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Abstract

The problem of packing circles within ellipses is considered in the present paper. A new
ellipse-based system of coordinates is introduced by means of which a closed formula to
compute the distance of an arbitrary point to the boundary of an ellipse exists. Nonlinear
programming models for some variants of 2D and 3D packing problems involving circular
items and elliptical objects are given. The resulting models are medium-sized highly nonlin-
ear challenging nonlinear programming problems for which a global solution is sought. For
this purpose, multistart strategies are carefully and thoroughly explored. Numerical experi-
ments are exhibited.

Key words: Packing, ellipses, circles, global optimization.

1 Introduction

The problem of packing items within bounded regions in the Euclidean space has multiple
applications in Physics, Chemistry, Engineering, Geophysics, and Arts. Problems of this type
exhibit various levels of complexity. The easiest problems involve packing simple items within
simple domains and, sometimes, analytical solutions for these problems exist [14]. Frequently,
simple problems motivate interesting recreational applications [16]. On the other extreme of the
simplicity range, we encounter the problem of packing irregular items within irregular domains.
In this case, close solutions do not exist, but there are important applications to environmental
sciences. The irregular packing of soil particles, for example, largely determines the way in
which root formation of plants occurs, as well as water movements in the soil [18].

Molecular Dynamics (MD) motivated the development of a very successful approach for pack-
ing molecules on different domains of the Euclidean 3D-space. The package Packmol [21, 22]
employs nonlinear optimization procedures [1, 7] and heuristics for distributing molecules on
given domains with the purpose of building suitable low-energy initial configurations for MD
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simulations. The enormous number of applications motivates detailed analysis and experimenta-
tion with geometrical problems of increasing complexity. Completely arbitrary packing problems
can be addressed by techniques that, in general, are computationally expensive. Sometimes, at
each step of a packing problem an expensive auxiliary problem needs to be solved. For example,
for packing balls within an arbitrary domain the balls’ centers must be kept within the domain
and a procedure to compute the distance to the boundary must be available. This involves to
solve a potentially expensive optimization problem for each trial configuration of the packing
problem. On the other hand, there exist extremely simple but useful situations, like packing
balls within a square or a convex polygon. We are convinced that solving with affordable meth-
ods increasingly complex situations is useful in the process of finding practical procedures for
the arbitrarily complex cases. For this purpose, in the present paper we tackle the problem
of packing circles within ellipses. The technology developed in connection to this geometrical
problem opens the possibility of addressing more and more complex cases for relevant large-scale
applications, as the ones considered in the MD field.

Nonlinear programming formulations and methods had been successfully applied to a wide
range of circle packing problems. A short description of recent works follows. Based on the
Φ-functions framework, a variety of packing problems had been solved formulating them as
nonlinear programming models and combining clever initial guesses with local and global op-
timizations techniques for pursuing a model global solution. Circles and non-convex polygons
with rotations packed within a multiple connected region were considered in [28], the maximum
number of identical circles that can be packed within a circle with prohibited areas were consid-
ered in [26], and packing various-sized circles within a strip was considered in [25], among others.
MINLP models for cutting circles and convex polygons from rectangles with minimum area were
introduced in [19]. A review of NLP models for solving several classes of circle packing problems
was presented in [13], where several applications are surveyed and the relevance of nonlinear
global optimization techniques for solving circle packing problems is highlighted.

Nonlinear systems of equations are solved with Newtonian methods in [5] to find high ac-
curacy solutions to the problem of packing identical circles within a variety of containers. As
initial guesses, solutions found in [10] with classical multistart strategies and local augmented
Lagrangian methods were considered. Local augmented Lagrangian techniques and multistart
strategies were also considered in [9] for tackling the problem of packing the maximum number
of identical-sized circles within circular and rectangular containers. Other former works that
considered nonlinear programming models for circle packing problems can be found in [10] and
the references therein. In all cases, circles are packed within circular or polygonal (mainly rect-
angular) containers. In these cases, the set of constraints that say the circular items must be
placed within the container (i.e. with their centers within the container and a radius far from the
border) can be easily written as a set of constraints applied to the circles’ centers and involving
a resized container. This is not the case for elliptical containers.

The problem of packing circles within ellipses, as well as extensions to the three-dimensional
case in which the container definition involves ellipses, are considered in the present work. The
novelty of the introduced approach is based on a new ellipse-based system of coordinates. The
new system of coordinates is based on a reference ellipse and provides a closed formula to
compute the distance of an arbitrary point to the boundary of the reference ellipse. This is the
key ingredient for the formulation of the tackled packing problems as a sequence of increasingly-
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dimension continuous and differentiable nonlinear programming problems. The resulting models
are medium-sized highly nonlinear challenging nonlinear programming problems for which a
global solution is sought. For this purpose, multistart strategies are carefully and thoroughly
explored.

The rest of this paper is organized as follows. The new ellipse-based system of coordinates is
introduced in Section 2. Nonlinear programming models for several packing problems involving
ellipses are presented in Section 3. The basic nonlinear optimization procedures are described on
Section 4. The multistart strategies are presented in connection to the numerical experiments
in Section 5. Conclusions are given in Section 6.

2 Ellipse-based system of coordinates

We consider the ellipse defined by u2/a2 + v2/b2 = 1, where a ≥ b. Points (x, y) in the solid
region delimited by this ellipse may be parametrized in the following way:

x = [1 + (s− 1)(b2/a2)]u, y = sv,

u2/a2 + v2/b2 = 1,

0 ≤ s ≤ 1,

(1)

where u, v, s are continuous variables. If (x, y) is given by (1), the point on the ellipse’s boundary
which is closest to (x, y) is (u, v). Consequently, the distance between (x, y) and the boundary
of the ellipse is

(1− s)
√

(b2/a2)2u2 + v2. (2)

An equivalent formulation with only two variables (instead of three) may be obtained substi-
tuting u by a cos(t), v by b sin(t), adding the constraint 0 ≤ t ≤ 2π, and removing the constraint
u2/a2 + v2/b2 = 1 that is automatically satisfied. In this way, we arrive to the equivalent
parametrization:

x = [1 + (s− 1)(b2/a2)] a cos(t), y = s b sin(t),

0 ≤ t ≤ 2π, 0 ≤ s ≤ 1.
(3)

In this case, the point on the boundary which is closest to (x, y) is (a cos(t), b sin(t)). Conse-
quently, the distance between (x, y) and the boundary of the ellipse is given by

(1− s)
b

a

√

b2 cos(t)2 + a2 sin(t)2. (4)

In (3), each point (x, y) is represented by the pair of continuous variables (s, t). Constraint
s ∈ [0, 1] implies that (x, y) belongs to the solid region delimited by the ellipse. In fact, if s = 1,
(x, y) is on the ellipse (boundary) and, if s ∈ [0, 1), (x, y) is an interior point of the ellipse. If
s > 1 then (x, y) does not belong to the solid ellipse, being able to represent any other point in
the plane. Therefore, replacing s ∈ [0, 1] by s ∈ [0,+∞), (3) represents a parametrization of the
plane. This parametrization is said to be ellipse-based because it depends on a given ellipse with
semi-axes a ≥ b and arbitrarily centered at the origin of the Cartesian axes. The analogy with
polar coordinates is clear. This new coordinate system for the plane preserves an important
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(0, 0)(b2/a− a, 0) (a− b2/a, 0)(x, 0)

(a cos(t), b sin(t))

(a cos(t), b sin(−t))

(x, y)

(a cos(t), b sin(t))

Figure 1: Parametrization defined in (3) and, for a given (x, y), the point on the boundary that
is closest to (x, y).

property of polar coordinates: it is “distance-revealing” in the sense that, given (s, t), one can
compute the distance between the point (x, y) determined by (3) and the ellipse boundary
using the simple formula (4). Moreover the point on the boundary that realises this distance is
also revealed by the (s, t) coordinates and is given by (a cos(t), b sin(t)). In Figure 1 we show
graphically how this parametrization works. Observe that, for all the points in the line segment
between (b2/a − a, 0) and (a − b2/a, 0), there are two points that realise the distance to the
boundary. More theoretical properties and extensions of this parametrization can be found
in [15]. In the present work, we opted by dealing with the three-variables parametrization given
by (1) in the forthcoming sections since, in this case, constraints of the constructed optimization
models are formulated as polynomials.

A different parametrization based on “parallel curves” has been used in [16] to solve different
instances of the problem of finding the ellipse with smallest area that encloses a number of fixed
unitary circles. The solutions exhibited in [16] have been obtained using a commercial global
optimization package [12]. Roughly speaking, the concept of parallel curves is as follows. Given
r ≥ 0, we say that the curve γ(r) is parallel to the curve γ if for all P ∈ γ(r) the distance
between P and γ is r. Clearly, the circle with radius 1− r is parallel to the unitary circle, but
the analogous property is not true for ellipses, i.e. curves parallel to ellipses are not ellipses.
The problem of packing balls of radius r within an ellipse is equivalent to enclosing the balls’
centers (with pairwise distances at least 2r) by the parallel curve at distance r to the ellipse
boundary. Unfortunately, when r grows, the region enclosed by the parallel curve is tricky not
at all similar to an ellipse. There is a lot of difficulty in addressing the cases in which parallel
curves cease to enclose convex domains, as happens to occur when we want to consider balls with
not small radius or ellipses with high eccentricity. In these cases the parallel-curve approach
cannot be used. On the other hand, our approach is general enough to encompass all the cases,
independently of the dimensions of the balls and the ellipse’s eccentricity.
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3 Nonlinear programming models

In this section, we introduce continuous and differentiable nonlinear programming models for
four packing problems. These four arbitrarily chosen problems are examples of the many varia-
tions of 2D and 3D packing problems involving circular or spherical items and elliptical containers
that can be formulated as smooth and continuous nonlinear programming problems with the help
of the parametrization given by (1). Other examples including conic sections and intersections
of ellipses can be found in [15].

3.1 Given circles within a given ellipse

Consider the problem of finding m non-overlapping circles with radii ri, i = 1, . . . ,m, which are
contained in a solid ellipse defined by a ≥ b. Let us denote by (xi, yi) the center of each circle.
Then, in order to find the solution of the problem, we must solve the feasibility problem given
by:

(ui/a)
2 + (vi/b)

2 = 1, i = 1, . . . ,m, (5)
(

si − 1

ri

)2
[

(b2/a2)2u2i + v2i
]

≥ 1, i = 1, . . . ,m, (6)

1

(ri + rj)2

{

[

(1 + (si − 1)(b2/a2))ui − (1 + (sj − 1)(b2/a2))uj
]2

+ [sivi − sjvj ]
2
}

≥ 1, ∀ j > i,

(7)
0 ≤ si ≤ 1, i = 1, . . . ,m. (8)

In (5–8), variables ui, vi, si ∈ R represent the i-th circle, whose center’s coordinates (xi, yi) can
be recovered, by (1), using

xi =
[

1 + (si − 1)(b2/a2)
]

ui, yi = sivi, i = 1, . . . ,m. (9)

Similarly, employing (3), a feasibility problem by means of which we may compute the desired
circles can be formulated with unknowns ti and si, i = 1, . . . ,m. We prefer (5–8) in our
experiments because all the constraints are formulated as polynomials. The unknowns of the
nonlinear feasibility problem (5–8) are (ui, vi), i = 1, . . . ,m and si, i = 1, . . . ,m. Equalities and
inequalities in (5), (6), and (7) define 2m+m(m− 1)/2 nonlinear constraints and (8) defines m
bound constraints on the variables si.

3.2 Maximizing the number of identical circles within a given ellipse

We wish to maximize the number of circles with radii r that can be packed in a given ellipse.
Clearly, if, for a fixed m, the feasibility problem (5–8) has a solution, then the maximal number
of enclosed balls is at least m. The solution of this problem involves solving a sequence of
feasibility problems with variable m. Assuming that a lower bound mlb on the number of
identical balls with radii r that can be packed within the given ellipse is known (mlb equal to
zero might be a feasible choice), the procedure starts by trying to solve feasibility problem (5–8)
with m = mlb + 1. If a feasible solution is found, we set m ← m + 1 and we try again. The
process stops when m is such that a feasible solution of (5–8) cannot be found, and the solution
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found for (5–8) with m∗ = m− 1 is considered as the solution of packing as many identical balls
as possible. Similar strategies have been employed in [5, 6, 8, 9] where empirical justifications for
the use of this kind of sequential process of increasing m one by one, instead of other strategies
such as bisection, are given.

3.3 Minimizing the area of the ellipse that encloses a set of circles

We wish to find the ellipse of smallest area that encloses m circles with radii r1, . . . , rm. In
principle, the problem may be formulated as the nonlinear programming problem

Minimize ab (10)

subject to (5–8), a ≥ 0, and b ≥ 0. Note that a and b are variables of this problem, unlike
the previous ones, in which this quantities were given data. Moreover, since the validity of the
parametrization requires that a ≥ b, it is convenient to define a new slack variable w ≥ 0 such
that a = b+w. Therefore, the non-negativity constraints a ≥ 0, and b ≥ 0 must be replaced by

b ≥ 0 and w ≥ 0, (11)

and all the occurrences of a in the objective function (10) and the constraints (5–8) must be
replaced by b+ w.

3.4 Balls in a cylindrical container

The three 2D problems described in the previous subsections can be extended to consider the
3D situation. As an example, we describe the problem in which we have m 3D-balls with radii
r1, . . . , rm and we wish to pack these m balls within a cylinder whose basis is an ellipse with
half-axes a ≥ b. We consider that the objective is to minimize the container’s height.

Let us denote by (xi, yi, zi), i = 1, . . . ,m, the centers of the required balls. As in (9) xi and
yi are written as functions of variables ui, vi, si, i = 1, . . . ,m, such that (ui, vi, 0) is the point
on the boundary of the elliptical cylinder’s basis that is closest to (xi, yi, 0) – the projection of
(xi, yi, zi) onto the x-y plane. Therefore, constraints (5) and (8) are part of this new problem.
Constraint (6) imposes the projection of each ball’s center onto the x-y plane to be contained
in the ellipse. Therefore, constraint (6) is also present in this new problem. Finally, the 3D
non-overlapping constraints are given by

1

(ri + rj)2

{

[

(1 + (si − 1)(b2/a2))ui − (1 + (sj − 1)(b2/a2))uj
]2

+ [sivi − sjvj ]
2 + [zi − zj ]

2
}

≥ 1, ∀ j > i,

(12)
The height variables zi are subject to the constraint

0 ≤ zi ≤ zmax (13)

and the objective of the problem is to

Minimize zmax

subject to (5,6,8,12,13).
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4 Optimization procedures

All the problems presented in Section 3 have been formulated under the Nonlinear Programming
framework. They have the mathematical form

Minimize f(x) subject to h(x) = 0, g(x) ≤ 0, ℓ ≤ x ≤ u, (14)

where f is a scalar smooth function, h and g are vectorial smooth functions and the prescribed
bounds on x can be minus or plus infinite.

Our main tool for solving (14) will be Algencan [1, 2]. Algencan is a code for solving large-
scale nonlinear programming problems which is periodically updated and publicly available at
the TANGO Project web site http://www.ime.usp.br/∼egbirgin/tango/. Algencan converges,
under reasonable assumptions, to local minimizers of the original problem. Convergence to
global minimizers has been enhanced in the present research by means of procedures that evoke
well-known multistart approaches for stochastic global optimization. A different globalization
procedure for Algencan was introduced in [4] with guaranteed convergence to global minimizers,
but an implementation for large-scale problems is not available yet.

The feasibility problem (5–8), related to the problem of maximizing the number of identical
circles within a given ellipse, is a particular case of (14) in which the objective function is null,
i.e. it can be written in the form

Find x such that h(x) = 0, g(x) ≤ 0, ℓ ≤ x ≤ u, (15)

where x = (u, v, s) ∈ R
3m from now on. A feasibility problem of the form (15) is equivalent to

the bound-constrained minimization problem

Minimize f(x) subject to ℓ ≤ x ≤ u, (16)

where
f(x) = ‖h(x)‖22 + ‖g(x)+‖22 (17)

and [g(x)+]i = max{0, gi(x)}. If f(·) vanishes at a global minimizer x∗ of (16) then x∗ is a feasible
solution to (15). If, on the other hand, f(x∗) > 0 then (15) is infeasible. For the particular case
of the feasibility problem (5–8), there are practical reasons for considering the bound-constrained
minimization formulation (16) instead of the feasibility problem formulation (15) that we now
describe. Computing f(·) involves O(m2) constraints. However, since a sum involving the
values of those constraints is needed, instead of their individual values as it would be needed for
solving (15) by a traditional approach, a strategy developed for the N-body problem [17] can be
applied to reduce the complexity of evaluating f(·). This strategy, successfully being used by
the MD packing software Packmol [21, 22], is fully described in [10], where extensive numerical
experiments show the reductions obtained in the cost of evaluating f(·).

5 Experiments

In this section we report numerical experiments for the problem of packing as many identical
unitary-radius circles as possible within a given ellipse. All tests were conducted on a 2.4GHz
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Intel Core 2 Quad with 8GB of RAM memory and running GNU/Linux operating system
(Ubuntu 11.10, kernel 3.0.0-14). The code, fully written in Fortran 77, was compiled by
the GFortran Fortran compiler of GCC (version 4.6.1) with the -O3 optimization directive
enabled.

As it was mentioned in the previous section, the solution method consists in solving a
sequence of the bound-constrained minimization problem (16) for increasing values of m =
mlb + 1,mlb + 2, . . . . In this case, feasibility problem (15) takes the form

hξi (u, v, s) = 0, i = 1, . . . ,m,

gξi (u, v, s) ≤ 0, i = 1, . . . ,m,

κξij(u, v, s) ≤ 0, i = 1, . . . ,m, j = i+ 1, . . . ,m,

0 ≤ si ≤ 1, i = 1, . . . ,m,

(18)

where

hξi (u, v, s) = 1−
[

(ui/a)
2 + (vi/b)

2
]

,

gξi (u, v, s) = 1− ( si−1
r

)2
[

(b2/a2)2u2i + v2i
]

,

κξij(u, v, s) = 1− 1
4r2

[

{

(1 + (si − 1)(b2/a2))ui − (1 + (sj − 1)(b2/a2))uj
}2

+ {sivi − sjvj}2
]

,

(19)
and ξ = (a, b, r,m) is used to stress the dependency on the problem’s parameters. Therefore,
problem (16) takes the form

Minimize f ξ(u, v, s) subject to 0 ≤ s ≤ 1, (20)

where

f ξ(u, v, s) =
1

2







m
∑

i=1

hξi (u, v, s)
2 +

m
∑

i=1

gξi (u, v, s)
2
+ +

m
∑

i=1

m
∑

j=i+1

κξij(u, v, s)
2
+







.

If, for a given m, a minimizer of (20) with null objective function is found, the value of m
is increased by one and the process continues. Otherwise, we keep trying for this value of m
until an imposed CPU time limit is reached. This strategy lies in two facts: (a) a stochastic
global optimization method based on multistart strategies is used for the process of looking for
a global minimizer of (20), and (b) we have the ability of recognizing that a global minimizer
was found only if the global minimum of the instance being solved is zero. The whole procedure
is described by Algorithm 4.1.

Algorithm 4.1: Let a ≥ b > 0 and r > 0 be given constants.

Step 1. Compute a lower bound mlb, i.e. a value mlb ≥ 0 such that (u∗, v∗, s∗) ∈ R
3mlb with

f (a,b,r,mlb)(u∗, v∗, s∗) = 0 is known (note that mlb = 0 is a valid choice). Set m← mlb + 1.

Step 2. If the time limit is achieved, stop declaring that m∗ = m− 1 items were packed.

Step 3. Compute a random initial guess (uini, vini, sini) for problem (20).
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Step 4. Find a stationary point (u∗, v∗, s∗) of (20) starting from (uini, vini, sini).

Step 5. If f (a,b,r,m)(u∗, v∗, s∗) vanishes, set m = m+ 1.

Step 6. Go to Step 2.

In the following subsections we describe each step of Algorithm 4.1 in detail.

5.1 Computation of the lower bound mlb

To be used in connection with the optimization strategy for packing as many identical circles
as possible within an ellipse, we developed a lower bound based on the 2D bee’s honeycomb or
hexagonal lattice (see Figure 2). This lattice is the densest 2D lattice and non-lattice packing in
the (infinite) plane with density 1

6π
√
3 ≈ 0.9068996821 [30]. In a similar context, lattices were

also considered in [27] to generate initial guesses for an optimization procedure.
Given a point (x̄, ȳ)T ∈ R

2, we name by L(x̄, ȳ) the infinite set of points of the hexagonal
lattice whose “rows” are parallel to the horizontal Cartesian axis and such that (x̄, ȳ)T ∈ L(x̄, ȳ).
Figure 2(a–d) illustrates lattices L(r, 0), L(0, 0), L(r, r), L(0, r), with r = 1, respectively. The
computation of the lower bound mlb on the number of identical circles with radii r that can be
packed within an ellipse given by a ≥ b starts by considering a lattice L(x̄, ȳ) and computing
the finite set of points P (x̄, ȳ) = L(x̄, ȳ) ∩ {(x, y)T ∈ R

2 | (x/a)2 + (y/b)2 ≤ 1}. Those are the
centers of dark and light-grey circles in Figure 2, that are “candidates” to be inside the ellipse.
Then, for each (xi, yi)

T ∈ P (x̄, ȳ), we look for ui, vi, and 0 ≤ si ≤ 1, such that

[

1 + (si − 1)(b2/a2)
]

ui = xi,
sivi = yi,

(ui/a)
2 + (vi/b)

2 = 1,
((si − 1)/r)2

[

(b2/a2)2u2i + v2i
]

≥ 1,

(21)

to check whether the circle is inside the ellipse or not. This (three-unknowns) feasibility problem
is solved with Algencan. In Figure 2, light-grey circles are the ones inside the ellipse, while the
dark-grey circles are the ones with their center inside the ellipse but not totally contained inside
the ellipse. The number of light-grey circles is the lower bound given by the lattice L(x̄, ȳ).

Different lattices may provide different lower bounds. For example, lattices in Figure 2(a–
d) provide lower bounds equal to 374, 365, 368, and 366, respectively, for the instance with
a = 2b = 30 and r = 1. In this work, for each ellipse given by a ≥ b and circles of radii r, the
lower bound mlb is computed as the biggest lower bound obtained by any of the four lattices
depicted on Figure 2. Table 1 shows some numerical results. It can be observed that: (a) none
of the four considered lattices is better than the others, in the sense of providing a better lower
bound for all the considered cases; (b) the larger the ellipse, the better the lower bound (if we
consider that a larger density is an indication that the lower bound is nearer to the optimal
solution); and (c) the larger the ratio a/b, the poorer the lower bound is. From (b) and (c), we
see that the described strategy provides “reasonable” lower bounds for large and “fat” ellipses,
leaving more space for cheaply finding improved solutions to the instances with small or narrow
ellipses. The whole process of computing a lower bound as described takes less than 0.1 second
of CPU time in the computational environment described at the beginning of the section.
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(a) (b)

(c) (d)

Figure 2: (a–d) Lattices L(r, 0), L(0, 0), L(r, r), L(0, r), respectively, illustrating how they are
used to build lower bounds for the instance with a = 30, b = 15, and r = 1. White circles are the
circles in the lattices whose centers are outside the ellipse. Dark-grey circles are the ones whose
centers are inside the ellipse but that are not completely contained inside the ellipse. Light-grey
circles are the ones contained inside the ellipse and that contribute to the computation of the
lower bound. The four lattices provide the lower bounds 374, 365, 368, and 366, respectively,
i.e. L(r, 0) provides the best lower bound for this instance.
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Instance Lattices’ lower bounds Best lower bound CPU Time
Name a b a/b L(r, 0) L(0, 0) L(r, r) L(0, r) mlb Density (in secs.)

S
et

1

s1i01 4 2 2 4 3 1 3 4 0.5000 0.02
s1i02 6 3 2 12 9 9 9 12 0.6667 0.03
s1i03 8 4 2 18 19 20 18 20 0.6250 0.03
s1i04 10 5 2 36 35 30 30 36 0.7200 0.05
s1i05 12 6 2 50 45 49 51 51 0.7083 0.06
s1i06 14 7 2 74 71 67 68 74 0.7551 0.10
s1i07 16 8 2 92 95 94 92 95 0.7422 0.12
s1i08 18 9 2 126 121 123 121 126 0.7778 0.17
s1i09 20 10 2 158 159 151 155 159 0.7950 0.21
s1i10 22 11 2 192 185 190 192 192 0.7934 0.24
s1i11 24 12 2 238 225 226 222 238 0.8264 0.26
s1i12 26 13 2 268 267 273 273 273 0.8077 0.32
s1i13 28 14 2 320 317 311 314 320 0.8163 0.43
s1i14 30 15 2 374 365 368 366 374 0.8311 0.47

S
et

2

s2i01 32.1429 14 2.2959 368 369 363 364 369 0.8200 0.45
s2i02 34.6154 13 2.6627 360 359 365 367 367 0.8156 0.45
s2i03 37.5000 12 3.1250 362 363 354 360 363 0.8067 0.45
s2i04 40.9091 11 3.7190 354 359 364 360 364 0.8089 0.48
s2i05 45.0000 10 4.5000 358 361 353 353 361 0.8022 0.48
s2i06 50.0000 9 5.5556 354 349 349 349 354 0.7867 0.47
s2i07 56.2500 8 7.0313 340 339 346 346 346 0.7689 0.53
s2i08 64.2857 7 9.1837 340 341 329 326 341 0.7578 0.50
s2i09 75.0000 6 12.5000 308 307 329 331 331 0.7356 0.46
s2i10 90.0000 5 18.0000 318 323 290 292 323 0.7178 0.51
s2i11 112.5000 4 28.1250 274 273 296 296 296 0.6578 0.53
s2i12 150.0000 3 50.0000 264 265 235 233 265 0.5889 0.56

S
et

3

s3i01 100.0000 2.0000 50.0000 86 87 49 51 87 0.4350 0.28
s3i02 75.0000 1.5000 50.0000 56 55 0 0 56 0.4978 0.15
s3i03 75.0000 2.6667 28.1250 70 69 107 107 107 0.5350 0.24
s3i04 56.2500 2.0000 28.1250 48 49 29 29 49 0.4356 0.15
s3i05 60.0000 3.3333 18.0000 128 125 99 99 128 0.6400 0.25
s3i06 45.0000 2.5000 18.0000 42 41 59 59 59 0.5244 0.14

Table 1: Description of the test sets. Set 1 corresponds to ellipses with increasing area and
constant ratio a/b, Set 2 corresponds to ellipses with constant area (equal to the area of the
largest instance in Set 1) and increasing ratio a/b, and Set 3 corresponds to “narrow” ellipses
with relatively large area and large ratio a/b.
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(a) (b)

(c) (d)

Figure 3: (a–d) Random initial guesses R1, R2, R3, and R4, respectively, for trying to pack
m = 375 circles (one more than the number of circles given by the lattice-based lower bound)
for the instance with a = 30, b = 15, and r = 1.

5.2 Plain alternatives for multistart initial guesses

In this subsection, we describe different simple alternatives for generating initial guesses to find
a stationary point of (20) at Step 4 of Algorithm 4.1. We considered trivial initial random
guesses that do not make use of any previously obtained solution. The four considered types
of random initial guesses differ on the domain within which the circles’ variables are generated.
Type R1 corresponds to random (ui, vi, si)

T ∈ [−a,−b, 0] × [a, b, 1], type R2 corresponds to
random (ui, vi, si)

T ∈ [−1
2a,−1

2b, 0]×[12a, 12b, 1], type R3 corresponds to random (ui, vi) satisfying
(ui/a)

2 + (vi/b)
2 = 1 and si ∈ [0, 1], and type R4 corresponds to random (ui, vi, si)

T satisfying
(ui/a)

2 + (vi/b)
2 = 1 and si ∈ [0, 12 ]. These four types of random initial guesses are depicted

on Figure 3. As it is well known, none of the initial guesses’ strategies provides uniformly
distributed circles. If required, uniformly distributed circles could be obtained by generating
uniformly distributed random (xi, yi) ∈ [−a,−b]× [a, b] and then paying the extra cost of solving
the (three-unknowns) feasibility problem (21) to find (ui, vi, si).

The effect of using the four described types of initial guesses was evaluated by running
Algorithm 4.1. At Step 1, the lower bound mlb was computed as described in Subsection 4.1.
At Step 2, we arbitrarily fixed a CPU time limit of six hours. At Step 3, the four different
strategies R1, R2, R3, and R4 were considered for generating the random initial guess. At
Step 4 of Algorithm 4.1, approximate stationary points, candidates to global minimizers of the

12



bound-constrained problem (20), were computed using Algencan [1, 2]. Default parameters of
Algencan were used, i.e. approximate stationary points (u∗, v∗, s∗) satisfy the condition

‖PΩ[(u
∗, v∗, s∗)−∇f ξ(u∗, v∗, s∗)]− (u∗, v∗, s∗)‖∞ ≤ 10−8, (22)

where Ω = {(u, v, s) ∈ R
3m | 0 ≤ s ≤ 1} represents the feasible region of problem (20) and

PΩ(u, v, s) denotes the orthogonal Euclidean projection of (u, v, s) onto the convex set Ω. An
approximate stationary point (u∗, v∗, s∗) is considered a global minimizer of (20) at which the
objective function f ξ(u∗, v∗, s∗) vanishes (Step 5 of Algorithm 4.1) whenever

max{‖hξ(u∗, v∗, s∗)‖∞, ‖gξ(u∗, v∗, s∗)+‖∞, ‖κξ(u∗, v∗, s∗)+‖∞, } ≤ 10−4, (23)

i.e. when the sup-norm of the infeasibility violation of feasibility problem (18) is not greater
than 10−4. On the other hand, since f ξ(u, v, s) is the squared Euclidean norm of the infea-
sibility violation, numerical experiments have shown that, in most of the cases, the stopping
criterion (22) implies

f ξ(u∗, v∗, s∗) ≈ 10−16 (24)

and
max{‖hξ(u∗, v∗, s∗)‖∞, ‖gξ(u∗, v∗, s∗)+‖∞, ‖κξ(u∗, v∗, s∗)+‖∞} ≈ 10−8. (25)

Values of (24) and (25) are reported in the numerical experiments. First derivatives and the
sparse Hessian matrix of f ξ(u, v, s) were coded by hand. Moreover, the strategy described in [10]
to reduce the complexity of evaluating the objective function and its derivatives was used. Codes
are available for download at http://www.ime.usp.br/∼egbirgin/packing/.

As expected, the plain multistart strategy delivered very poor results. When using initial
guess types R1, R2, and R3, Algorithm 4.1 was capable of improving the number of packed
circles given by the lattice-based lower bounds in a few number of instances, being in all the
instances outperformed by Algorithm 4.1 with type R4 of random initial guesses. Moreover,
as suggested in the last paragraph of Subsection 4.1, Algorithm 4.1 with type R4 of random
initial guesses was only capable of improving solutions to instances with a small number of
circles (smaller instances of Set 1) or instances for which the lattice-based lower bound is very
weak (most instances with flat ellipses from Set 3). Table 2 shows the results of Algorithm 4.1
combined with random initial guesses of type R4. In the table, the first three columns identify
the instances, including their computed lower bounds. Column m shows the number of circles
packed. Columns f ξ and ‖cξ‖∞ correspond to the quantities in (24) and (25), respectively, and
quantify the precision of the computed solutions. In column #IG (number of initial guesses),
A(B) reports the number of random initial guesses, meaning that, to pack mlb+1, . . . ,m circles,
Steps 3 and 4 of Algorithm 4.1 were executed A times and that from those A executions B were
used to pack exactly m circles. Column named “CPU Time” shows the CPU time in seconds
elapsed from the beginning until the solution with m circles was found. The last column, #AIG
(additional initial guesses), shows the number of unsuccessful trials of packing m + 1 circles
that were done in the remaining time until achieving the imposed CPU time limit of six hours.
Figures 4 and 5 show the graphical representation of the obtained solutions that improved the
solutions given by the lower bound strategy. The graphical representations suggest that some
of those solutions that improved the lower bounds seem to be far from being optimal.
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Instance data Solution found and computational effort Extra effort
Name mlb m fξ ‖cξ‖∞ #IG CPU Time #AIG

S
et

1

s1i01 4 5 6.2D−18 2.1D−09 5 (5) 0.00 18382854
s1i02 12 13 1.7D−16 1.5D−08 33 (33) 0.14 3083185
s1i03 20 24 7.7D−17 9.6D−09 202 (26) 4.13 652782
s1i04 36 39 1.3D−16 1.0D−08 36082 (35485) 4935.44 100794
s1i05 51 56 2.4D−17 5.2D−09 13280 (4796) 3248.33 55003
s1i06 74 76 7.7D−16 2.0D−08 31888 (24132) 20415.82 1522
s1i07 95 97 7.6D−17 7.1D−09 13407 (8410) 18193.36 2086
s1i08 126 — — — — — — 6364
s1i09 159 — — — — — — 3038
s1i10 192 — — — — — — 2074
s1i11 238 — — — — — — 573
s1i12 273 — — — — — — 669
s1i13 320 — — — — — — 364
s1i14 374 — — — — — — 198

S
et

2

s2i01 369 — — — — — — 178
s2i02 367 — — — — — — 313
s2i03 363 — — — — — — 269
s2i04 364 — — — — — — 269
s2i05 361 — — — — — — 224
s2i06 354 — — — — — — 229
s2i07 346 — — — — — — 387
s2i08 341 — — — — — — 605
s2i09 331 — — — — — — 802
s2i10 323 — — — — — — 1533
s2i11 296 — — — — — — 2117
s2i12 265 — — — — — — 1913

S
et

3

s3i01 87 98 2.9D−11 4.1D−06 34507 (1455) 19705.80 260
s3i02 56 60 5.2D−16 8.6D−09 1641 (1610) 245.50 12563
s3i03 107 109 3.2D−16 8.4D−09 18872 (9436) 12838.60 1217
s3i04 49 68 3.6D−16 1.8D−08 19419 (6254) 5888.90 4109
s3i05 128 — — — — — — 2374
s3i06 59 71 1.3D−16 1.0D−08 59180 (33678) 14992.50 2295

Table 2: Numerical results of applying Algorithm 4.1 combined with initial points of type R4.
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(a) s1i01 (b) s1i02

(c) s1i03 (d) s1i04

(e) s1i05 (f) s1i06

(g) s1i07

Figure 4: Graphical representation of the solutions obtained by the plain multistart version of
Algorithm 4.1 to instances of Set 1 that improved the solution given by the lower bound.
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(a) s3i01

(b) s3i02

(c) s3i03

(d) s3i04

(e) s3i06

Figure 5: Graphical representation of the solutions obtained by the plain multistart version of
Algorithm 4.1 to instances of Set 3 that improved the solution given by the lower bound.

5.3 Additional alternatives for multistart initial guesses

The strategies described in the previous subsection to generate random initial guesses to pack,
say, m̄ circles do not make use of the known solution for packing m̄ − 1. That decision had a
clear motivation: to be able to rapidly reproduce a given result (solution) without having to
reproduce the whole experiment from the beginning. However, due to the poor performance
of such strategy, we describe in the present subsection additional strategies to generate initial
guesses that do make use of those previously computed solutions. The three considered strategies
are:

M1: The initial guess to pack m̄ circles always consists on the known solution for packing m̄−1
circles plus random initial values generated as in strategy R4 for the three unknowns
associated with the additional circle.

M2: The first trial of this strategy is as in strategy M1. However, when an undesired stationary
point for packing m̄ circles is found, new random values are given (as in strategy R4) for
the “most infeasible circle”, preserving the other values of the stationary point. This
modified stationary point is used as initial guess for the next trial.

M3: This strategy is as in M2, but the variables of a random circle are modified instead of the
ones associated with the most infeasible circle.

Note that strategy M2 tries to resemble a tunneling strategy, although an improvement in the
objective function at the new random guess with respect to the current stationary point is not
required at all. Tables 3–5 show the results of strategies M1–M3, respectively. In the tables,
values of m in bold represent the best obtained results among strategies M1–M3. Figures 6–10
illustrate the best solutions found by any of the three strategies. Figures in the tables show
that strategies M1, M2, and M3 found the best solutions (among the solutions found by the
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three strategies) in 17, 27, and 15 instances (out of 32), respectively. Figures also show that, if
strategy M3 is ignored, all best solutions are still being found by strategies M1 or M2, and that,
between M1 and M2, none of them is better than the other.

As strategy M2 presented the best performance, we run strategy M2 with an increased CPU
time limit of 24 hours. We name this long run of strategy M2 as M2+ from now on. Table 6
shows the figures of the seven instances in which M2+ was able to improve the best solutions
found. Figure 11 illustrates those improved solutions.

5.4 Summing up the best known results

All along the present section, we described several attempts to find a global solution to the
32 instances in Sets 1–3. At this point it is important to stress that the obtained solutions
satisfy the precision requirements (22) and (23) and that, clearly, “better” solutions would be
found by relaxing those requirements as well as some of the presented solutions would not
be considered solutions under more rigorous tolerances. Independently of the optimization
tolerances requirements (22) and (23), we also reported, for each presented solution, the actual
value of f ξ and ‖cξ‖∞ in (24) and (25), respectively. However, those values combine two types
of quantities that might be reported in separate. Those two quantities are:

Absolute maximum overlapping violation: strongly related to κξij in (19) and given by

max
i<j

{[

2r −
√

{(1 + (si − 1)(b2/a2))ui − (1 + (sj − 1)(b2/a2))uj}2 + {sivi − sjvj}2
]

+

}

.

(26)

Absolute maximum container violation: strongly related to gξi in (19) and given by

max
i

{[

r − (1− si)
√

(b2/a2)2u2i + v2i

]

+

}

. (27)

Every pair of circles’ centers must be at a distance no smaller that 2r and (26) gives the largest
absolute violation of this limit. Every circle must be inside the ellipse and at a distance not
smaller than r to the ellipse’s border. The largest absolute violation of this limit is given
by (27). In fact, the exact calculation of the distance to the ellipse’s border in (27) depends on

the fulfillment of hξi (u, v, s) = 0 in (19). Therefore, the expression in (27) is an approximation
of the maximum violation of the ellipse’s border.

Table 7 summarizes these results pointing to the illustration of each solution within the
text. In addition to the solutions’ information described above, the solutions’ density is also
provided in the table. Detailed information of each solution (i.e. circles’ centers) can be found at
http://www.ime.usp.br/∼egbirgin/packing/. To develop a more efficient approach also capable
of finding by itself all the best known solutions reported here (within the prescribed tolerances),
and maybe even better solutions, remains an open problem.
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Instance data Solution found and computational effort Extra effort
Name mlb m fξ ‖cξ‖∞ #IG CPU Time #AIG

S
et

1

s1i01 4 5 2.7D−18 2.3D−09 6 (6) 0.00 23460130
s1i02 12 13 1.0D−16 9.8D−09 720 (720) 2.11 4659750
s1i03 20 24 9.6D−17 1.1D−08 4 (1) 0.06 708338
s1i04 36 39 2.9D−16 1.1D−08 158 (151) 18.13 282306
s1i05 51 57 1.6D−16 1.1D−08 301 (296) 89.62 95656
s1i06 74 78 1.2D−15 2.2D−08 209 (198) 162.08 37045
s1i07 95 103 2.3D−12 9.9D−07 15 (8) 24.61 18221
s1i08 126 132 9.6D−17 6.7D−09 87 (5) 274.92 9587
s1i09 159 164 1.1D−17 1.7D−09 92 (84) 488.65 4862
s1i10 192 198 3.8D−09 3.1D−05 135 (128) 808.40 2233
s1i11 238 239 3.9D−16 1.4D−08 2 (2) 42.43 1351
s1i12 273 281 2.2D−17 2.5D−09 77 (70) 2002.26 915
s1i13 320 327 1.3D−16 6.1D−09 21 (13) 887.23 517
s1i14 374 378 5.2D−17 5.5D−09 13 (6) 960.37 307

S
et

2

s2i01 369 376 2.0D−17 3.6D−09 20 (14) 1220.52 383
s2i02 367 377 6.1D−17 5.5D−09 17 (8) 871.21 353
s2i03 363 376 1.2D−16 7.4D−09 28 (6) 1735.57 341
s2i04 364 378 3.2D−16 1.3D−08 339 (224) 19106.20 53
s2i05 361 375 2.1D−15 4.3D−08 80 (37) 3717.94 422
s2i06 354 371 6.9D−16 2.2D−08 550 (234) 18711.12 91
s2i07 346 373 2.8D−15 5.0D−08 239 (204) 10490.40 313
s2i08 341 366 2.9D−11 4.8D−06 189 (59) 6061.91 884
s2i09 331 365 7.7D−17 3.5D−09 297 (22) 6251.26 718
s2i10 323 357 1.5D−15 3.1D−08 934 (157) 18528.08 199
s2i11 296 353 5.1D−16 2.0D−08 540 (136) 7096.15 1112
s2i12 265 324 1.8D−15 3.9D−08 2185 (242) 20997.28 147

S
et

3

s3i01 87 118 1.4D−08 6.4D−05 18078 (9972) 10548.71 18630
s3i02 56 57 2.0D−17 6.0D−09 5 (5) 0.13 605187
s3i03 107 140 2.0D−14 1.9D−07 3136 (2333) 2414.27 25360
s3i04 49 67 4.6D−16 2.7D−08 17826 (9775) 1919.16 169738
s3i05 128 147 2.5D−16 9.5D−09 383 (150) 449.84 21535
s3i06 59 77 1.8D−16 9.0D−09 361 (37) 61.32 129557

Table 3: Performance of multistart strategy M1.
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Instance data Solution found and computational effort Extra effort
Name mlb m fξ ‖cξ‖∞ #IG CPU Time #AIG

S
et

1

s1i01 4 5 4.1D−19 7.8D−10 9 (9) 0.01 26068471
s1i02 12 13 1.5D−16 1.5D−08 2 (2) 0.01 4774069
s1i03 20 24 9.6D−17 1.1D−08 4 (1) 0.06 907210
s1i04 36 39 2.7D−17 3.8D−09 49 (44) 5.06 261714
s1i05 51 57 4.5D−17 9.1D−09 47 (42) 12.29 95777
s1i06 74 78 7.2D−17 5.6D−09 8 (3) 10.23 37881
s1i07 95 103 9.5D−17 7.6D−09 80 (73) 89.06 28480
s1i08 126 132 1.0D−15 2.1D−08 313 (298) 762.19 10864
s1i09 159 164 2.3D−16 1.2D−08 8 (3) 36.75 6807
s1i10 192 199 1.8D−16 1.5D−08 44 (1) 359.77 4197
s1i11 238 239 3.6D−16 2.3D−08 9 (9) 218.12 2823
s1i12 273 280 2.8D−16 1.7D−08 7 (1) 98.31 2049
s1i13 320 328 1.1D−09 2.1D−05 555 (543) 11780.04 583
s1i14 374 378 1.7D−15 2.6D−08 52 (34) 3140.71 645

S
et

2

s2i01 369 377 3.4D−16 1.2D−08 351 (342) 12567.15 348
s2i02 367 376 3.4D−16 2.1D−08 9 (1) 160.42 1096
s2i03 363 376 7.6D−16 1.9D−08 324 (291) 12559.34 284
s2i04 364 378 7.0D−16 1.6D−08 390 (1) 11094.14 386
s2i05 361 379 4.1D−16 1.4D−08 462 (250) 15327.75 280
s2i06 354 378 3.8D−16 1.2D−08 278 (1) 8496.39 657
s2i07 346 375 1.4D−09 2.0D−05 830 (548) 16983.64 284
s2i08 341 370 3.2D−16 1.3D−08 227 (1) 6081.33 1118
s2i09 331 363 4.1D−15 6.9D−08 733 (465) 8453.13 1269
s2i10 323 360 3.2D−16 1.3D−08 1188 (521) 13996.47 899
s2i11 296 350 2.6D−16 1.1D−08 1468 (1070) 9254.16 2355
s2i12 265 336 1.1D−16 1.2D−08 5337 (4128) 20337.15 413

S
et

3

s3i01 87 139 6.6D−16 1.1D−08 56217 (53195) 18557.22 10011
s3i02 56 61 2.2D−17 2.7D−09 57007 (56811) 3050.48 443059
s3i03 107 141 6.4D−15 1.1D−07 17797 (14492) 5538.99 53725
s3i04 49 78 9.4D−20 4.0D−10 636 (105) 81.29 192575
s3i05 128 151 3.6D−16 7.0D−09 3488 (2797) 2443.46 31326
s3i06 59 79 4.4D−09 5.1D−05 8612 (8158) 835.34 240445

Table 4: Performance of multistart strategy M2.
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Instance data Solution found and computational effort Extra effort
Name mlb m fξ ‖cξ‖∞ #IG CPU Time #AIG

S
et

1

s1i01 4 5 9.0D−19 7.9D−10 5 (5) 0.00 17482175
s1i02 12 13 4.2D−17 7.7D−09 5 (5) 0.03 4059198
s1i03 20 24 9.6D−17 1.1D−08 4 (1) 0.05 727197
s1i04 36 39 1.5D−16 8.9D−09 26 (21) 2.24 195840
s1i05 51 57 9.5D−16 3.2D−08 15 (10) 3.56 77726
s1i06 74 78 1.3D−16 1.1D−08 16 (12) 20.14 29734
s1i07 95 103 2.2D−16 1.0D−08 52 (45) 65.49 20173
s1i08 126 132 2.9D−17 5.7D−09 243 (225) 713.19 7663
s1i09 159 164 3.1D−16 1.2D−08 191 (124) 961.63 5963
s1i10 192 199 3.7D−16 1.8D−08 214 (196) 1678.21 2906
s1i11 238 238 — — — — — 2271
s1i12 273 281 3.3D−16 1.1D−08 10 (3) 226.39 1906
s1i13 320 327 1.8D−16 1.0D−08 291 (267) 7287.23 873
s1i14 374 376 2.7D−15 3.3D−08 4 (3) 356.83 944

S
et

2

s2i01 369 375 1.9D−15 5.7D−08 6 (1) 557.13 724
s2i02 367 375 2.6D−16 1.7D−08 8 (1) 143.56 982
s2i03 363 375 3.7D−16 1.8D−08 444 (178) 16654.77 162
s2i04 364 377 1.8D−16 9.5D−09 162 (1) 7741.19 387
s2i05 361 369 4.0D−17 6.8D−09 64 (1) 2913.40 328
s2i06 354 373 4.6D−17 2.8D−09 327 (126) 12170.68 290
s2i07 346 371 2.5D−16 1.2D−08 710 (261) 18706.98 160
s2i08 341 366 1.0D−08 6.0D−05 836 (1) 17273.26 144
s2i09 331 358 1.9D−15 5.6D−08 915 (132) 20169.86 140
s2i10 323 357 4.1D−16 1.1D−08 2416 (106) 21095.57 57
s2i11 296 345 2.6D−16 1.6D−08 1266 (1) 19803.39 321
s2i12 265 331 5.1D−17 3.9D−09 2167 (1) 16411.58 801

S
et

3

s3i01 87 134 5.7D−17 5.3D−09 23054 (15296) 7248.47 58554
s3i02 56 61 8.0D−18 1.4D−09 348243 (348074) 16652.31 122688
s3i03 107 141 8.5D−16 3.8D−08 7052 (3) 2530.15 50832
s3i04 49 78 5.2D−17 5.0D−09 111922 (105478) 11339.10 97496
s3i05 128 150 4.1D−16 9.9D−09 11719 (10614) 8760.11 15730
s3i06 59 79 1.8D−16 1.7D−08 70963 (66584) 7388.61 148024

Table 5: Performance of multistart strategy M3.

Instance data Solution found and computational effort Extra effort
Name mlb m fξ ‖cξ‖∞ #IG CPU Time #AIG

S
1 s1i09 159 165 2.5D−16 9.8D−09 15158 (15150) 47815.29 14636

s1i14 374 379 1.3D−16 8.6D−09 2307 (2255) 64242.21 897

S
2

s2i01 369 378 2.8D−17 5.3D−09 778 (427) 24005.88 2668
s2i04 364 379 4.1D−16 1.9D−08 883 (493) 24240.07 2842
s2i12 265 339 8.2D−16 1.3D−08 21974 (1) 69153.22 6409

S
3 s3i03 107 142 4.3D−16 8.2D−09 142408 (124611) 43021.63 145596

s3i06 59 80 7.5D−17 5.7D−09 593092 (584480) 51709.06 80329

Table 6: Performance of multistart strategy M2 with a CPU time limit of 24 hours.
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(a) s1i01 (b) s1i02

(c) s1i03 (d) s1i04

(e) s1i05 (f) s1i06

(g) s1i07 (h) s1i08

(i) s1i09 (j) s1i10

Figure 6: Graphical representation of the solutions obtained by strategies M1 and/or M2 to
instances s1i01–s1i10 of Set 1.
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Instance data Solution found
Name m fξ ‖cξ‖∞ AMOV AMCV density Strategy Graphic

S
et

1

s1i01 5 4.1D−19 7.8D−10 0.0D+00 0.0D+00 0.6250 R4/M1/M2/M3 Fig. 6(a)
s1i02 13 1.5D−16 1.5D−08 4.8D−10 8.4D−11 0.7222 R4/M1/M2/M3 Fig. 6(b)
s1i03 24 9.6D−17 1.1D−08 9.4D−10 1.1D−10 0.7500 R4/M1/M2/M3 Fig. 6(c)
s1i04 39 2.7D−17 3.8D−09 2.8D−09 2.1D−10 0.7800 R4/M1/M2/M3 Fig. 6(d)
s1i05 57 4.5D−17 9.1D−09 9.1D−09 8.8D−11 0.7917 M1/M2/M3 Fig. 6(e)
s1i06 78 7.2D−17 5.6D−09 1.4D−09 2.6D−10 0.7959 M1/M2/M3 Fig. 6(f)
s1i07 103 9.5D−17 7.6D−09 2.3D−09 3.8D−10 0.8047 M1/M2/M3 Fig. 6(g)
s1i08 132 1.0D−15 2.1D−08 2.7D−09 6.4D−10 0.8148 M1/M2/M3 Fig. 6(h)
s1i09 165 2.5D−16 9.8D−09 1.6D−09 3.5D−10 0.8250 M2+ Fig. 11(a)
s1i10 199 1.8D−16 1.5D−08 1.6D−09 3.2D−10 0.8223 M2/M3 Fig. 6(j)
s1i11 239 3.6D−16 2.3D−08 2.1D−09 5.7D−10 0.8299 M1/M2 Fig. 7(k)
s1i12 281 2.2D−17 2.5D−09 6.7D−10 1.5D−10 0.8314 M1/M3 Fig. 7(l)
s1i13 328 1.1D−09 2.1D−05 2.3D−06 7.0D−07 0.8367 M2 Fig. 7(m)
s1i14 379 1.3D−16 8.6D−09 1.0D−09 2.1D−10 0.8422 M2+ Fig. 11(b)

S
et

2

s2i01 378 2.8D−17 5.3D−09 1.4D−09 9.0D−11 0.8400 M2+ Fig. 11(c)
s2i02 377 6.1D−17 5.5D−09 8.9D−10 1.2D−10 0.8378 M1 Fig. 8(b)
s2i03 376 7.6D−16 1.9D−08 1.3D−09 4.1D−10 0.8356 M1/M2 Fig. 8(c)
s2i04 379 4.1D−16 1.9D−08 1.3D−09 2.5D−10 0.8422 M2+ Fig. 11(d)
s2i05 379 4.1D−16 1.4D−08 1.5D−09 3.6D−10 0.8422 M2 Fig. 8(e)
s2i06 378 3.8D−16 1.2D−08 1.4D−09 3.1D−10 0.8400 M2 Fig. 8(f)
s2i07 375 1.4D−09 2.0D−05 3.1D−06 7.6D−07 0.8333 M2 Fig. 8(g)
s2i08 370 3.2D−16 1.3D−08 2.5D−09 5.7D−10 0.8222 M2 Fig. 8(h)
s2i09 365 7.7D−17 3.5D−09 1.7D−09 2.4D−10 0.8111 M1 Fig. 9(i)
s2i10 360 3.2D−16 1.3D−08 2.9D−09 1.2D−09 0.8000 M2 Fig. 9(j)
s2i11 353 5.1D−16 2.0D−08 4.7D−09 1.4D−09 0.7844 M1 Fig. 9(k)
s2i12 339 8.2D−16 1.3D−08 5.8D−09 2.2D−09 0.7533 M2+ Fig. 11(e)

S
et

3

s3i01 139 6.6D−16 1.1D−08 7.9D−09 2.7D−09 0.6950 M2 Fig. 10(a)
s3i02 61 2.2D−17 2.7D−09 2.7D−09 6.6D−10 0.5422 M2/M3 Fig. 10(b)
s3i03 142 4.3D−16 8.2D−09 4.4D−09 1.4D−09 0.7100 M2+ Fig. 11(f)
s3i04 78 9.4D−20 4.0D−10 0.0D+00 6.0D−12 0.6933 M2/M3 Fig. 10(d)
s3i05 151 3.6D−16 7.0D−09 3.6D−09 1.0D−09 0.7550 M2 Fig. 10(e)
s3i06 80 7.5D−17 5.7D−09 5.7D−09 9.8D−10 0.7111 M2+ Fig. 11(g)

Table 7: Summary of the best known solutions.
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(k) s1i11 (l) s1i12

(m) s1i13 (n) s1i14

Figure 7: Graphical representation of the solutions obtained by strategies M1 and/or M2 to
instances s1i11–s1i14 of Set 1.

6 Conclusions

We introduced a new parametrization and optimization procedures for handling problems that
involve packing balls within ellipses. We were able to handle instances with several hundreds
of balls for the problem of packing the maximum number of unitary balls within a given el-
lipse. For instances with even more items, lattice-based solutions seem to provide high-quality
approximations, pointing out that optimization procedures might not be the most adequate ap-
proach. We claim that careful analysis and experimentation with optimization procedures and
heuristics for solving packing problems of increasing complexity should help to solve complicated
real-life problems whose complicating characteristic could be irregularity of objects and domains.
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