.

This state of facts led us to define a method for general nonlinear programming with
equality constrained subproblems, in which the bound constraints on the variables are
incorporated into the objective function under the Augmented Lagrangian interaction. At
each outer iteration the method minimizes an equality-constrained optimization problem,
using a mild stopping criterion. For this task we use Newton-like linearizations of the
Lagrangian nonlinear system. After the outer iteration, the Lagrange multipliers and
penalty parameters corresponding to bound constraints are checked and updated as in the
AL scheme described in [9]. This is the first implementation of an Augmented Lagrangian
method in which the subproblem constraints (or lower-level constraints in [1]) adopt a
nontrivial definition, which, by the way, reinforce the necessity of the general theory
of [1, 9].

We describe an implementation of these ideas in an algorithm called SECO (Sequen-
tial Equality-Constrained Optimization). Section 2 describes the main algorithm. The
method for equality-constrained nonlinear minimization that is used for solving the sub-
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problems is described in Section 3. Numerical experiments are described and analyzed in
Section 4. Conclusions are given in Section 5.

Notation. If x ∈ IRn, x+ = max{x, 0} where the maximum is taken componentwise.

2 SECO algorithm

In this work we address the problem

Minimize f(x) subject to h(x) = 0 and ` ≤ x ≤ u,

where f : IRn → IR and h : IRn → IRm are sufficiently smooth and ` ≤ x ≤ u must
hold componentwise, i.e. `i ≤ xi ≤ ui, i = 1, . . . , n, with ` = (`1, . . . , `n)T and u =
(u1, . . . , un)T . (Note that, paying the price of adding slack variables, inequality constraints
of the form g(x) ≤ 0 can be incorporated as g(x)+s = 0 plus s ≥ 0.) However, to simplify
the presentation and since the extension is straightforward, in the rest of this work we
will deal with the problem

Minimize f(x) subject to h(x) = 0 and x ≥ 0. (1)

For all x ∈ IRn, ρ > 0, and v ∈ IRn
+, we define the Augmented Lagrangian function

Lρ(x, v) (that only penalizes the non-negativity constraints) by

Lρ(x, v) = f(x) +
ρ

2

∑
vi/ρ≥xi

(vi/ρ− xi)2.

Therefore, we have that

∇Lρ(x, v) = ∇f(x)−
∑

vi/ρ≥xi

(vi − ρxi)ei

and
∇2Lρ(x, v) = ∇2f(x) + ρ

∑
vi/ρ≥xi

ei(ei)T ,

where ei ∈ IRn stands for the i-th canonical vector in IRn. The operators ∇ and ∇2

always indicate derivatives with respect to x. The Hessian ∇2Lρ(x, v) is discontinuous at
the points in which xi = vi/ρ but we can adopt the definition above without leading to
contradictions.

The main model algorithm that we now describe is a particular case of Algorithm 4.1
of [9, p.33].

Algorithm 2.1: SECO
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Let vmax > 0, γ > 1, 0 < τ < 1, v̄1 ∈ [0, vmax]
n, and ρ1 > 0 be given. Initialize k ← 1.

Step 1. Find xk ∈ IRn as an approximate solution of

Minimize Lρk(x, v̄k) subject to h(x) = 0. (2)

Step 2. Compute V k = min{xk, v̄k/ρk}. If k = 1 or

‖V k‖∞ ≤ τ‖V k−1‖∞, (3)

choose ρk+1 ≥ ρk. Otherwise, choose ρk+1 ≥ γρk.

Step 3. Choose v̄k+1 ∈ [0, vmax]
n.

Step 4. Set k ← k + 1 and go to Step 1.

Remark 1. At Step 1, one tries to find an approximate solution of (2). In fact, at
iteration k, we require a point xk ∈ IRn such that there exists λk ∈ IRm satisfying

‖∇Lρk(xk, v̄k) +∇h(xk)λk‖∞ ≤ εoptk

‖h(xk)‖∞ ≤ εfeask ,
(4)

where {εfeask } and {εoptk } are sequences that tend to zero in a way that will be specified
later.

Remark 2. In theory, the only requirement for the multipliers v̄k+1 is that they belong
to a given compact interval. However, in order to speed up convergence, in practice, we
define

vk+1 = (v̄k − ρkxk)+ (5)

and compute v̄k+1 as the projection of vk+1 onto the safeguarding interval [0, vmax]
n. More-

over, it is worthwhile to mention that, in the theorem below, {λk} in (4) and {vk+1} in (5)
play the role of Lagrange multipliers associated with equality and inequality constraints,
respectively.

Definition 2.1. [5] Assume that the constraints of an optimization problem are h(x) = 0
and g(x) ≤ 0, x∗ is a feasible point, and I is the set of indices of active inequality
constraints at x∗. For all x ∈ IRn we define K(x) as the non-negative cone generated by
{±∇hi(x),∀ i} and {∇gi(x), i ∈ I}. The Cone-Continuity property is said to hold at x∗

when the point-to-set mapping K(x) is continuous at x∗.

Theorem 2.1. Assume that {xk} is a sequence generated by SECO. Then,

1. Every limit point of {xk} satisfies the AKKT (Approximate Karush-Kuhn-Tucker)
condition [2] of the problem

Minimize
n∑
i=1

max{0,−xi}2 subject to h(x) = 0. (6)
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2. If a limit point of {xk} satisfies the Cone-Continuity property with respect to h(x) =
0, then this limit point satisfies the KKT conditions of the problem (6).

3. If a limit point of {xk} is feasible for problem (1), then it satisfies the AKKT con-
ditions of (1).

4. If a limit point of {xk} is feasible and satisfies the Cone-Continuity property with re-
spect to the constraints h(x) = 0, x ≥ 0, then this point satisfies the KKT conditions
of (1).

Proof. Parts 1 and 3 of the thesis follow from Theorems 6.3 and 6.2 of [9], respectively;
while parts 2 and 4 follow from Theorem 3.3 of [9]. It is worth noting that Theorem 3.3
of [9] uses the U-condition; while parts 2 and 4 in the thesis use the Cone-Continuity
property. The U-condition and the Cone-Continuity property are equivalent. The Cone-
Continuity property is the geometrical interpretation of the U-condition (see [5] for de-
tails). �

The main result of [5] is that the Cone-Continuity property is the weakest constraint
qualification that guarantees that AKKT implies KKT. Therefore, it is weaker than con-
straint qualifications LICQ (Linear Independence of the gradients of active constraints),
Mangasarian-Fromovitz [25], CPLD (Constant Positive Linear Dependence) [31, 6], RC-
PLD (Relaxed Positive Linear Dependence) [3], and CPG (Constant Positive Genera-
tors) [4].

By the AKKT property and Theorem 6.1 of [9], given εfeas > 0 and εopt > 0, there exists
k such that, on success, (xk, λk, vk+1) satisfies

‖∇f(xk)−
∑n

i=1 v
k+1ei +∇h(xk)λk‖∞ ≤ εopt,

‖h(xk)‖∞ ≤ εfeas,

−xk ≤ εfeas,

min{xk, vk+1} ≤ εfeas.

(7)

3 Algorithm for equality-constrained minimization

In this section, we describe the method being proposed to approximately solve the sub-
problems (2) of the SECO algorithm.

In order to avoid cumbersome notation, we denote F (x) = Lρk(x, v̄k). Then, F has
Lipschitz-continuous first derivatives and∇F (x) is semismooth [30]. Problem (2) becomes

Minimize F (x) subject to h(x) = 0. (8)

5



Moreover, for the algorithm described in this section we will also use the index k to
identify iterations and iterates, which should not be confused with the ones of the main
algorithm described in the previous section. We now describe a method that, basically,
consists of solving problem (8) by applying Newton’s method to its KKT conditions.

The KKT conditions of problem (8) are given by

∇L(x, λ) = 0
h(x) = 0,

(9)

where L(x, λ) = F (x) + h(x)Tλ, and, thus, ∇L(x, λ) = ∇F (x) +∇h(x)λ.

The Newtonian linear system associated with the nonlinear system of equations (9) is
given by (

∇2L(x, λ) ∇h(x)
∇h(x)T 0

)(
dx
dλ

)
= −

(
∇L(x, λ)
h(x)

)
. (10)

However, the linear system that we solve at each iteration is of the form(
∇2L(x, λ) + εnwI ∇h(x)

∇h(x)T −εseI

)(
dx
dλ

)
= −

(
∇L(x, λ)
h(x)

)
, (11)

where εnw, εse ≥ 0 are real numbers such that the coefficient matrix in (11) has n positive
eigenvalues and m negative eigenvalues (and no null eigenvalues). In principle, no modifi-
cation of the Newtonian linear system (10) would be necessary. However, we are interested
in minimizers of (8), and not on other kind of solutions of the Lagrange conditions (9) such
as maximizers or other stationary points. In order to increase the chance of convergence
to minimizers (or, at least, discourage convergence to other stationary points), the matrix
of the system is modified in such a way that the modified Hessian of the Lagrangian
∇2L(x, λ) + εnwI is positive definite onto the null space of ∇h(x)T . This goal is achieved
with the modification displayed in (11) of the diagonal of the coefficient matrix in (10),
which corresponds to the modification of its inertia. On the other hand, when εse > 0,
the diagonal matrix −εseI ensures that the last m rows of the coefficient matrix in (11)
are linearly independent. Moreover, if εse > 0, the Sylvester Law of Inertia [18, p. 403]
and the identity(

∇2L(x, λ) + εnwI +∇h(x)∇h(x)T/εse 0
0 −εseI

)
=(

I ∇h(x)/εse

0 I

)(
∇2L(x, λ) + εnwI ∇h(x)

∇h(x)T −εseI

)(
I 0

∇h(x)T/εse I

)
,

(12)

imply that the matrix ∇2L(x, λ) + εnwI +∇h(x)∇h(x)T/εse is positive definite. As it will
be shown later, this implies that the algorithm being proposed is well defined.
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At iteration k, given the iterate (xk, λk), a linear system like (11) is solved to find (dkx, d
k
λ).

Ideally, we would like to compute the new iterate (xk+1, λk+1) as (xk, λk) + (dkx, d
k
λ). How-

ever, in practice, the next iterate will be given by(
xk+1

λk+1

)
=

(
xk

λk

)
+ αk

(
γkxd

k
x

γkλd
k
λ

)
,

where γkx , γ
k
λ ∈ (0, 1] have the role of limiting the size of the search directions d̃kx = γkxd

k
x

and d̃kλ = γkλd
k
λ, respectively, and αk ∈ (0, 1] is computed in order to obtain simple decrease

of a merit function not yet specified.

Therefore, the three main ingredients of the developed Newton’s method applied to the
KKT system (9) of problem (8) are: (a) the correction of the inertia of the coefficient
matrix in (16); (b) the control step (computation of γkx and γkλ); and (c) the backtrack-
ing procedure to compute αk and the decision of the merit function considered in the
backtracking.

The description of the algorithm requires the definition of the squared infeasibility mea-
surement given by

Φ(x) =
1

2
‖h(x)‖22. (13)

We also define, in a rather unconventional way, the Augmented Lagrangian function
associated with problem (8) as

Lε(x, λ) = εL(x, λ) + Φ(x), (14)

where ε ≥ 0 is given. The whole method is described in the algorithm below.

Algorithm 3.1.

Let εfeas, εopt > 0 be given tolerances related to the stopping criteria. Let x̂0 and λ0

be initial estimates of the primal and dual variables, respectively. Let Perturbx0 ∈
{true, false} and NoBcktrckAtAll ∈ {true, false} be given parameters. Set
k ← 0, NoMoreStpCntrl ← false, and NoMoreBcktrck ← false.

Step 0. Perturbation (or not) of initial guess

If Perturbx0 then set

x0i = x̂0i + 0.01ξi|x̂0i |, for i = 1, . . . , n,

where ξi is a random variable with uniform distribution within the interval [−1, 1] for
i = 1, . . . , n. Otherwise, set x0 = x̂0.

Step 1. Stopping criteria

Step 1.1 If
‖h(xk)‖∞ ≤ εfeas and ‖∇L(xk, λk)‖∞ ≤ εopt,
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stop by declaring that an approximate KKT point with the required feasibility and opti-
mality tolerances has been found.

Step 1.2 If
‖h(xk)‖∞ ≤ εfeas and f(xk) ≤ −1010,

stop by declaring that the objective function appears to be unbounded from below.

Step 2. Inertia correction

Step 2.1.

Case k = 0: Set εnw ← 0. If m ≤ n, set εse ← 0, otherwise set εse ← 10−8.

Case k ≥ 1: If γk−1x = 1, set εnw ← 0.1εnwk−1, otherwise set εnw ← 3εnwk−1. Set εse ← 0.1εsek−1.

Step 2.2. Compute the inertia (i+, i−, i0), where i+, i−, and i0 represent the number of
positive, negative, and null eigenvalues, respectively, of the matrix(

∇2L(xk, λk) + εnwI ∇h(xk)
∇h(xk)T −εseI

)
. (15)

Step 2.3. If i+ < n then increase εnw by setting εnw ← max{10−8, 3εnw}.
Step 2.4. If i− < m then increase εse by setting εse ← max{ 10−8, 3εse}.
Step 2.5. If εnw or εse were increased at Steps 2.3 or 2.4, respectively, go to Step 2.2.

Step 2.6. Define εnwk = εnw and εsek = εse.

Step 3. Search direction and step control

Step 3.1. Compute dkx and dkλ as the (unique) solution of the linear system(
∇2L(xk, λk) + εnwk I ∇h(xk)

∇h(xk)T −εsek I

)(
dkx
dkλ

)
= −

(
∇L(xk, λk)
h(xk)

)
. (16)

Step 3.2. If NoMoreStpCntrl, assign γkx = 1 and γkλ = 1. Otherwise, define

γkx = min

{
1,

100 max{1, ‖xk‖∞}
‖dkx‖∞

}
and γkλ = min

{
1,

100 max{1, ‖λk‖∞}
‖dkλ‖∞

}
.

Step 3.3. Define d̃kx = γkxd
k
x and d̃kλ = γkλd

k
λ.

Step 4. Backtracking (on primal variables only)

Step 4.1. If NoBcktrckAtAll or NoMoreBcktrck, set αk = 1 and go to Step 5.

Step 4.2. Set α← 1.
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Step 4.3. Set xtrial ← xk + αd̃kx.

Step 4.4. Consider conditions

‖h(xk)‖∞ ≤ εfeas and εsek = 0 and fl(L(xtrial, λ
k)) ≤ fl(L(xk, λk)) (17)

and (
‖h(xk)‖∞ > εfeas or εsek > 0

)
and fl(Lεsek (xtrial, λ

k)) ≤ fl(Lεsek (xk, λk)), (18)

where fl(·) represents the result of performing an operation in floating point arithmetic.

If (17) or (18) hold, define αk = α and go to Step 5.

Step 4.5. Set α← α/2 an go to Step 4.3.

Step 5. Update the iterate

Step 5.1. Define xk+1 = xk + αkd̃
k
x and λk+1 = λk + αkd̃

k
λ.

Step 5.2. Consider conditions

fl(L(xk+1, λk)) = fl(L(xk, λk)), (19)

and
fl(Lεsek (xk+1, λk)) = fl(Lεsek (xk, λk)). (20)

If (17,19) or (18,20) hold, set NoMoreStpCntrl← true and NoMoreBcktrck← true.

Step 5.3. Set k ← k + 1 and go to Step 1.

Remarks. It is well-known that backtracking may be harmful in some well characterized
situations. This is why the algorithm includes the possibility of avoiding backtracking
by setting the logical parameter NoBcktrckAtAll. Perturbation of the initial guess
may be adequate to avoid some undesirable situations in which symmetry prevents con-
vergence. This is the reason why the method includes the possibility of perturbing the
initial guess by setting the logical parameter Perturbx0.

In Algorithm 3.1 (Step 4.4) the acceptance of the trial step (see (17) and (18)) is condi-
tioned to the decrease of two different merit functions: the Lagrangian L(·, λk) and the
Augmented Lagrangian Lεsek (·, λk). Consider the three cases (i) εsek = 0 and h(xk) = 0, (ii)

εsek = 0 and h(xk) 6= 0, and (iii) εsek > 0. We will prove that, in case (i), the direction dkx
is a descent direction for the Lagrangian; while, in cases (ii) and (iii), the direction dkx is
a descent direction for the Augmented Lagrangian.

In case (i), the second block of equations in (16) with εsek = 0 and h(xk) = 0, says that dkx
belongs to the null-space of ∇h(xk)T . Therefore, pre-multiplying the first block of equa-
tions in (16) by (dkx)

T and using, that, due to the inertia correction, ∇2L(xk, λkI)+ εsek I is
positive definite on the null-space of ∇h(xk)T , we obtain that (dkx)

T∇L(xk, λk) is negative.
Thus, when εsek = 0 and h(xk) = 0, dkx is a descent direction for the Lagrangian L(·, λk)
at xk.
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In case (ii), since εsek = 0, the Augmented Lagrangian Lεsek (·, λk) coincides with Φ(·). Pre-

multiplying the equation ∇h(xk)Tdkx+h(xk) = 0 by h(xk), since h(xk) 6= 0, we obtain that
the scalar product of the direction with the ∇Φ(xk) (that coincides with ∇Lεsek (xk, λk))
is negative, as desired.

In case (iii), by the second block of equations in (16), we have that ∇h(xk)Tdkx − εsek dkλ =
−h(xk). Thus, dkλ = (∇(xk)Tdkx + h(xk))/εsek . Now, by the first block of equations in (16),[

∇2L(xk, λk) + εnwk I
]
dkx +∇h(xk)dkλ = −∇L(xk, λk).

Therefore,[
∇2L(xk, λk) + εnwk I

]
dkx +

[
∇h(xk)∇h(xk)Tdkx +∇h(xk)h(xk)

]
/εsek = −∇L(xk, λk).

Thus,[
∇2L(xk, λk) + εnwk I +∇h(xk)∇h(xk)T/εsek

]
dkx = −∇L(xk, λk)−∇Φ(xk)/εsek

= −∇Lεsek (xk, λk)/εsek .

But, by the inertia correction procedure, the identity (12), and the Sylvester Law of Iner-
tia, we have that ∇2L(xk, λk) + εnwk I +∇h(xk)T∇h(xk)/εsek is positive definite. Therefore
dkx is a descent direction for the Augmented Lagrangian Lεsek (·, λk) at xk.

Summing up, we have proved that

h(xk) = 0 and εsek = 0 and L(xtrial, λ
k) ≤ L(xk, λk) (21)

or (
h(xk) 6= 0 or εsek > 0

)
and Lεsek (xtrial, λ

k) ≤ Lεsek (xk, λk) (22)

eventually holds. Conditions (17) and (18) in Algorithm 3.1 are the heuristic “practical”
versions of (21) and (22), respectively.

Algorithm 3.1 may be considered as an heuristic Newton-based procedure for solving
the equality-constrained minimization problem (8). For obtaining global convergence,
this algorithm may be naturally coupled with the globally convergent Flexible Inexact-
Restoration (FIR) procedure for solving (8) introduced in [11]. Each iteration of the
FIR algorithm, as other Inexact-Restoration methods, has two phases: Feasibility and
Optimality. In the Feasibility Phase the algorithm aims to improve feasibility and in the
Optimality Phase the algorithm minimizes approximately a Lagrangian approximation
subject to the linearization of the constraints [7, 15, 17, 19, 21, 22, 23, 24, 26, 27]. As a
consequence, a trial point is obtained which is accepted as new iterate or not according
to the value of a Sharp Lagrangian merit function [15, 26]. When the trial point is
not accepted, a new trial point is obtained that satisfies the linearized constraints. If
the feasible phase is well-defined, it can be proved that the algorithm generates AKKT
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sequences and that limit points are KKT when the Cone-Continuity property holds. The
conditions required in the Feasibility Phase are mild and thus many different (perhaps
heuristic) methods may be employed for this phase. Our proposal here essentially consists
of employing Algorithm 3.1 as the Feasibility Phase of the FIR method. More precisely,
the globalization procedure can be sketched in the following Algorithm 3.2.

Algorithm 3.2

Initialize the standard algorithmic parameters of FIR and the parameters of Algorithm 3.1.
Let N > 0, ζ ∈ (0, 1), and υ > 0. Initialize k ← 0.

Step 1. Run Algorithm 3.1 employing a maximum of N iterations and obtaining the
point yk+1. If the standard stopping criterion of Algorithm 3.1 is satisfied, stop. Oth-
erwise, if ‖h(yk+1)‖ ≤ ζ‖h(xk)‖ and ‖yk+1 − xk‖ ≤ υ‖h(xk)‖ go to Step 2, else stop by
declaring Failure in the Feasibility Phase.

Step 2. Proceed as in FIR by updating the penalty parameter, minimizing the Lagrangian
in the tangent set and making the necessary comparisons by means of which, eventually,
xk+1 is obtained. Update k ← k + 1 and go to Step 1.

4 Numerical experiments

We implemented Algorithms 2.1 and 3.1 in Fortran 90. This means that the SECO
subproblems will be solved by an heuristic method and that the globalization scheme
suggested in the previous section will not be considered; the main reason for this choice
has been keeping the implemented method simple. All tests were conducted on a computer
with 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 RAM memory, running
OS X Yosemite (version 10.10.4). Codes were compiled by the GFortran compiler of GCC
(version 4.9.2) with the -O3 optimization directive enabled.

Regarding the parameters of Algorithm 2.1, arbitrarily but based on previous experimen-
tation with the Augmented Lagrangian solver Algencan [1, 9], we set vmax = 1020, γ = 10,
and τ = 0.5. We also set εfeas = εopt = 10−8. The choice of the sequences {εfeask } and
{εoptk } (see (4)) is given by

εfeas1 =
√
εfeas and εopt1 =

√
εopt

and, for k > 1, if

‖h(xk−1)‖∞ ≤
√
εfeas and ‖∇L(xk−1, λk−1)‖∞ ≤

√
εopt

then
εfeask = max{εfeas,min{ 1

10
εfeask−1,

1
2
‖h(xk−1)‖∞}}

εoptk = max{εopt,min{ 1
10
εoptk−1,

1
2
‖∇L(xk−1, λk−1)‖∞}}.
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Otherwise, εfeask = εfeask−1 and εoptk = εoptk−1. The value of the initial penalty parameter ρ1,
follows exactly the settings considered in Algencan (see [9, p.153]). In this way, differences
between SECO and Algencan are concentrated in the choice of lower- and upper-level
constraints, making their comparison useful for the purposes of the present work. The
stopping criterion of Algorithm 2.1 is given by (7).

Subroutine MA57 from HSL [33] was used to compute the inertia-revealing factorizations1

at Step 2.2 of Algorithm 3.1 and to solve the linear systems at Step 3.1. The values of
parameters Perturbx0 ∈ {true, false} and NoBcktrckAtAll ∈ {true, false}
will be the subject of numerical experimentation.

4.1 When the initial point should be perturbed

Consider the problem

Minimize (x+ y − 10)2 subject to xy = 1. (23)

Let δ = 5 + 2
√

6. It is easy to see that points of the form (δ, δ−1)T and (δ−1, δ)T are
global minimizers of problem (23). They both annihilate the objective function, satisfy
the LICQ constraint qualification (since any feasible point satisfies it), and, hence, satisfy
the KKT condition (both with null multiplier). Therefore, it is natural to assume that
they should be the target of any optimization method.

Since the point (5, 5)T is an unconstrained global minimizer (annihilates the objective
function but does not satisfy the constraint), it might be a natural initial guess for any
iterative solver trying to solve problem (23). However, starting from x̂0 = (5, 5)T (with
λ0 = 0, Perturbx0 = NoBcktrckAtAll = false), in 9 iterations and never aban-
doning the line x = y, Algorithm 3.1 converges to the KKT point (1, 1)T , that is a local
maximizer (there is a local minimizer at (−1,−1)T and the objective function goes to
infinity within the feasible set when, for example, x goes to infinity and y = 1/x).

Some readers may think that having found a local maximizer is not an issue at all since
a KKT point was found. However, from the authors’ point of view, this is, at least, an
undesired situation, since the Optimizers’ main goal is, in most cases, to obtain the lowest
possible functional values within the feasible region.

In this subsection we claim that a very simple and affordable way of avoiding the behaviour
described above is to slightly perturb the initial guess. When the initial point x̂0 = (5, 5)T

1The inertia is freely computed as an outcome of the matrix factorization performed by the Harwell
subroutine MA57. Given an indefinite sparse symmetric matrix A, subroutine MA57 computes the
factorization given by PAPT = LDLT , where P is a permutation matrix, L is lower triangular, and D
is block diagonal with 1 × 1 or 2 × 2 diagonal blocks. By the Sylvester Law of Inertia, matrices A and
D have the same inertia and computing the inertia of D is trivial (it is necessary to check the sign or to
compute the eigenvalues of its 1× 1 or 2× 2 diagonal blocks).
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is perturbed, as described at Step 0 of Algorithm 3.1 (and the actual initial point given by
x0 ≈ (5.0466, 4.9629)T ), Algorithm 3.1 (with λ0 = 0, Perturbx0 = true, and NoBck-
trckAtAll = false) converges to the approximate global minimizer (9.98990, 0.10102)T

in 4 iterations.

4.2 When backtracking should be avoided

Algorithm 3.1 presented in Section 3 aims to solve problems of the form (8) with

F (x) = Lρk(x, v̄k) = f(x) +
ρk
2

∑
vi/ρk≥xi

(v̄ki /ρk − xi)2.

As a consequence, it is natural to evaluate Algorithm 3.1 considering objective functions of
this form in which ρk is possibly large. Thus, in the present section, we consider problems
of the form

Minimize 1
2
xTAx+ bTx+ r

∑n
i=1 max{0,−xi}2

subject to 1
2
xTAjx+ bTj x+ cj = 0, j = 1, . . . ,m,

(24)

where

A =

[
1

max{1,maxi,j{āij}}

]
(ĀT Ā) and Aj =

1

2
(ĀTj + Āj), (25)

and Ā ∈ IRn×n, b ∈ IRn, Āj ∈ IRn×n, and bj ∈ IRn for j = 1, . . . ,m have random elements
with uniform distribution within the interval [−1, 1]. In order to generate a feasible
problem, a point x̄ with random non-negative elements x̄i with uniform distribution in
[0, 1] is generated and cj ∈ IR is defined as

cj = −[1
2
x̄TAjx̄+ bTj x̄] for j = 1, . . . ,m. (26)

We consider twelve instances of problem (24) with n = 1 000, m = 500, and r ∈
{0, 1, 10, 100, . . . , 1010}. The initial point x0 is always given by

x0i = x̄i + 10−8ξi|x̄i|, for i = 1, . . . , n,

where ξi is a random variable with uniform distribution in [−1, 1], i.e. x0 is a very slight
perturbation of the known feasible point used to generate the problem. At x0 we have that
max1≤j≤m{|xTAjx+bTj x+cj|} ≈ 10−6 6≤ εfeas = 10−8. With these settings, the situation we
are trying to mimic is the following: (a) Since the Jacobian of the constraints ∇h(xk) has
full row rank with high probability, we will have εsek (the perturbation applied to the south-
east block of the Jacobian matrix (15) of the KKT system to correct its inertia) equal to 0
for all k; (b) As a consequence, the primal direction dkx will satisfy h′(xk)dkx + h(xk) = 0
for all k and, since ‖h(xk)‖ is relatively “small”, we will have h′(xk)dkx ≈ 0; and (c) With
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high probability, the merit function (that coincides with the feasibility measure 1
2
‖h(x)‖22

if xk is infeasible (i.e. ‖h(xk)‖∞ 6≤ εfeas) and εsek = 0) will decrease only for very small
steps along dkx. This gedanken experiment illustrates a well-known inconvenience of the
usage of merit functions that gave rise to the development of alternative merit functions,
nonmonotone strategies, and filter methods, among others. Our claim at the present
moment is: try Newton as pure as possible avoiding other alternatives.

Table 1 shows the results of applying Algorithm 3.1 with Perturbx0 = false and
NoBcktrckAtAll = true to the twelve instances described in the paragraph above.
In the table, #it and #fcnt stand for number of iterations and number of objective
function evaluations, respectively; while “CPU time (s)” is the elapsed CPU time in
seconds. In the last two columns, f(x∗) is the objective function value at the last iterate;
while min{1≤i≤n}{x∗i } is the smallest component of the final iterate x∗. The results for the
case Perturbx0 = true and NoBcktrckAtAll = true are very similar to those
displayed in Table 1, i.e. as expected, a small perturbation in the initial guess has no
meaningful effect in the behavior of the method, since symmetry is not an issue in this
problem.

r #it #fcnt CPU time (s) f(x∗) min{1≤i≤n}{x∗i }
0 45 46 142.92 5.5997D+03 -2.0293D+00
1 74 75 233.22 5.5683D+03 -2.2747D+00
10 57 58 179.92 7.2960D+03 -1.6530D+00
102 57 58 174.40 1.3483D+04 -8.7815D−01
103 85 86 268.49 1.9558D+04 -2.0632D−01
104 90 91 273.76 2.1172D+04 -2.9567D−02
105 121 122 377.82 2.1376D+04 -3.1172D−03
106 76 77 239.00 2.1418D+04 -3.2517D−04
107 127 128 397.06 2.1656D+04 -2.8549D−05
108 130 131 412.17 2.1953D+04 -2.5745D−06
109 332 333 1057.63 2.1486D+04 -2.8450D−07
1010 169 170 534.56 2.1922D+04 -2.9008D−08

Table 1: Performance of Algorithm 3.1 with Perturbx0 = false and NoBcktrck-
AtAll = true applied to twelve instances of problem (24) with r ∈ {0, 1, 10, . . . , 1010}.

On the other hand, the behavior of the method with NoBcktrckAtAll = false and
Perturbx0 = false (in order to preserve the properties of the picked initial guess)
is completely different. For the case r = 0 (the only one we evaluate), the method
gets virtually stuck at the initial guess. In its first 30 iterations, it performs 24 functional
evaluations per iteration and takes a step of size 2−23 ≈ 10−7. The squared Euclidean norm
of the constraints is approximately 1.5275×10−10 (the sup-norm is approx. 2.2899×10−6)
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at the initial guess and, after 30 iterations, those values are exactly the same, showing
that the method made no progress at all.

The situation described in the paragraph above represents an extreme case. However, sim-
ilar results can be observed when the initial guess x0 has random elements with uniform
distribution within the interval [0, 1]. With no backtracking at all, Algorithm 3.1, when
applied to problem (24) with r = 0, satisfies the stopping criterion using 83 iterations
(and 84 functional evaluations) using 255.00 seconds of CPU time. Similarly to the values
reported in Table 1 for a different initial guess, the objective functional value at the final
point is approximately 5.2558 × 103 and the value of the most negative entrance of the
final iterate is approximately −2.0929. On the other hand, with backtracking, the algo-
rithm makes an excruciatingly slow progress satisfying the stopping criterion after 6 792
iterations that require 106 795 functional evaluations (in average, approximately 16 per
iterations) and consumes 49 977.22 seconds of CPU time (approx. 14 hours). The achieved
objective functional value is approximately 5.7927×103 and the value of the most negative
entrance of the final iterate is approximately −2.2919.

4.3 Problems with a variable number of bound constraints

In this section, we consider the problem

Minimize 1
2
xTAx+ bTx

subject to 1
2
xTAjx+ bTj x+ cj = 0, j = 1, . . . ,m,

xi ≥ 0, i ∈ I,
(27)

where I ⊆ {1, . . . , n}. As in the previous section, A and Aj (j = 1, . . . ,m) are given
by (25) and Ā ∈ IRn×n, b ∈ IRn, Āj ∈ IRn×n, and bj ∈ IRn for j = 1, . . . ,m have random
elements with uniform distribution within the interval [−1, 1]. Moreover, in order to
obtain a feasible problem, cj ∈ IR is given by (26), where x̄ has non-negative elements x̄i
with uniform distribution in [0, 1]. The considered initial guess x0 has random elements
with uniform distribution within the interval [0, 1].

With the aim of generating a set of instances with solutions with an increasing number
of active bound constraints, we consider instances with an increasing number of bound
constraints. At a given instance, the probability of i ∈ I is given by a constant p ∈ [0, 1]
(for i = 1, . . . , n) and six instances with p ∈ {0, 0.01, 0.1, 0.5, 0.75, 1} are considered. In
all cases we set n = 1 000 and m = 500. All instances were solved with Algencan 3.0.0
(inhibiting its acceleration process [8]) and SECO. Both methods found an approximate
stationary point in all the six instances. Table 2 shows the results. In the table, “#act”
is the number of active bound constraints at the final iterate x∗. In the case of Algencan,
this number is given by the cardinality of the set {i | x∗i = 0}; while in SECO it is given by
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the cardinality of the set {i | |x∗i | ≤ εfeas = 10−8}2. Column “#it” displays the number of
outer iterations and the number of inner iterations separated by a slash. The next three
columns “#fcnt”, “#gcnt”, and “#hcnt” represent the number of functional evaluations
and first- (gradients) and second-order (Hessians) derivatives evaluations, respectively.
“CPU time (s)” means the elapsed CPU time in seconds and f(x∗) is the value of the
objective function at the final iterate. The sup-norm of the equality constraints as well
as the sup-norm of the gradient of the Lagrangian are always smaller that εfeas and εopt,
respectively (recall that both tolerances are equal to 10−8). Last but not least, bound
constraints are satisfied with zero tolerance in Algencan (meaning that x∗ ≥ 0 holds);
while SECO satisfies the bound constraints with tolerance εfeas (meaning that x∗i ≥ −εfeas
for i = 1, . . . , n). Analyzing the figures in the table, it can be seen that SECO found
smaller functional values in the cases p = 0 and p = 1; while Algencan found smaller
functional values in the remaining four cases. If, on the one hand, the smaller functional
values found by SECO may be attributed to the admissible enlarged bound constraints,
on the other hand Algencan found smaller functional values more times. This means that,
in this experiment, Algencan appears to exhibit a larger tendency to find better stationary
points than SECO. On the efficiency side, both methods appear to require similar efforts
for the case p = 1 (instance with the largest number of active constraints at the final
iterates); while SECO is considerably faster in the other instances. Thus, disregarding
the functional values, if the goal were to find stationary points, using SECO would be a
reasonable choice.

4.4 Massive comparisons

4.4.1 Problems with only equality constraints

In this set of experiments, we consider all the 190 problems from the CUTEst collec-
tion [20] (with their default dimensions and default primal x̂0 and dual λ0 initial guesses)
that have only equality constraints. Considering this set of problems, we evaluate the per-
formance of Algorithm 3.1 with the four possible combinations of NoBcktrckAtAll
and Perturbx0 ∈ {true, false}. A CPU time limit of 5 minutes was imposed.

We used performance profiles [14] to compare the methods. Consider q methodsM1, . . . ,Mq

and p problems P1, . . . , Pp and let tij be a metric of the effort that method Mi made in

2When analyzing the output of Algencan, the reason that motivates using a strict criterion that
considers that the primal active variables are those exactly equal to zero is that the subproblems solved
by Algencan preserve non-negative of the primal variables all along the calculations. Moreover, the
searches used in the Algencan subproblems’ solver make it almost impossible the existence of positive
primal variables with very small values. On the other hand, in SECO, the bound constraints may be
violated (hopefully slightly) or variables may be strictly positive with tiny values, so that tolerances are
necessary to declare almost feasibility and activity.
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Algencan 3.0.0 without the acceleration process
p |I| #act #it #fcnt #gcnt #hcnt CPU time (s) f(x∗)

0 0 0 12 / 1083 4258 1141 1083 3741.28 5.3520D+03
0.01 10 3 14 / 1175 4709 1255 1172 8306.38 5.3294D+03
0.1 109 36 13 / 1185 3266 1243 1175 5930.13 6.9063D+03
0.5 492 182 5 / 822 1794 851 812 2539.07 1.1931D+04
0.75 735 253 6 / 895 1773 918 883 2249.93 1.6419D+04

1 1000 302 7 / 535 1034 560 523 1087.35 2.1492D+04

SECO (Algorithms 2.1 and 3.1) with no backtracking
p |I| #act #it #fcnt #gcnt #hcnt CPU time (s) f(x∗)

0 0 0 1 / 83 84 84 83 261.78 5.2558D+03
0.01 10 5 2 / 66 71 71 66 202.94 5.7933D+03
0.1 109 42 3 / 106 113 113 106 314.55 7.1996D+03
0.5 492 183 3 / 50 57 57 50 155.13 1.2821D+04
0.75 735 258 3 / 271 278 278 271 818.61 1.6527D+04

1 1000 299 3 / 348 355 355 348 1063.91 2.1418D+04

Table 2: Performance of Algencan 3.0.0 without the acceleration process and SECO
(Algorithms 2.1 and 3.1) with no backtracking applied to six instances of problem (27)
with n = 1000, m = 500, |I| ≈ pn, and p ∈ {0, 0.01, 0.1, 0.5, 0.75, 1}.

problem Pj in order to arrive to a point x∗ with functional value f(x∗) = fij and feasi-
bility ‖h(x∗)‖∞ = hij. It is assumed that the metric tij is such that the smaller its value,
the higher the performance of method Mi on problem Pj. Moreover, let tmin

j denote the
smallest among all the performance measurements required by each method that “found
a solution” for problem Pj. In performance profiles, each method Mi is related to a curve

Γi(τ) =
#{j ∈ {1, . . . , p} |Mi found a solution for Pj with tij ≤ τ tmin

j }
p

,

where #S denotes the cardinality of set S. Let

fmin
j = min

1≤i≤q
{fij | hij ≤ εfeas}

and consider

εij =
fij − fmin

j

max{1, |fmin
j |}

. (28)

For a given tolerance εf > 0, we say that method Mi found a solution to problem Pj if

hij ≤ εfeas and εij ≤ εf . (29)
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In addition, we also say that method Mi found a solution to problem Pj if

hij ≤ εfeas and fij ≤ −f∞,

where f∞ is a very large positive number. In this case, we assume the objective function is
unbounded from below within the feasible region and any value of fij ≤ −f∞ is considered
a solution. In the numerical comparison, we considered the CPU time that a method Mi

took on a problem Pj to find a point x∗ that satisfies the method’s stopping criterion
as the performance measurement tij. We arbitrarily set εf = 10−4 and f∞ = 1010 (and
εfeas = 10−8). This relatively loose value assigned to εf is essential to cancel the advantage
in obtaining lower functional values of methods that are allowed to satisfy the bound
constraints within a given tolerance (in contrast with Algencan that satisfies the bound
constraints with no tolerance).

Figure 1 shows the results. In the figure, the x-axis correspond to log10(τ) while the
y-axis corresponds to Γ(τ). For a given method, the values of Γ(1) and Γ(∞), that are
displayed in the figure, are commonly associated with the efficiency and the robustness of
the method, respectively. Therefore, it is worth mentioning that the combination Per-
turbx0 = false and NoBckTrckAtAll = false is the more efficient and the most
robust. It is also noticeable that the perturbation of the initial point (that apparently
is “very small”) has a negative effect in the robustness of the method, independently of
performing backtracking or not. Since the initial point is provided together with the prob-
lem definition, this appears to be a characteristic of the CUTEst collection’s considered
problems; characteristic that was not observed in the problems considered in the previ-
ous subsections. The fact the most robust combinations being the ones that do perform
backtracking is also in opposition with the performance observed in the problems of the
previous subsections.

A final figure that should be mentioned is the number of times each combination satis-
fied at least one of the stopping criteria at Steps 1.1–1.2 of Algorithm 3.1 (within the
imposed CPU time limit). Those numbers are, from top to down in the order the com-
binations are reported in Figure 1, 157, 142, 145, 131, respectively. Let us focus for a
moment on the performance of Algorithm 3.1 with Perturbx0 = false and NoBck-
TrckAtAll = false that found an approximate stationary point in 157 problems (out
of 190 problems and within the considered CPU time limit). This means that, ignoring
the value of the objective function and considering for a moment that the goal of the
method is to find a stationary point, the rate of success of the method is 83%. Consider-
ing that the set of problems being used has problems that are known to be infeasible, this
is a relatively high rate of success, that is comparable to the one obtained by much more
sophisticated methods recently introduced in the literature and that posses global and
local convergence theories as well as rate of convergence results. The conclusion may be
that, if such simple method as Algorithm 3.1 is able “to solve” 83% of the problems from
the CUTEst collection with only equality constraints, better results should be expected
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from more sophisticated methods.
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Perturbx0 = F, NoBckAtAll = F (left = 0.61, right = 0.83)
Perturbx0 = T, NoBckAtAll = F (left = 0.61, right = 0.77)
Perturbx0 = F, NoBckAtAll = T (left = 0.54, right = 0.77)
Perturbx0 = T, NoBckAtAll = T (left = 0.51, right = 0.67)

Figure 1: Comparison of Algorithm 3.1 with all four combinations of Perturbx0 and
NoBckTrckAtAll ∈ {false,true}.

Figure 2 shows a comparison (using performance profiles) between Algorithm 3.1 with
Perturbx0 = false and NoBckTrckAtAll = false and Algencan. It is very clear
that, for the considered set of problems and within the described comparison framework,
the former method is more efficient and robust than Algencan. The comparison process
that takes into account the objective function value at the final iterate says that both
methods found different stationary points in 13 problems. Among these 13 problems,
Algencan was declared as having failed in 8 problems; while Algorithm 3.1 was declared
as having failed in the other 5 problems. This gives an advantage of 8− 5 = 3 problems
or 3/190 × 100% ≈ 1.5% in the robustness index of Algorithm 3.1 that is 8 percentage
points larger that the Algencan’s robustness index; meaning that the superior robust-
ness of Algorithm 3.1 does not depend on the comparison process but is due the fact of
Algorithm 3.1 having found stationary points more often that Algencan.

Numerical experiments in Sections 4.1 and 4.2 highlighted that perturbing the initial guess
or avoiding the backtracking strategy may be profitable in some situations. However,
numerical experiments with the CUTEst’ test problems in Section 4.4.1 pointed out that
the most efficient and robust version of Algorithm 3.1 is the one that does not perturb the
initial guess and performs backtracking. This means that we have failed in concluding
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SECO (left = 0.73, right = 0.84)
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Figure 2: Comparison between Algorithm 3.1 with Perturbx0 = false and NoBck-
TrckAtAll = false (identified as SECO in the graphic) and Algencan 3.0.0 considering
all problems from CUTEst collection with only equality constraints.

whether these strategies should be considered or not in a first trial of solving a given
problem; and that the interested user should play with these possibilities after a first
unsuccessful trial of solving a problem at hand.

4.4.2 Problems with equality constraints and bound constraints

In this set of experiments we considered all the 283 problems from the CUTEst collection
with at least one equality constraint, at least one bound constraint, and no inequality
constraints (default dimensions and provided initial guesses were considered). Aiming
to asset the reliability of the choice of lower- and upper-level constraints made in the
development of the SECO algorithm, we compared SECO against Algencan (without
considering the Algencan’s acceleration process; see [8] for details). In the latter case,
equality constraints are penalized and bound-constrained subproblems are solved; while,
in the former case, bound constraints are penalized and equality-constrained subproblems
are solved. This is the qualitative difference between the two methods being compared
and all other algorithmic parameters and implementation issues (like, for example, the
used linear algebra subroutines) are the same.
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As in the previous section, we used performance profiles to compare the two methods. In
a first comparison, performance profiles were used as described in the previous section, i.e.
considering the value of the objective function at the final iterate to determine whether
a method solved a problem or not. Figure 3 shows the results. It is easy to see that
Algencan appears as more efficient and robust than SECO. Two main factors determine
this results: (a) the behaviour of SECO in a family of 45 problems and (b) a slightly larger
tendency of Algencan to find solutions with lower functional value. We now analyze both
factors in separate. The considered set of 283 problems from the CUTEst collection
includes 45 problems (representing 16% of the problems) that are quadratic programming
reformulations of linear complementarity problems (provided by Michael Ferris). In 11
out of this 45 problems, SECO presented a phenomenon named greediness in [12, 10]
that may affect penalty and Lagrangian methods when the objective function takes very
low values (perhaps going to −∞) in the non-feasible region. In this case, iterates of the
subproblems’ solver may be attracted by undesired minimizers, especially at the first outer
iterations, and overall convergence may fail to occur. The behaviour of SECO in those 11
problems reduces its robustness in (11/283) × 100% ≈ 4%. Independently of that, there
are also 13 problems in which both methods found a feasible point but criterion (28–29)
says that, due to the difference in the functional value, one of the methods succeeded while
the other has failed. Among those 13 problems, in 9 cases it was declared that Algencan
has found a solution and SECO has failed; while the opposite situation happened in
the remaining 4 problems. The difference 9 − 4 = 5 affects the robustness of SECO in
approximately 2% and this fully explains the difference of 6% between the robustness
indices of Algencan and SECO. If we eliminate those 45 + 13 = 58 problems from the
comparison, we obtain the performance profile depicted in Figure 4 (that is based in the
remaining 225 problems only). This figure shows, in the considered subset of problems
and having already mentioned that Algencan appears to show a slightly larger tendency
to find lower functional values, that both methods are almost equally efficient and robust.
In addition, note that the satisfaction of the KKT conditions (norm of the gradient of the
Lagrangian and complementarity conditions) plays no role in this comparison. However,
with respect to the satisfaction of the KKT conditions in the subset of 225 problems being
considered, we can say that Algencan satisfied the KKT conditions in 150 problems while
SECO satisfied the KKT conditions in 155 problems (always within the CPU time limit of
5 minutes). As a whole, this appears to be a surprising result considering the unorthodox
choice of lower- and upper-level constraints made in the SECO algorithm.
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Figure 3: Comparison between SECO (Algorithms 2.1–3.1 with Perturbx0 = false and
NoBckTrckAtAll = false) and Algencan 3.0.0 without acceleration, considering all
problems from CUTEst collection with equality and bound constraints.

5 Conclusions

General Augmented Lagrangian methods [1, 9] are based on the partition of the constraints
of the nonlinear programming problem into two sets; the first one is defined by

h(x) = 0 and g(x) ≤ 0 (30)

and the second is given by
h(x) = 0 and g(x) ≤ 0, (31)

where h : IRn → IRm, g : IRn → IRp, h : IRn → IRm, and g : IRn → IRp. The subproblems
of the AL algorithm consist on the minimization of the Augmented Lagrangian defined
by f , h, and g subject to the constraints (31).

The constraints (31) have been called “lower-level constraints”, “simple constraints”, or
“subproblem constraints” in different papers. In most practical algorithms the con-
straints (31) are really simple, for example, when they define a box. However, in the
present paper we show that the denomination “simple” for the constraints (31) may not
be adequate because it may be attractive to consider that the constraints (31) are “more
complicated” than the constraints (30).
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Figure 4: Comparison between SECO (Algorithms 2.1–3.1 with Perturbx0 = false and
NoBckTrckAtAll = false) and Algencan 3.0.0 without acceleration, considering a
subset of 225 problems from CUTEst collection with equality and bound constraints.

To fix ideas, suppose that the constraints (30) are defined by

h(x) = 0 (32)

and the constraints (31) are
` ≤ x ≤ u. (33)

Every constrained optimization problem can be expressed as the minimization of a func-
tion f(x) subject to (32) and (33), using slack variables. The conventional wisdom is
that, if we adopt the AL strategy, we should solve this problem by means of subproblems
that minimize Augmented Lagrangians defined by f and h subject to (33). In this paper
we explored the idea of solving the problem by means of successive minimizations of the
Augmented Lagrangian defined by f and the functions x − u and ` − x, subject to the
constraints (32). Of course we made our best to define a method for solving the equality-
constrained subproblems by means of which the overall algorithm should be competitive.
The resulting algorithm have been compared with the well-established software Algencan.

The conclusions of the numerical study depend on the definition of “satisfactory solution”.
If we adopt the criterion that a satisfactory solution is a point that satisfies approximately
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the KKT conditions with high precision, we can establish that the new algorithm is
more efficient than Algencan when the number of active bounds is small, but its relative
superiority in terms of efficiency decreases as the number of active constraints at the
solution increases. The considerations that explain this behavior are the following:

1. In the extreme case in which there are no active inequality constraints the algo-
rithm essentially solves a smooth nonlinear system of equations using a safeguarded
Newton-like method. It is not surprising that this type of procedure should be
more efficient than the possibly painful process of increasing the penalty parameter
several times in order to minimize Augmented Lagrangians defined by f and h.

2. If many inequality constraints are active at the solution, even the algorithm for mini-
mizing with equality constraints being efficient, several outer iterations are generally
needed, because many bound constraints are not satisfied after each outer iteration.
Moreover, the nonlinear system that represents the Lagrange conditions for that
subproblem is semismooth, but not smooth, decreasing partially the efficiency of
Newton-like algorithms. On the other hand, the classical implementation of Algen-
can deals efficiently with the active bound constraints, avoiding useless evaluations
of f and h outside the feasible box.

Nevertheless, if we adopt the criterion that algorithms should be compared also with
respect to the objective function value achieved at the end of execution, Algencan seems
to be better than SECO. This can be explained by the opportunistic line-search strategies
used by the bound-constrained solver employed by Algencan, which actively searches low
values of the objective function with procedures that are not necessarily linked to worst-
case convergence analysis.

We would like to finish this paper with strong statements concerning the relative efficiency
or robustness of the new method with respect to existing ones. However, we are convinced
that such statements are not possible in nonlinear optimization problems. There exist an
infinitely large number of geometrical combinations, structures, and dimensions that make
it impossible to claim universal superiority. Therefore, we conclude with the cautious
claim that the SECO approach may be a useful tool when the problems are formulated
with the constraints “h(x) = 0 plus bounds” and the number of expected active bounds
at the solution is moderate.
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