Local search and trajectory metaheuristics for the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect*

K. A. G. Araujo ${ }^{\dagger}$

E. G. Birgin ${ }^{\ddagger}$
D. P. Ronconi ${ }^{\S}$

April 17, 2024

Abstract

This paper considers the flexible job shop scheduling problem with sequencing flexibility, a production environment with a wide range of relevant practical applications, especially in today's on-demand printing industry. In order to approximate the problem of real-world applications, we consider the influence of a position-based learning effect on the processing time of the operations. In the present work, we are concerned with the development of effective and efficient methods for its solution. For this purpose, a local search method and four trajectory metaheuristics are considered. In the local search, we show that the classical strategy of reallocating only operations that are part of the critical path may miss better quality neighbors, as opposed to what happens in the case where there is no learning effect. Consequently, we analyze an alternative type of neighborhood reduction that eliminates only neighbors that are not better than the current solution. In addition, we propose a neighborhood reduction and experimentally verify that it significantly reduces the size of the neighborhood, thereby increasing efficiency, with minimal loss of effectiveness. Extensive numerical experiments are performed. Statistical tests confirm that tabu search based on the reduced neighborhood, when applied to large-sized instances, outperforms the other three metaheuristics, namely iterated local search, greedy randomized adaptive search, and simulated annealing. Experiments on classical instances without sequencing flexibility show that the introduced methods also stand out in relation to methods from the literature. All methods, instances, and solutions are freely available.

Keywords: Scheduling, flexible job shop, routing flexibility, sequencing flexibility, positionbased learning effect, trajectory metaheuristics.

[^0]
1 Introduction

The flexible job shop (FJS) with sequencing flexibility is a production environment with a wide range of relevant practical applications, especially in the nowadays on-demand printing industry [38, 39]. Today, companies in the print-on-demand business must deal with customized production and prioritize on-time delivery in an effort to meet their customers' needs. In this context, production activities are organized in flexible workshops to better manage the execution of the wide range of tasks demanded. Other businesses that fit into this production environment include the glass industry [1], the mold industry [22], the scheduling of aircraft support operations in flight decks [49], the scheduling of repairing orders in automobile collision repair shops [2], and the construction of production programs for steelmaking [19]. It is therefore important that the solving methods are prepared to cope with the most diverse characteristics of the actual problems encountered in this production environment. One such factor is the learning effect, i.e. how the processing time of an operation varies with the number of times it is executed. Naturally, using processing times that are not entirely consistent with reality can lead to inaccurate schedules and result in significant economic losses.

The FJS scheduling problem is an extension of the classical job shop (JS) scheduling problem in which each operation can be processed by one within a set of machines instead of a single machine. This characteristic is known as routing flexibility. Two additional features are considered in the present work: sequencing flexibility and learning effect. In the FJS without sequencing flexibility, there exists the concept of a task, which consists of a set of operations that must respect a sequential order of execution (first the first operation, then the second, then the third, etc). The sequencing flexibility consists in considering that the precedences between the operations of a same task are given by an arbitrary directed acyclic graph (DAG). In a classical scheduling problem, given an operation and a machine that can process this operation, a fixed processing time is given that corresponds to the time demanded by the machine to process the operation. The learning effect corresponds to the real-life ingredient that consists in the fact that a person learns through the execution of a repetitive task and, the more times they execute it, the faster they do it. In this work we consider a learning function that depends on the position that an operation occupies within the list of operations executed by a machine, i.e. a position-based learning effect function.

A recent literature review on the FJS scheduling problem was done in [16], while a recent review of the FJS with sequencing flexibility was included in [4]. For applications in real-life problems see [1, 2, 8, 19, 22, 38, 39, 49] and for development of methods for the FJS with sequencing flexibility and a variety of additional features see [9, 13, 23, 31, 32, 33, 45].

The impact on a worker's qualification, by repeated processing of an operation, and the resulting reduction in the operation's processing time was investigated in [18] in 1957. Since the publications of the pioneer works [10, 14, 27] that introduced the concept of learning effect in scheduling problems near two decades ago, a large number of papers has been published devoted to this subject. Surveys and classifications can be found in [6, 11, 29, 42]. However, few papers, which are reviewed below, address the FJS scheduling problem with learning effect and, to the best of our knowledge, none of them consider sequencing flexibility.

In [44] the FJS scheduling problem with sequence-dependent setup times as well as positiondependent learning and time-dependent deterioration effects is considered. The authors propose
a hybrid metaheuristic that combines the genetic algorithm and variable neighborhood search for the purpose of minimizing the makespan. The same problem is considered in [5], where the problem is modeled as a bilevel optimization problem in which both levels have the same objective, namely, minimizing the makespan. The proposed method, called evolutionary bilevel optimization, constructs feasible solutions in a two-stage hierarchical approach that assigns operations to machines in the first stage and schedules operations in the second stage. In [47] a dual resource FJS is considered in which a machine and a worker are required to process an operation. It is also assumed that there is flexibility in the choice of both, and therefore, for each operation there is a set of machines and a set of workers capable of processing it. The problem is described using a mathematical model and a hybrid method that combines genetic algorithms and variable neighborhood search is developed. In [48] an FJS scheduling problem with operation processing time deterioration effect is considered with the objective of minimizing a function that combines makespan and energy consumption. The proposed methodology hybridizes pigeon-inspired optimization and simulated annealing. In 50, the FJS scheduling problem with time-dependent learning effect is considered. The problem is multiobjective and the goal is to minimize the makespan, total carbon emissions, and total workers' cost. A memetic algorithm, based on NSGA-II, associated with a variable neighborhood search is proposed. Four different neighborhoods are proposed and special attention is given to the development of constructive heuristics to develop the initial population. In [43] a dual resource (machine and worker) FJS with position-dependent learning effect is considered. Additionally, a transportation time between machines is also taken into account. The goal is to minimize makespan, energy consumption, and noise. Therefore, the problem is multi-objective. All of these ingredients come from a real-life sand casting problem. To tackle the problem, a discrete multi-objective imperial competition algorithm is developed in which a local search based on simulated annealing is used. In [36], a multi-objective FJS scheduling problem with position-dependent learning effect, in which makespan and total carbon emissions are minimized, is considered. The problem is modeled as a mixed integer linear multiobjective optimization problem and an improved multiobjective sparrow search algorithm is developed.

The problem considered in the present work was recently considered in [4, where integer linear programming and constraint programming models were introduced and compared. To improve the performance of exact methods applied to small-sized instances of the problem, constructive heuristics were also developed. In the present work we continue that work by developing local search strategies and metaheuristics that can compute good quality solutions to large-sized instances. (It should be noted that the problem is NP-hard since it contains the JS scheduling problem, knowingly NP-hard [24, as a particular case). In [41] it was introduced, for the FJS scheduling problem, a neighborhood reduction that eliminates only neighbors that do not improve the current solution. The reduction is based on the fact that, given a feasible solution, removing and relocating an operation that is not in the "critical path" has no chance of leading to a better solution. This idea was extended to the FJS scheduling problem with sequencing flexibility in [38, 39]. In the present paper, we begin by showing that the fundamental principle on which this neighborhood reduction is based does not hold when we consider learning effect. Consequently, a new neighborhood reduction is introduced in the present work. In addition, we also introduce a neighborhood cutoff that can leave better quality neighbors behind. However, numerical experiments will show that if on the one hand the neighborhood cutoff is about 90%,
the solution found gets worse by about 1% on average. Based on the introduced local search, we then implement four trajectory metaheuristics. With them, we manage to find good quality solutions for large-sized instances and to find solutions very close to the optimal solutions in small-sized instances with known optimal solution.

The rest of this paper is organized as follows. In Section 2 we elaborate on how a feasible solution of the problem can be represented by a DAG. This representation allows us to introduce in a simple way the concept of neighborhood and, in the sequel, a local search. Still in Section 2 , we analyze different possibilities to reduce the number of neighbors of a current solution to be inspected. In Section 3 we describe the considered metaheuristics, namely, iterated local search, greedy randomized adaptive search procedure, tabu search, and simulated annealing. Section 4 is devoted to extensive numerical experiments. Conclusions and lines of future work are stated in the final section.

2 Local search

The data of an instance of the FJS with sequencing flexibility and position-based learning effect consists of (a) a set of operations \mathcal{O} and a set of machines \mathcal{F}; (b) for each operation $i \in \mathcal{O}$, a subset $\mathcal{F}_{i} \subseteq \mathcal{F}$ containing the machines that can process i; (c) for each operation-machine pair (i, k) with $i \in \mathcal{O}$ and $k \in \mathcal{F}_{i}$, a standard processing time $p_{i k}$; and (d) a set of $\operatorname{arcs} \widehat{A} \subseteq \mathcal{O} \times \mathcal{O}$ representing the precedence relations between the operations. The learning effect is given by a function $\psi_{\alpha}(p, r)$ which, given a standard processing time p and a position r, returns the actual processing time of an operation with standard processing time p when processed at the r-th position of a machine. The parameter $\alpha>0$ represents the learning effect rate. In the current work, we consider $\psi_{\alpha}(p, r)=\left\lfloor 100 p / r^{\alpha}+1 / 2\right\rfloor$. A simple example of an instance is shown in Figure 1.

A feasible solution to an instance of the FJS with sequencing flexibility and position-based learning effect can be represented by a DAG $G=(V, A)$ as depicted in Figure 2 a . This graph is sometimes referred to as a solution graph in the literature. The vertices of G, represented by the set V, correspond to the operations plus the dummy vertices s and t, i.e. $V=\mathcal{O} \cup\{s, t\}$. The arcs, represented by the set A, correspond to the arcs in \widehat{A} representing the precedence relationships between operations (in black in the picture), arcs going from s to operations that have no predecessors and arcs going to t from operations that do not precede any other operation (in purple in the picture). Arcs that start from s and arcs that reach t are named dummy arcs. Furthermore, dashed arcs represent the assignment of operations to machines and the order in which the operations are processed by each machine. These arcs are named machine arcs. Each node $i \in V \backslash\{s, t\}=\mathcal{O}$, that is, each operation, has a value w_{i} associated with it that represents its actual processing time, which is calculated with the learning function using the operation's standard processing time and the position that the operation occupies in the machine to which it was assigned. Nodes s and t are associated with the value zero. The longest path between nodes s and t is called critical path (highlighted in yellow in the figure), and its length corresponds to the makespan of the represented solution.

Given a feasible solution and a DAG $G=(V, A)$ representing it, a new feasible solution can be constructed by removing an operation from the machine to which it was assigned and

		Machines	
		1	2
	1	1	1
	2	1	1
	3	1	1
	4	10	10
	5	1	1

Figure 1: On the left, representation of the operations' precedence constraints by a DAG $D=$ $(\mathcal{O}, \widehat{A})$, where $\mathcal{O}=\{1,2, \ldots, 5\}$ represents the set of operations and $\widehat{A}=\{(1,2),(2,3),(4,5)\}$ is the set of arcs that represents the precedence constraints. In this simple example, precedence constraints are given by a linear order, i.e. there is no sequencing flexibility. This instance has two machines and each of the five operations can be processed in any of the two machines, i.e. $\mathcal{F}=\{1,2\}$ and $\mathcal{F}_{i}=\mathcal{F}$ for all $i \in \mathcal{O}$. This means that there is full routing flexibility. The table on the right shows the standard processing times $p_{i k}$ of the five operations on each of the two machines.

Figure 2: In this figure we consider the instance in Figure 1 with learning rate $\alpha=1$. The digraph on the left (Figure 2a) represents a feasible solution in which machine 1 (associated with the cyan color) processes operation 2 only, while machine 2 (associated with the orange color) processes operations $1,4,5$, and 3 in that order. The colored numbers represent the actual processing time of the operations, with the influence of the learning effect. The critical path, which length corresponds to the makespan, is given by the path $s, 1,4,5,3, t$ (highlighted in yellow in the picture). The digraph on the right (Figure 2 b) represents the feasible solution obtained by reallocating operation 2 , that was not in the critical path, from machine 1 to machine 2 between operations 1 and 4 . The constructed feasible solution, with critical path given by $s, 1,2,4,5,3, t$, has a makespan smaller than the original one (528 versus 658).
reinserting it in the same machine but in another position or in another machine. When an operation is removed, the machine arcs adjacent to it must be removed and a new arc going from the operation before the removed one to the one after the removed one (if both exist) must be created. When the operation is reinserted, a similar reverse operation must also be done. When reinserting the operation, it is important to verify that a cycle is not produced in the digraph. Only reinsertions that do not create cycles build a digraph that corresponds
to a feasible solution. When there is no learning effect, it is known [41] that there are chances to build a better feasible solution by removing and relocating operations that are part of the critical path only. If an operation is not part of the critical path, its removal and reinsertion cannot decrease the length of the critical path. It can increase it or create another even longer path. This is false when considering learning effect. An example is shown in Figure 2b.

Given a feasible solution, we can define its neighborhood as the set of all feasible solutions that can be obtained by removing and reinserting a single operation. When there is no learning effect, just the removal and reinsertion of operations from the critical path may lead to better neighbors, i.e. neighbors with lower makespan. This fact is widely used to generate just promising neighbors. The observation in the previous paragraph shows that this reduction cannot be used in the problem we are considering in the present work. This leads us to analyze whether every removal and reinsertion that does not generate cycles has the potential to generate a neighbor with lower makespan or whether any neighborhood reduction is possible. The main point is to note that when an operation is removed from a machine, the operations that were scheduled to be processed later on that machine have their position decreased by one unit and, consequently, their actual processing time increased. Similarly, in the machine where the operation is inserted, the operations scheduled to be processed after the inserted operation have their position increased by one and, therefore, their processing time is decreased. These modifications may change the makespan whether improving or worsening.

Consider a feasible solution represented by a DAG $G=(V, A)$. Let \mathcal{P} be a critical path in G, with length $C_{\max }$. Let $i \in \mathcal{O}$ be an arbitrary operation. We name f_{i} the machine to which i is assigned. Let $k \in \mathcal{F}$ be an arbitrary machine. We name $Q_{k}=i_{1}, \ldots, i_{\left|Q_{k}\right|}$ the ordered list of operations assigned to machine k. If an operation i is assigned to machine f_{i} and it is in the γ-th position of $Q_{f_{i}}$, then its actual processing time is given by $w_{i}=\psi_{\alpha}\left(p_{i, f_{i}}, \gamma\right)$. We intend to compute all neighbors of the solution represented by G, f, Q, and w. The neighbors will be constructed, for all $v \in \mathcal{O}$, by removing v and reinserting v at every possible place that does not generate a cycle. We want to determine if there are insertions that can be ignored because we know a priori that they will not lead to a makespan reduction.

Let $v \in \mathcal{O}$ be an arbitrary operation. The computation of the neighbors of the current solution (associated with the remotion and reinsertion of v) begins by computing a digraph $G_{v}^{-}=\left(V^{-}, A^{-}\right)$in which the operation v is removed. Such a graph is sometimes referred to as a reduced graph in the literature. The quantities f^{-}, Q^{-}, and w^{-}associated with G_{v}^{-}are also calculated. This digraph with its associated information is an intermediate structure necessary for the computation of the neighbors and, since the operation v is not assigned to any machine, it does not represent a feasible solution. This task is described in Algorithm 1. In line 2, the assignment of operations to machines is copied for all operations other than v. In line 3 , the lists of operations of all machines other than f_{v} are copied, and, in the list of machine f_{v}, operation v is eliminated. In line 4 , the actual processing times of most of the operations are copied, except for the operations succeeding v in the list $Q_{f_{v}}$. The actual processing times of these operations, whose position within the machine was reduced by one, need to be recalculated. The value of w_{v}^{-}is set to zero. In line 5, machine arcs adjacent to v are removed (if they exist) and a new machine arc between its predecessor and successor is inserted, unless v is the first or last element in $Q_{f_{v}}$. In lines 6 and 7 , the set $\mathcal{R}_{v}^{\leftarrow}$ of vertices that reaches v and the set of vertices \mathcal{R}_{v} that are reached from v in G_{v}^{-}are calculated, which will be useful for detecting cycles in future possible
reinsertions of v. In line 8, the longest path \mathcal{P}^{-}in the digraph G_{v}^{-}is calculated, which will be useful to determine whether a reinsertion has chances to decrease the makespan or not. We call ξ the length of \mathcal{P}^{-}. (We do not call it $C_{\text {max }}^{-}$because as G_{v}^{-}does not represent a feasible solution, then the length of the path \mathcal{P}^{-}does not represent a makespan.) Along with the computation of \mathcal{P}^{-}, the algorithm also computes, for each machine k, the smallest position τ_{k} such that, for all $\gamma>\tau_{k}$, the γ-th operation processed by machine k is not in \mathcal{P}^{-}. (If machine k does not process any operation in \mathcal{P}^{-}, then $\tau_{k}=0$.) The tasks in lines 6,7 , and 8 use auxiliary wellknown algorithms for topological sorting, depth-first search, and an adaptation [15, §22.2] of the Bellman-Ford algorithm described in Algorithms 2, 3, and 4, respectively, for completeness.

Let G be the digraph, with associated quantities f, Q, and w, representing the current feasible solution. Let \mathcal{P} be the critical path in G, with length $C_{\text {max }}$. Let v be the operation we removed and wish to reinsert. Let G_{v}^{-}be the digraph with v removed and let f^{-}, Q^{-}, and w^{-}be the quantities associated with G_{v}^{-}. Let \mathcal{P}^{-}be the critical path in G_{v}^{-}, with length ξ, and, for each machine k, let τ_{k} be the smallest position in Q_{k} such that every operation in a position after τ_{k} is not in \mathcal{P}^{-}. Let κ be a machine and γ be a position in the list Q_{κ}^{-}such that inserting v at position γ of Q_{κ}^{-}does not generate a cycle. Does such an insertion have a chance of generating a new digraph whose associated feasible solution has a makespan smaller than $C_{\max }$? If $\xi \geq C_{\max }$ and $\gamma>\tau_{k}$, then the answer is "no". This is because the path \mathcal{P}^{-} with length ξ not smaller than $C_{\text {max }}$ already exists and the insertion of v in machine κ, at a position γ later than τ_{k}, will not modify the actual processing time of any operation in \mathcal{P}^{-}. If $\xi<C_{\max }$ or $\xi \geq C_{\text {max }}$ but $\gamma \leq \tau_{k}$, then chances exist.

It should be noted that, strictly speaking, the fact of v being in \mathcal{P} or not is not related to the answer to the question above. But already anticipating something that will come later, as the neighborhood reduction driven by the answer to the question may be quite small, we will consider in the experiments, heuristically, $v \in \mathcal{P}$ as equivalent or strongly correlated to $\xi<C_{\max }$. That is, we will consider that removing an operation from the critical path will most likely imply that $\xi<C_{\text {max }}$. This is very plausible for moderate values of the learning factor α, with which a possible reduction of one in the machine position of some critical path operations does not cancel out the benefit of removing an operation from the critical path.

The task of reinserting v in G_{v}^{-}at position γ of machine κ generates a DAG that we name G_{v}^{+}. This task is similar to the removing task. The construction of G_{v}^{+}, its associated quantities f^{+}, Q^{+}, and w^{+}, and its critical path \mathcal{P}^{+}with length $C_{\max }^{+}$is described in Algorithm 5 . Algorithm 6 implements a best neighbor local search with the neighborhood reduction already discussed. It corresponds to a classical local search with a best neighbor strategy. The only relevant detail that remains to be explained is how to determine whether an insertion generates a cycle or not. A cycle will only be created in G_{v}^{+}if v is inserted in a position that leaves some $u \in \mathcal{R}_{v}^{\leftarrow}$ to be processed after v in machine κ or some $u \in \mathcal{R}_{v}$ to be processed before v in machine κ. The limits $\underline{\gamma}$ and $\bar{\gamma}$ such that $\underline{\gamma}+1 \leq \gamma \leq \bar{\gamma}$ avoids cycles are calculates in lines 7 and 8. A possible reduction of this interval is computed in lines 9 and 10, eliminating the possibility of making insertions after τ_{κ} if $\xi \geq C_{\max }$, as already discussed.

```
Algorithm 1: Computes \(G_{v}^{-}=\left(V_{v}^{-}, A_{v}^{-}\right), f^{-}, Q^{-}\), and \(w^{-}\)by removing operation \(v\)
from the solution graph \(G=(V, A)\). Then, in \(G_{v}^{-}\), it computes the set \(\mathcal{R}_{v}^{\leftarrow}\) of vertices
that reaches \(v\) and the set of vertices \(\mathcal{R}_{v}\) that are reached from \(v\), the largest path \(\mathcal{P}^{-}\)
from \(s\) to \(t\) and its length \(\xi\), and the position \(\tau_{k}\) of the last critical operation in each
machine \(k \in \mathcal{F}\).
Input: \(\mathcal{O}, \mathcal{F}, p, v, f, Q, w, G=(V, A)\)
    Output: \(f^{-}, Q^{-}, w^{-}, G_{v}^{-}=\left(V_{v}^{-}, A_{v}^{-}\right), \mathcal{P}^{-}, \xi, \mathcal{R}_{v}^{\leftarrow}, \mathcal{R}_{v}, \tau\)
    function RemoveOp \(\left(\mathcal{O}, p, v, f, Q, w, G, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, \mathcal{P}^{-}, \xi, \mathcal{R}_{v}^{\leftarrow}, \mathcal{R}_{v}, \tau\right)\)
        Define \(f_{i}^{-}:=f_{i}\) for all \(i \in \mathcal{O} \backslash\{v\}\).
    Let \(Q_{f_{v}}\) be given by the sequence \(i_{1}, \ldots, i_{\gamma-1}, i_{\gamma}, i_{\gamma+1}, \ldots, i_{\left|Q_{f_{v}}\right|}\) with \(i_{\gamma}=v\). Define
        \(Q_{k}^{-}:=Q_{k}\) for all \(k \in \mathcal{F} \backslash\left\{f_{v}\right\}\) and \(Q_{f_{v}}^{-}:=i_{1}, \ldots, i_{\gamma-1}, i_{\gamma+1}, \ldots, i_{\left|Q_{f_{v}}\right|} \mid\)
        Define \(w_{i}^{-}:=w_{i}\) for all \(i \in \mathcal{O} \backslash\left\{v, i_{\gamma+1}, \ldots, i_{\left|Q_{f_{v}}\right|}\right\}, w_{v}^{-}:=0\), and
        \(w_{i_{\ell}}^{-}:=\psi_{\alpha}\left(p_{i_{\ell}, f_{i_{\ell}}}, \ell-1\right)\) for \(\ell=\gamma+1, \ldots,\left|Q_{f_{v}}\right|\).
    Define the graph \(G_{v}^{-}=\left(V_{v}^{-}, A_{v}^{-}\right)\)with \(V_{v}^{-}:=V\) and
        \(A_{v}^{-}:=\left(A \backslash\left\{\left(i_{\gamma-1}, v\right),\left(v, i_{\gamma+1}\right)\right\}\right) \cup\left\{\left(i_{\gamma-1}, i_{\gamma+1}\right)\right\}\).
        Initialize \(\mathcal{V} \leftarrow \emptyset, \mathcal{U}\) as an empty list, and \(\mathcal{R} \overleftarrow{v} \leftarrow\{v\}\), and compute in \(\mathcal{U}\) and \(\mathcal{R}_{v}^{\leftarrow}\) a
        topological sort of the vertices in \(V_{v}^{-}\)and the set of vertices \(i \in V_{v}^{-}\)such that a
        path from \(i\) to \(v\) exists, respectively, by calling TopologicalSort+ \(\left(G_{v}^{-}, \mathcal{U}, s, \mathcal{V}, v\right.\),
        \(\left.\mathcal{R}_{v}^{\overleftarrow{v}}\right)\).
        Initialize \(\mathcal{R}_{v} \leftarrow \emptyset\) and compute in \(\mathcal{R}_{v}\) the set of vertices \(i \in V_{v}^{-}\)such that a path
        from \(v\) to \(i\) exists, by calling \(\operatorname{DFS}\left(G_{v}^{-}, v, \mathcal{R}_{v}\right)\).
        Compute the largest path \(\mathcal{P}^{-}\)from \(s\) to \(t\), its length \(\xi\), and determine the
        position \(\tau_{k}\) of the last critical operation at each machine \(k\) for all \(k \in \mathcal{F}\) by calling
        \(\operatorname{CriticalPath}\left(\mathcal{F}, f^{-}, w^{-}, Q^{-}, G_{v}^{-}=\left(V_{v}^{-}, A_{v}^{-}\right), \mathcal{U}, \mathcal{P}^{-}, \xi, \tau\right)\).
```

```
reaches \(v\) in \(G=(V, A)\).
    Input: \(G=(V, A), \mathcal{U}, i, \mathcal{V}, v, \mathcal{R}_{v}^{\leftarrow}\)
    Output: \(\mathcal{U}, \mathcal{V}, \mathcal{R}_{v}^{\leftarrow}\)
    function TopologicalSort+ \(\left(G, \mathcal{U}, i, \mathcal{V}, v, \mathcal{R}_{v}^{\leftarrow}\right)\)
        Set \(\mathcal{V} \leftarrow \mathcal{V} \cup\{i\}\).
        for \(j\) such that \((i, j) \in A\) do
        if \(j \notin \mathcal{V}\) then
                TopologicalSort \(+\left(G, \mathcal{U}, j, \mathcal{V}, v, \mathcal{R}_{v}^{\leftarrow}\right)\)
        if \(i \notin \mathcal{R}_{v}^{\leftarrow}\) and \(j \in \mathcal{R}_{v}^{\leftarrow}\) then
            set \(\mathcal{R}_{v}^{\leftarrow} \leftarrow \mathcal{R}_{v}^{\leftarrow} \cup\{i\}\).
```

Algorithm 2: Computes a topological sort \mathcal{U} of the vertices of $G=(V, A)$. In addition,
if v and $\mathcal{R} \overleftarrow{v}$ are present as an input parameter, computes the set $\mathcal{R} \overleftarrow{v}$ of vertices that
Insert i at the beginning of \mathcal{U}.

```
Algorithm 3: Computes the set of vertices \(\mathcal{R}_{v}\) as the set of vertices that can be
reached by \(v\) in \(G=(V, A)\).
    Input: \(G=(V, A), v, \mathcal{R}_{v}\)
    Output: \(\mathcal{R}_{v} \overrightarrow{ }\)
    function \(\operatorname{DFS}\left(G, v, \mathcal{R}_{v}\right)\)
        Set \(\mathcal{R}_{v} \leftarrow \mathcal{R}_{v} \cup\{v\}\).
        for \(j\) such that \((v, j) \in A\) do
            if \(j \notin \mathcal{R}_{v}\) then
                \(\operatorname{DFS}\left(G, j, \mathcal{R}_{v}\right)\)
```

```
Algorithm 4: Computes a critical path \(\mathcal{P}\) and its length \(\xi\) for a given graph \(G=(V, A)\).
```

Algorithm 4: Computes a critical path \mathcal{P} and its length ξ for a given graph $G=(V, A)$.
In addition, if τ is present as an input parameter, determines the last critical operation
In addition, if τ is present as an input parameter, determines the last critical operation
in each machine.
in each machine.
Input: $\mathcal{F}, f, w, Q, G=(V, A), \tau$
Input: $\mathcal{F}, f, w, Q, G=(V, A), \tau$
Output: $\mathcal{U}, \mathcal{P}, \xi, \tau$
Output: $\mathcal{U}, \mathcal{P}, \xi, \tau$
function $\operatorname{CriticalPath}(\mathcal{F}, f, w, Q, G, \mathcal{U}, \mathcal{P}, \xi, \tau)$
function $\operatorname{CriticalPath}(\mathcal{F}, f, w, Q, G, \mathcal{U}, \mathcal{P}, \xi, \tau)$
Initialize $d_{i} \leftarrow-\infty$ for all $i \in V \backslash\{s\}$ and define $d_{s}:=0$ and $\pi_{s}:=0$.
Initialize $d_{i} \leftarrow-\infty$ for all $i \in V \backslash\{s\}$ and define $d_{s}:=0$ and $\pi_{s}:=0$.
Initialize $\mathcal{V} \leftarrow \emptyset$ and \mathcal{U} as an empty list and compute in \mathcal{U} a topological sort of the
Initialize $\mathcal{V} \leftarrow \emptyset$ and \mathcal{U} as an empty list and compute in \mathcal{U} a topological sort of the
vertices in V, by calling TopologicalSort $+(G, \mathcal{U}, s, \mathcal{V})$.
vertices in V, by calling TopologicalSort $+(G, \mathcal{U}, s, \mathcal{V})$.
for $\ell=1, \ldots,|V|$ do
for $\ell=1, \ldots,|V|$ do
Let i be the ℓ-th operation in the topological order given by \mathcal{U}.
Let i be the ℓ-th operation in the topological order given by \mathcal{U}.
for j such that $(i, j) \in A$ do
for j such that $(i, j) \in A$ do
if $d_{j}<d_{i}+w_{i}$ then
if $d_{j}<d_{i}+w_{i}$ then
$d_{j} \leftarrow d_{i}+w_{i}$ and $\pi_{j} \leftarrow i$.
$d_{j} \leftarrow d_{i}+w_{i}$ and $\pi_{j} \leftarrow i$.
$\xi:=d_{t}$
$\xi:=d_{t}$
Initialize $i \leftarrow \pi_{t}, \mathcal{P} \leftarrow \emptyset$, and $\tau_{k} \leftarrow 0$ for all $k \in \mathcal{F}$.
Initialize $i \leftarrow \pi_{t}, \mathcal{P} \leftarrow \emptyset$, and $\tau_{k} \leftarrow 0$ for all $k \in \mathcal{F}$.
do
do
if $\tau_{f_{i}}=0$ then
if $\tau_{f_{i}}=0$ then
Let $Q_{f_{i}}$ be given by the sequence $i_{1}, \ldots, i_{\ell-1}, i, i_{\ell+1}, \ldots, i_{\left|Q_{f_{i}}\right|}$. Define $\tau_{f_{i}}:=\ell$.
Let $Q_{f_{i}}$ be given by the sequence $i_{1}, \ldots, i_{\ell-1}, i, i_{\ell+1}, \ldots, i_{\left|Q_{f_{i}}\right|}$. Define $\tau_{f_{i}}:=\ell$.
$\mathcal{P} \leftarrow \mathcal{P} \cup\{i\}$ and $i \leftarrow \pi_{i}$.
$\mathcal{P} \leftarrow \mathcal{P} \cup\{i\}$ and $i \leftarrow \pi_{i}$.
while $i \neq s$

```
    while \(i \neq s\)
```


3 Metaheuristics

It is known that the direct application of a local search as the one introduced in the previous section suffers from premature convergence to local solutions. Therefore, it is natural to think of using it in connection with metaheuristics. In particular, trajectory metaheuristics are a natural choice since they make direct use of local search strategies. In this paper we consider the well-known metaheuristics iterated local search (ILS), greedy randomized adaptive search

```
Algorithm 5: Computes \(G_{v}^{+}=\left(V_{v}^{+}, A_{v}^{+}\right), f^{+}, Q^{+}\), and \(w^{+}\)by inserting operation \(v\)
at position \(\gamma\) of machine \(\kappa\) in the reduced graph \(G_{v}^{-}\). Then, in \(G_{v}^{+}\), it computes the
largest path \(\mathcal{P}^{+}\)from \(s\) to \(t\) and its length \(C_{\max }^{+}\).
    Input: \(\mathcal{O}, \mathcal{F}, p, v, \gamma, \kappa, f^{-}, Q^{-}, w^{-}, G_{v}^{-}=\left(V_{v}^{-}, A_{v}^{-}\right)\)
    Output: \(f^{+}, Q^{+}, w^{+}, G_{v}^{+}=\left(V_{v}^{+}, A_{v}^{+}\right), \mathcal{P}^{+}, C_{\text {max }}^{+}\)
    function \(\operatorname{InsertOp}\left(\mathcal{O}, p, v, \gamma, \kappa, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, f^{+}, Q^{+}, w^{+}, G_{v}^{+}, \mathcal{P}^{+}, C_{\max }^{+}\right)\)
    Define \(f_{i}^{+}:=f_{i}^{-}\)for all \(i \in \mathcal{O} \backslash\{v\}\) and \(f_{v}^{+}:=\kappa\).
    Let \(Q_{\kappa}^{-}\)be given by the sequence \(i_{1}, i_{2}, \ldots, i_{\left|Q_{\kappa}^{-}\right|}\).
    Define \(Q_{k}^{+}:=Q_{k}^{-}\)for all \(k \in \mathcal{F} \backslash\{\kappa\}\) and \(Q_{\kappa}^{+}:=i_{1}, \ldots, i_{\gamma-1}, v, i_{\gamma}, \ldots, i_{\left|Q_{k}^{-}\right|}\).
    Define \(w_{i}^{+}:=w_{i}^{-}\)for all \(i \in \mathcal{O} \backslash\left\{v, i_{\gamma}, \ldots, i_{\left|Q_{\kappa}\right|}\right\}\), and \(w_{i_{\ell}}^{+}:=\psi\left(p_{i_{\ell}, \kappa}, \ell\right)\) for
        \(\ell=\gamma, \ldots,\left|Q_{\kappa}^{+}\right|\).
    Define the graph \(G_{v}^{+}=\left(V_{v}^{+}, A_{v}^{+}\right)\)with \(V_{v}^{+}:=V_{v}^{-}\)and
        \(A_{v}^{+}:=\left(A_{v}^{-} \backslash\left\{\left(i_{\gamma-1}, i_{\gamma}\right)\right)\right\} \cup\left\{\left(i_{\gamma-1}, v\right),\left(v, i_{\gamma}\right)\right\}\).
    Initialize \(\mathcal{V} \leftarrow \emptyset\) and \(\mathcal{U}\) as an empty list and compute in \(\mathcal{U}\) a topological sort of the
        vertices in \(V_{v}^{+}\), by calling TopologicalSort \(+\left(G_{v}^{+}, \mathcal{U}, s, \mathcal{V}\right)\).
    Compute the critical path \(\mathcal{P}^{+}\)from \(s\) to \(t\) and its length \(C_{\text {max }}\) by calling
    \(\operatorname{CriticalPath}\left(\mathcal{F}, f^{+}, w^{+}, Q^{+}, G_{v}^{+}=\left(V_{v}^{+}, A_{v}^{+}\right), \mathcal{U}, \mathcal{P}^{+}, C_{\text {max }}^{+}\right)\).
```

procedure (GRASP), tabu search (TS), and simulating annealing (SA). The basic components of each of them are presented below.

3.1 Iterated local search

The ILS [37] strategy consists of iteratively running a local search until it converges to a local solution and perturbing the solution found to be used as the initial solution for the next run of the local search. For the first run of the local search, it uses as initial solution the best among the solutions constructed by the constructive heuristics ECT and EST introduced in 4]. The perturbation consists of a sequence of ℓ^{p} modifications, where ℓ^{p} is a random number between $\ell_{\text {min }}^{p}$ and $\ell_{\max }^{p}$. ($\ell_{\text {min }}^{p}$ and $\ell_{\max }^{p}$ are the only two parameters of the ILS.) Each modification consists of removing a random operation and relocating it to a random place so that the solution thus constructed is feasible. Algorithms 7 and 8 describe the ILS completely. They make use of Algorithm 6 for the local search and Algorithms 1 and 5 for removing and reinserting an operation, respectively. The random choices at line 12 of Algorithm 7 and lines 2, 4, and 7 of Algorithm 8 follow a discrete uniform distribution within the prescribed range. The same applies to all the methods described below, which make random choices following discrete or continuous (depending on the situation) uniform distributions within prescribed ranges.

3.2 Greedy randomized adaptive procedure

The GRASP [21] consists of iteratively generating an initial solution and running a local search starting from the initial solution just generated. The initial solutions are generated as the best among the solutions generated by randomized versions of the constructive heuristics ECT and

```
Algorithm 6: Best neighbor local search with reduced neighborhood.
    Input: \(\mathcal{O}, \mathcal{F}, p, G=(V, A), f, w, Q, \mathcal{P}, C_{\max }\)
    Output: \(G^{\star}=\left(V^{\star}, A^{\star}\right), f^{\star}, w^{\star}, Q^{\star}, \mathcal{P}^{\star}, C_{\max }^{\star}\)
    function LocalSearch \(\left(\mathcal{O}, \mathcal{F}, p, G, f, w, Q, \mathcal{P}, C_{\max }, G^{\star}, f^{\star}, w^{\star}, Q^{\star}, \mathcal{P}^{\star}, C_{\max }^{\star}\right)\)
        do
            \(C_{\max }^{\mathrm{bn}} \leftarrow+\infty\)
            for \(v \in \mathcal{O}\) do
                RemoveOp \(\left(\mathcal{O}, p, v, f, Q, w, G, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, \mathcal{P}^{-}, \xi, \mathcal{R}_{v}^{\leftarrow}, \mathcal{R}_{v}, \tau\right)\)
                for \(k \in \mathcal{F}_{v}\) do
                    Let \(\underline{\gamma}\) be the position of the last operation in \(Q_{k}^{-}=i_{1}, \ldots, i_{\left|Q_{k}^{-}\right|}\)such that
                    \(i_{\underline{\gamma}} \in \mathcal{R}_{v}^{\overleftarrow{ }}\) and let \(\underline{\gamma}=0\) if \(i_{\ell} \notin \mathcal{R}_{v}^{\overleftarrow{v}}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
                Let \(\bar{\gamma}\) be the position of the first operation in \(Q_{k}^{-}=i_{1}, \ldots, i_{\left|Q_{k}^{-}\right|}\)such that
                    \(i_{\bar{\gamma}} \in \mathcal{R}_{v}\) and let \(\bar{\gamma}=\left|Q_{k}^{-}\right|+1\) if \(i_{\ell} \notin \mathcal{R}_{v}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
                if \(\xi \geq C_{\text {max }}\) then
                        \(\bar{\gamma} \leftarrow \min \left\{\bar{\gamma}, \tau_{k}\right\}\), where \(\tau_{k}\) is such that there is no critical operation
                        after \(\tau_{k}\) in \(Q_{k}^{-}\left(\tau_{k}=0\right.\) if there is no critical operation in \(\left.Q_{k}^{-}\right)\).
                    for \(\gamma=\underline{\gamma}+1, \ldots, \bar{\gamma}\) do
                \(\operatorname{InsertOp}\left(\mathcal{O}, p, v, \gamma, k, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, f^{+}, Q^{+}, w^{+}, G_{v}^{+}, \mathcal{P}^{+}, C_{\max }^{+}\right)\)
                if \(C_{\text {max }}^{+}<C_{\text {max }}^{\mathrm{bn}}\) then
                    \(G^{\mathrm{bn}}, f^{\mathrm{bn}}, w^{\mathrm{bn}}, Q^{\mathrm{bn}}, \mathcal{P}^{\mathrm{bn}}, C_{\max }^{\mathrm{bn}} \leftarrow G_{v}^{+}, f^{+}, w^{+}, Q^{+}, \mathcal{P}^{+}, C_{\max }^{+}\)
            \(\delta \leftarrow C_{\text {max }}-C_{\text {max }}^{\mathrm{bn}}\)
            if \(\delta>0\) then
                \(G, f, w, Q, \mathcal{P}, C_{\max } \leftarrow G^{\mathrm{bn}}, f^{\mathrm{bn}}, w^{\mathrm{bn}}, Q^{\mathrm{bn}}, \mathcal{P}^{\mathrm{bn}}, C_{\max }^{\mathrm{bn}}\)
            while \(\delta>0\)
            \(G^{\star}, f^{\star}, w^{\star}, Q^{\star}, \mathcal{P}^{\star}, C_{\max }^{\star} \leftarrow G, f, w, Q, \mathcal{P}, C_{\max }\)
```

EST introduced in (4).
The two constructive heuristics introduced in [4] are based on the earliest starting time (EST) rule [8] and the earliest completion time (ECT) rule 35]. The heuristics schedule one operation at a time. In the EST-based constructive heuristic, the instant $r_{\text {min }}$ which is the earliest instant at which an unscheduled operation could be initiated is computed first. All operation/machine pairs that could start at that instant are considered and the pair with the shortest processing time is selected. Since they all would start at instant $r_{\min }$, selecting the pair with the shortest processing time is the same as selecting the pair that ends earliest. This idea is taken to the extreme in the constructive heuristic based on the ECT rule: without limiting the choice to the operation/machine pairs that could start as soon as possible, the operation/machine pair that will finish earliest is chosen, even if the processing of the operation does not start as soon as possible.

In the EST-based constructive heuristic, the randomization is done as follows. First, the

```
Algorithm 7: Iterated local search.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \ell_{\text {min }}^{p}, \ell_{\text {max }}^{p}\)
    Output: \(f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\text {max }}^{\star}\)
    function \(\operatorname{ILS}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \ell_{\min }^{p}, \ell_{\max }^{p}, f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\max }^{\star}\right)\)
        \(\operatorname{ECT}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{1}, w^{1}, Q^{1}, G^{1}, \mathcal{U}^{1}, \mathcal{P}^{1}, C_{\text {max }}^{1}, \tau^{1}\right)\)
        \(\operatorname{EST}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{2}, w^{2}, Q^{2}, G^{2}, \mathcal{U}^{2}, \mathcal{P}^{2}, C_{\text {max }}^{2}, \tau^{2}\right)\)
        if \(C_{\max }^{1}<C_{\text {max }}^{2}\) then
            \(f^{\star} \leftarrow f^{1}, w^{\star} \leftarrow w^{1}, Q^{\star} \leftarrow Q^{1}, G^{\star} \leftarrow G^{1}\) and \(C_{\max }^{\star} \leftarrow C_{\max }^{1}\)
        else
            \(f^{\star} \leftarrow f^{2}, w^{\star} \leftarrow w^{2}, Q^{\star} \leftarrow Q^{2}, G^{\star} \leftarrow G^{2}\) and \(C_{\max }^{\star} \leftarrow C_{\max }^{2}\)
        while the stopping criterion is not satisfied do
            \(\operatorname{LocalSearch}\left(\mathcal{O}, \mathcal{F}, p, G, f, w, Q, \mathcal{P}, C_{\max }, G^{\prime}, f^{\prime}, w^{\prime}, Q^{\prime}, \mathcal{P}^{\prime}, C_{\max }^{\prime}\right)\)
            if \(C_{\text {max }}^{\prime}<C_{\text {max }}^{\star}\) then
                    \(f^{\star} \leftarrow f^{\prime}, w^{\star} \leftarrow w^{\prime}, Q^{\star} \leftarrow Q^{\prime}, G^{\star} \leftarrow G^{\prime}\) and \(C_{\max }^{\star} \leftarrow C_{\max }^{\prime}\)
            Set \(\ell^{p}\) a random number between \(\ell_{\min }^{p}\) and \(\ell_{\text {max }}^{p}\).
            for \(i=1, \ldots, \ell^{p}\) do
                \(\operatorname{Perturb}\left(\mathcal{O}, \mathcal{F}, p, f^{\prime}, w^{\prime}, Q^{\prime}, G^{\prime}, f, w, Q, G, \mathcal{P}, C_{\max }\right)\)
```

```
Algorithm 8: Perturbs a solution.
    Input: \(\mathcal{O}, \mathcal{F}, p, f, w, Q, G=(V, A)\)
    Output: \(f^{\prime}, w^{\prime}, Q^{\prime}, G^{\prime}=\left(V^{\prime}, A^{\prime}\right), \mathcal{P}^{\prime}, C_{\max }^{\prime}\)
    function \(\operatorname{Perturb}\left(\mathcal{O}, \mathcal{F}, p, f, w, Q, G, f^{\prime}, w^{\prime}, Q^{\prime}, G^{\prime}, \mathcal{P}^{\prime}, C_{\max }^{\prime}\right)\)
        Let \(v \in V \backslash\{s, t\}\) be a random operation.
        \(\operatorname{RemoveOp}\left(\mathcal{O}, p, v, f, Q, w, G, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, \mathcal{P}^{-}, \xi, \mathcal{R}_{v}^{\leftarrow}, \mathcal{R}_{v}, \tau\right)\)
        Let \(k \in \mathcal{F}_{v}\) be a random machine and let \(Q_{k}^{-}=i_{1}, \ldots, i_{\mid Q_{k}^{-}}\).
        Let \(\underline{\gamma}\) be the position of the last operation in \(Q_{k}^{-}\)such that \(i_{\underline{\gamma}} \in \mathcal{R} \overleftarrow{v}\) and let \(\underline{\gamma}=0\) if
        \(i_{\ell} \notin \mathcal{R}_{v}^{\leftarrow}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
        Let \(\bar{\gamma}\) be the position of the first operation in \(Q_{k}^{-}\)such that \(i_{\bar{\gamma}} \in \bar{R}_{v}\) and let
        \(\bar{\gamma}=\left|Q_{k}^{-}\right|+1\) if \(i_{\ell} \notin \mathcal{R}_{v}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
        Let \(\gamma \in\{\underline{\gamma}+1, \ldots, \bar{\gamma}\}\) be a random feasible position.
        InsertOp \(\left(\mathcal{O}, p, v, \gamma, k, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, f^{\prime}, Q^{\prime}, w^{\prime}, G^{\prime}, \mathcal{P}^{\prime}, C_{\text {max }}^{\prime}\right)\)
```

earliest time $r_{\min }$ at which an unscheduled operation can be initiated is calculated. Then we calculate the shortest and the longest processing times a and b associated with the operation/machine pairs that can start at $r_{\text {min }}$. Given $\alpha \in(0,1]$, a random pair is chosen from those whose processing time is between a and $a+\alpha(b-a)$. In the ECT-based constructive heuristic, the randomization consists of, from among the unscheduled operations, calculating the lowest and highest completion instants a and b and drawing an operation/machine pair from among those that would terminate between a and $a+\alpha(b-a)$. It is worth noting that the calculation
of the effective processing time always takes into consideration the learning effect. The only parameter of the method is α. The GRASP strategy is described in Algorithm 9 and the randomized versions of the constructive heuristics based on the EST and ECT dispatching rules are described in Algorithms 10 and 11, respectively. Algorithm 9 uses Algorithm 6 to perform the local search and Algorithms 10 and 11 use Algorithm 4 for the calculation of the critical path associated with the initial solution, which is a necessary input for the local search. For more details on the deterministic versions of the constructive heuristics based on the EST and ECT dispatching rules see [4, Algorithms 1 and 4].

```
Algorithm 9: Greedy randomized adaptive procedure.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha\)
    Output: \(f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\text {max }}^{\star}\)
    function \(\operatorname{GRASP}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha, f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\text {max }}^{\star}\right)\)
        Initialize \(C_{\text {max }}^{\star} \leftarrow+\infty\)
        while the stopping criterion is not satisfied do
            RandomizedECT \(\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha, f^{1}, w^{1}, Q^{1}, G^{1}, \mathcal{P}^{1}, C_{\max }^{1}\right)\)
            RandomizedEST \(\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha, f^{2}, w^{2}, Q^{2}, G^{2}, \mathcal{P}^{2}, C_{\max }^{2}\right)\)
            if \(C_{\text {max }}^{1}<C_{\text {max }}^{2}\) then
            \(f \leftarrow f^{1}, w \leftarrow w^{1}, Q \leftarrow Q^{1}, \mathcal{P} \leftarrow \mathcal{P}^{1}, G \leftarrow G^{1}\), and \(C_{\max } \leftarrow C_{\max }^{1}\)
            else
                \(f \leftarrow f^{2}, w \leftarrow w^{2}, Q \leftarrow Q^{2}, \mathcal{P} \leftarrow \mathcal{P}^{2}, G \leftarrow G^{2}\), and \(C_{\text {max }} \leftarrow C_{\text {max }}^{2}\)
            \(\operatorname{LocalSearch}\left(\mathcal{O}, \mathcal{F}, p, G, f, w, Q, \mathcal{P}, C_{\max }, G^{\prime}, f^{\prime}, w^{\prime}, Q^{\prime}, \mathcal{P}^{\prime}, C_{\max }^{\prime}\right)\)
            if \(C_{\text {max }}^{\prime}<C_{\text {max }}^{\star}\) then
                    \(f^{\star} \leftarrow f^{\prime}, w^{\star} \leftarrow w^{\prime}, Q^{\star} \leftarrow Q^{\prime}, G^{\star} \leftarrow G^{\prime}\) and \(C_{\max }^{\star} \leftarrow C_{\text {max }}^{\prime}\)
```


3.3 Tabu search

The TS [25, 26] considered consists basically of a local search with a modification in the acceptance criteria of a neighbor as a new solution. The acceptance depends on a list of tabu moves. The size $t_{\text {max }}$ of this list is the only parameter of the method. In a given iteration, the best neighbor is computed, disregarding neighbors constructed with a tabu move unless they correspond to the best solution already constructed. The way of constructing the neighborhood follows exactly the same scheme as the local search described in Algorithm 6. The move that transforms the solution of the current iteration into the solution of the next iteration consists in relocating a certain operation v at the γ position of a machine $k \in \mathcal{F}_{v}$. We keep in the tabu list the operation/machine pair (v, k). The complete method is described in Algorithm 12 .

3.4 Simulated annealing

In the SA [34, as in the other metaheuristics, the initial solution is given by the best solution among those provided by the constructive heuristics based on the EST and ECT dispatch rules.

```
Algorithm 10: Computes a feasible solution using a randomization of the earliest
starting time (EST) rule.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha\)
    Output: \(f, w, Q, G, \mathcal{P}, C_{\text {max }}\)
    function RandomizedEST \(\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha, f, w, Q, G, \mathcal{P}, C_{\max }\right)\)
        Set \(A \leftarrow \widehat{A} \cup\{(s, j) \mid(\cdot, j) \notin \widehat{A}\} \cup\{(i, t) \mid(i, \cdot) \notin \widehat{A}\}\) and define \(V:=\mathcal{O} \cup\{s, t\}\) and
        \(G=(V, A)\).
        Set \(r_{v}^{\mathrm{op}} \leftarrow+\infty\) and define \(r_{s}^{\mathrm{op}}:=0, w_{s}:=w_{t}:=0\), and \(c_{s}:=0\).
        Set \(r_{k}^{\text {mac }} \leftarrow 0\) and \(g_{k} \leftarrow 1\) for all \(k \in \mathcal{F}\).
        Initialize \(\Pi \leftarrow V \backslash\{s, t\}\) as the set of non-scheduled operations, and \(Q_{k}\) as an empty
        list for all \(k \in \mathcal{F}\).
        while \(\Pi \neq \emptyset\) do
            for \(v \in \Pi\) do
                if \(\Pi \cap\{i \mid(i, v) \in A\}=\emptyset\) then
                    \(r_{v}^{\mathrm{op}} \leftarrow \max \left\{c_{i} \mid i \in V \backslash \Pi\right.\) such that \(\left.(i, v) \in A\right\}\)
            Set \(r_{\text {min }}=\min _{v \in \Pi, k \in \mathcal{F}_{v}}\left\{\max \left(r_{v}^{\mathrm{op}}, r_{k}^{\text {mac }}\right)\right\}\) and let \(E\) be the set of pairs \((v, k)\) with
                \(v \in \Pi\) and \(k \in \mathcal{F}_{v}\) such that \(\max \left(r_{v}^{\mathrm{op}}, r_{k}^{\mathrm{mac}}\right)=r_{\text {min }}\).
            Compute \(\underline{\psi} \leftarrow \min _{(v, k) \in E}\left\{\psi\left(p_{v, k}, g_{k}\right)\right\}\) and \(\bar{\psi} \leftarrow \max _{(v, k) \in E}\left\{\psi\left(p_{v, k}, g_{k}\right)\right\}\), set
                \(\mathcal{L} \leftarrow\left\{(v, k) \in E \mid \psi\left(p_{v, k}, g_{k}\right) \leq \underline{\psi}+\alpha(\bar{\psi}-\underline{\psi})\right\}\) and choose \((\hat{v}, \hat{k}) \in \mathcal{L}\) randomly.
            Define \(w_{\hat{v}}:=\psi\left(p_{\hat{v}, \hat{k}}, g_{\hat{k}}\right), f_{\hat{v}}:=\hat{k}, c_{\hat{v}}:=c_{\hat{v}, \hat{k}}\) and set \(r_{\hat{k}}^{\operatorname{mac}} \leftarrow c_{\hat{v}}\) and \(g_{\hat{k}} \leftarrow g_{\hat{k}}+1\).
            if \(\left|Q_{\hat{k}}\right| \neq 0\) then
                Set \(A \leftarrow A \cup\left\{\left(i_{\left|Q_{\hat{k}}\right|}, \hat{v}\right)\right\}\), where \(Q_{\hat{k}}=i_{1}, \ldots, i_{\left|Q_{\hat{k}}\right|}\).
            Insert \(\hat{v}\) at the end of \(Q_{\hat{k}}\) and set \(\Pi \leftarrow \Pi \backslash\{\hat{v}\}\).
        \(\operatorname{CriticalPath}\left(\mathcal{F}, f, w, Q, G, \mathcal{U}, \mathcal{P}, C_{\max }, \tau\right)\).
```

The simulating annealing advances from one solution to another by making perturbations of the solution consisting of a random movement of removal and insertion (described in Algorithm 8). The main feature is that, for a new solution to be accepted, it need not be better than the current solution. On the other hand, the probability of accepting a solution that is worse than the current solution decreases as the method progresses, i.e. as the temperature decreases. The method has as parameters the initial and final temperatures T_{0} and T_{f}. The temperature decreases as the method progresses being multiplied by a parameter $\delta \in(0,1)$. The amount of perturbations for a fixed temperature is given by a parameter $\bar{\ell} \in \mathbb{N}, \bar{\ell} \geq 1$. The method as a whole is described in Algorithm 13 .

4 Numerical experiments

In this section, we present numerical experiments with the proposed local search and the considered metaheuristics. In all experiments, we consider the 60 small-sized instances introduced

```
Algorithm 11: Computes a feasible solution using a randomization of the earliest
completion time (ECT) rule.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha\)
Output: \(f, w, Q, G, \mathcal{P}, C_{\text {max }}\)
function RandomizedECT \(\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \alpha, f, w, Q, G, \mathcal{P}, C_{\max }\right)\)
    Set \(A \leftarrow \widehat{A} \cup\{(s, j) \mid(\cdot, j) \notin \widehat{A}\} \cup\{(i, t) \mid(i, \cdot) \notin \widehat{A}\}\) and define \(V:=\mathcal{O} \cup\{s, t\}\) and
        \(G=(V, A)\).
    Set \(r_{v}^{\mathrm{op}} \leftarrow+\infty\) and define \(r_{s}^{\mathrm{op}}:=0, w_{s}:=w_{t}:=0\), and \(c_{s}:=0\).
    Set \(r_{k}^{\text {mac }} \leftarrow 0\) and \(g_{k} \leftarrow 1\) for all \(k \in \mathcal{F}\).
    Initialize \(\Pi \leftarrow V \backslash\{s, t\}\) as the set of non-scheduled operations, and \(Q_{k}\) as an empty
        list for all \(k \in \mathcal{F}\).
        while \(\Pi \neq \emptyset\) do
            for \(v \in \Pi\) do
                if \(\Pi \cap\{i \mid(i, v) \in A\}=\emptyset\) then
                    \(r_{v}^{\mathrm{op}} \leftarrow \max \left\{c_{i} \mid i \in V \backslash \Pi\right.\) such that \(\left.(i, v) \in A\right\}\)
            for \(v \in \Pi\) do
            for \(k \in \mathcal{F}_{v}\) do
                \(c_{v, k} \leftarrow \max \left(r_{v}^{\mathrm{op}}, r_{k}^{\mathrm{mac}}\right)+\psi\left(p_{v, k}, g_{k}\right)\)
            Set \(c^{\min } \leftarrow \min \left\{c_{v, k} \mid v \in \Pi, k \in \mathcal{F}_{v}\right\}, c^{\max } \leftarrow \max \left\{c_{v, k} \mid v \in \Pi, k \in \mathcal{F}_{v}\right\}\) and
                \(\mathrm{RCL} \leftarrow\left\{(v, k) \mid c_{v, k} \leq c^{\min }+\alpha\left(c^{\max }-c^{\min }\right), v \in \Pi, k \in \mathcal{F}_{v}\right\}\).
            Choose ( \(\hat{v}, \hat{k}\) ) randomly in RCL.
            Define \(w_{\hat{v}}:=\psi\left(p_{\hat{v}, \hat{k}}, g_{\hat{k}}\right), f_{\hat{v}}:=\hat{k}, c_{\hat{v}}:=c_{\hat{v}, \hat{k}}\) and set \(r_{\hat{k}}^{\operatorname{mac}} \leftarrow c_{\hat{v}}\) and \(g_{\hat{k}} \leftarrow g_{\hat{k}}+1\).
            if \(\left|Q_{\hat{k}}\right| \neq 0\) then
            Let \(Q_{\hat{k}}=i_{1}, \ldots, i_{\left|Q_{\hat{k}}\right|}\). Set \(A \leftarrow A \cup\left\{\left(i_{\left|Q_{\hat{k}}\right|}, \hat{v}\right)\right\}\).
        Insert \(\hat{v}\) at the end of \(Q_{\hat{k}}\) and set \(\Pi \leftarrow \Pi \backslash\{\hat{v}\}\).
    \(\operatorname{CriticalPath}\left(\mathcal{F}, f, w, Q, G, \mathcal{U}, \mathcal{P}, C_{\text {max }}, \tau\right)\).
```

in [4] and the 50 large-sized instances introduced in [8], with learning rate $\alpha \in\{0.1,0.2,0.3\}$, totaling 330 instances. Small-sized instances have between 5 and 7 machines and between 9 and 24 operations. The operations are divided into up to 6 tasks, which correspond to connected components of the DAG of precedence relations, and the DAGs have up to 21 edges. The MILP models [4, p.7, Eq.(1-4)] of the small-sized instances have up to almost 1,000 binary variables and 12,000 constraints. Large-sized instances have between 5 and 26 machines and between 25 and 289 operations. The operations are divided into up to 17 tasks and the DAGs representing the precedence relations have up to 272 edges. Their MILP models have up to 73,000 binary variables and $3,800,000$ constraints. It is worth recalling that the considered problem has two types of flexibility: routing flexibility and sequencing flexibility. The first refers to the fact that an operation can be processed by a machine within a set of machines instead of a single machine and corresponds to the "flexible" of the FJS. The second corresponds to the fact

```
Algorithm 12: Tabu Search.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, t_{\text {max }}\)
    Output: \(f^{\star}, w^{\star}, Q^{\star}, G_{\lambda}^{\star}, C_{\text {max }}^{\star}\)
    function \(\operatorname{TS}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, t_{\max }, f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\max }^{\star}\right)\)
        \(\operatorname{ECT}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{1}, w^{1}, Q^{1}, G^{1}, \mathcal{U}^{1}, \mathcal{P}^{1}, C_{\text {max }}^{1}, \tau^{1}\right)\)
        \(\operatorname{EST}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{2}, w^{2}, Q^{2}, G^{2}, \mathcal{U}^{2}, \mathcal{P}^{2}, C_{\text {max }}^{2}, \tau^{2}\right)\)
        if \(C_{\text {max }}^{1}<C_{\text {max }}^{2}\) then
            \(f^{\star} \leftarrow f^{1}, w^{\star} \leftarrow w^{1}, Q^{\star} \leftarrow Q^{1}, G^{\star} \leftarrow G^{1}\) and \(C_{\max }^{\star} \leftarrow C_{\max }^{1}\)
        else
            \(f^{\star} \leftarrow f^{2}, w^{\star} \leftarrow w^{2}, Q^{\star} \leftarrow Q^{2}, G^{\star} \leftarrow G^{2}\) and \(C_{\max }^{\star} \leftarrow C_{\max }^{2}\)
        Initialize \(\mathcal{T}\) as an empty list.
        while the stopping criterion is not satisfied do
            \(C_{\text {max }}^{\prime} \leftarrow+\infty\)
            for \(v \in \mathcal{O}\) do
                \(\operatorname{RemoveOp}\left(\mathcal{O}, p, v, f, Q, w, G, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, \mathcal{P}^{-}, \xi, \mathcal{R}_{v}^{\leftarrow}, \mathcal{R}_{v}, \tau\right)\)
                for \(k \in \mathcal{F}_{v}\) do
                    Let \(\underline{\gamma}\) be the position of the last operation in \(Q_{k}^{-}=i_{1}, \ldots, i_{\left|Q_{k}^{-}\right|}\)such that
                    \(i_{\underline{\gamma}} \in \mathcal{R}_{v}^{\leftarrow}\) and let \(\underline{\gamma}=0\) if \(i_{\ell} \notin \mathcal{R}_{v}^{\leftarrow}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
                    Let \(\bar{\gamma}\) be the position of the first operation in \(Q_{k}^{-}=i_{1}, \ldots, i_{\left|Q_{k}^{-}\right|}\)such that
                    \(i_{\bar{\gamma}} \in \bar{R}_{v}^{\rightarrow}\) and let \(\bar{\gamma}=\left|Q_{k}^{-}\right|+1\) if \(i_{\ell} \notin \mathcal{R}_{v}\) for \(\ell=1, \ldots,\left|Q_{k}^{-}\right|\).
                    if \(\xi \geq C_{\text {max }}\) then
                \(\bar{\gamma} \leftarrow \min \left\{\bar{\gamma}, \tau_{k}\right\}\), where \(\tau_{k}\) is such that there is no critical operation
                        after \(\tau_{k}\) in \(Q_{k}^{-}\left(\tau_{k}=0\right.\) if there is no critical operation in \(\left.Q_{k}^{-}\right)\).
                    for \(\gamma=\underline{\gamma}+1, \ldots, \bar{\gamma}\) do
                InsertOp \(\left(\mathcal{O}, p, v, \gamma, \kappa, f^{-}, Q^{-}, w^{-}, G_{v}^{-}, f^{+}, Q^{+}, w^{+}, G_{v}^{+}, \mathcal{P}^{+}, C_{\max }^{+}\right)\)
                if \(\left(C_{\text {max }}^{+}<C_{\text {max }}^{\prime}\right.\) and \(\left.(v, k) \notin \mathcal{T}\right)\) or \(C_{\text {max }}^{+}<\min \left\{C_{\text {max }}^{\prime}, C_{\text {max }}^{\star}\right\}\) then
                    \(G^{\prime} \leftarrow G_{v}^{+}, f^{\prime} \leftarrow f^{+}, w^{\prime} \leftarrow w^{+}, \mathcal{P}^{\prime} \leftarrow \mathcal{P}^{+}\)and \(C_{\max }^{\prime} \leftarrow C_{\max }^{+}\)
                    \(v^{\prime} \leftarrow v, k^{\prime} \leftarrow k\)
            If \(\left(v^{\prime}, k^{\prime}\right) \in \mathcal{T}\) then remove it from \(\mathcal{T}\). Anyhow, insert \(\left(v^{\prime}, k^{\prime}\right)\) at the end of \(\mathcal{T}\).
            if \(|\mathcal{T}|>t_{\text {max }}\) then
            Remove the first element of \(\mathcal{T}\)
            \(G \leftarrow G_{v}^{\prime}, f \leftarrow f^{\prime}, w \leftarrow w^{\prime}, \mathcal{P} \leftarrow \mathcal{P}^{\prime}\) and \(C_{\text {max }} \leftarrow C_{\text {max }}^{\prime}\)
            if \(C_{\text {max }}<C_{\text {max }}^{\star}\) then
            \(G^{\star} \leftarrow G_{v}, f^{\star} \leftarrow f, w^{\star} \leftarrow w^{\prime}, \mathcal{P}^{\star} \leftarrow \mathcal{P}\) and \(C_{\max }^{\star} \leftarrow C_{\text {max }}\)
```

that the operations of the same task have their precedences represented by an arbitrary DAG instead of obeying a linear order. The sum of these two flexibilities causes the problem to have a large search space and makes it difficult to find a proven optimal solution even in instances

```
Algorithm 13: Simulated Annealing.
    Input: \(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \bar{\ell}, \delta, T_{0}, T_{f}\)
    Output: \(f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\text {max }}^{\star}\)
    function \(\operatorname{SA}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, \bar{\ell}, \delta, T_{0}, T_{f}, f^{\star}, w^{\star}, Q^{\star}, G^{\star}, C_{\text {max }}^{\star}\right)\)
        \(\operatorname{ECT}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{1}, w^{1}, Q^{1}, G^{1}, \mathcal{U}^{1}, \mathcal{P}^{1}, C_{\text {max }}^{1}, \tau^{1}\right)\)
        \(\operatorname{EST}\left(\mathcal{O}, \mathcal{F}, p, \widehat{A}, f^{2}, w^{2}, Q^{2}, G^{2}, \mathcal{U}^{2}, \mathcal{P}^{2}, C_{\text {max }}^{2}, \tau^{2}\right)\)
        if \(C_{\max }^{1}<C_{\max }^{2}\) then
            \(f \leftarrow f^{1}, w \leftarrow w^{1}, Q \leftarrow Q^{1}, G \leftarrow G^{1}\) and \(C_{\max } \leftarrow C_{\max }^{1}\)
        else
            \(f \leftarrow f^{2}, w \leftarrow w^{2}, Q \leftarrow Q^{2}, G \leftarrow G^{2}\) and \(C_{\max } \leftarrow C_{\max }^{2}\)
        \(f^{\star} \leftarrow f, w^{\star} \leftarrow w, Q^{\star} \leftarrow Q, G^{\star} \leftarrow G\) and \(C_{\max }^{\star} \leftarrow C_{\text {max }}\)
        Set \(T \leftarrow T_{0}\).
        while the stopping criterion is not satisfied do
            for \(\ell=1, \ldots, \bar{\ell}\) do
                \(\operatorname{Perturb}\left(\mathcal{O}, \mathcal{F}, p, f, w, Q, G, f^{\prime}, w^{\prime}, Q^{\prime}, G^{\prime}, \mathcal{P}^{\prime}, C_{\text {max }}^{\prime}\right)\)
                Set \(\Delta C \leftarrow\left(C_{\max }^{\prime}-C_{\max }\right) / C_{\max }\) and let \(r \in[0,1]\) be a random number.
                if \(e^{-\Delta C / T} \geq r\) then
                Set \(f \leftarrow f^{\prime}, w \leftarrow w^{\prime}, Q \leftarrow Q^{\prime}, G \leftarrow G^{\prime}\) and \(C_{\max } \leftarrow C_{\max }^{\prime}\).
                if \(C_{\text {max }}^{\prime}<C_{\text {max }}^{\star}\) then
                        Set \(f^{\star} \leftarrow f^{\prime}, w^{\star} \leftarrow w^{\prime}, Q^{\star} \leftarrow Q^{\prime}, G^{\star} \leftarrow G^{\prime}\) and \(C_{\text {max }}^{\star} \leftarrow C_{\text {max }}^{\prime}\).
            \(T \leftarrow \max \left(\delta T, T_{f}\right)\)
```

that may initially appear to be simple. For a more detailed description of the instances and their characteristics, see (4).

The local search and the metaheuristics were implemented in C++ programming language. The code was compiled using $\mathrm{g}++$ 10.2.1. To ensure full reproducibility of the results presented in the present work, as well as future comparisons, the instances, code and solutions found are available at https://github.com/kennedy94/FJS. The experiments were carried out in an Intel i9-12900K (12th Gen) processor operating at 5.200 GHz and 128 GB of RAM.

4.1 Experiments with local search variations

In this section we evaluate variations of the local search described in Algorithm 6. In 4 two constructive heuristics are introduced for the same problem being considered in this paper. The constructive heuristics are different and, while one constructs, in general, better solutions for instances of type Y, the other constructs better solutions for instances of type DA; see [4] for details. Either way, the two constructive heuristics take negligible time and, for this reason, in the present work we use, as the initial solution for the local search, the best among the solutions constructed by the two constructive heuristics introduced in [4].

As described in Algorithm 6, the local search uses the best neighbor strategy and makes
use of the neighborhood reduction described in Section 2. Therefore, we call this version of "local search with the best neighbor strategy and reduced neighborhood". The neighborhood reduction is implemented in lines 9 and 10. If we remove those two lines we obtain a version that we call "local search with the best neighbor and full neighborhood". The version with reduced neighborhood does not consider neighbors that are guaranteed to be no better than the current solution. Therefore, the solution obtained with the reduced neighborhood must be identical to the solution obtained with the full neighborhood. (In fact all iterates of the two versions must be identical and not just the final solution). Only a reduction of CPU time is expected. As already mentioned in Section 2, we decided to consider yet another version that would exhibit a more drastic reduction in CPU time, albeit with a possible loss of quality in the solution. We call this version of "local search with the best neighbor and cropped neighborhood". This version consists of changing $v \in \mathcal{O}$ to $v \in \mathcal{P}$ in line 4 of Algorithm 6. That is, only operations on the critical path are reallocated, since there is a greater tendency for these reallocations to generate better quality neighbors. We have then three different versions of the local search with the best neighbor strategy that are distinguished by the neighborhood used: full neighborhood, reduced neighborhood and cropped neighborhood. Each of them corresponds to minimal variations of Algorithm 6 as already described. Furthermore, we consider the same three versions but using the strategy of interrupting the inspection of the neighborhood when finding the first neighbor that improves the current solution, i.e. the first-improvement strategy. This change corresponds, in Algorithm 6, to interrupting the loop of line 4 the first time line 16 is executed.

The results of the six variations of the local search applied to the 330 considered instances are shown in Tables 14 . Tables 1 and 2 correspond to the first-improvement strategy while Tables 3 and 4 correspond to the best-improvement strategy. In the tables, we show the makespan of the obtained solution, the number of iterations that the local search made until finding an iterate that is better than all its neighbors (this is the stopping criterion as described in Algorithm 6), and the CPU time in seconds. In the case of the small-sized instances introduced in [4], the tables do not show the CPU time because it was always less than 1 millisecond. The tables also do not show anything related to the full neighborhood. What should be said about the use of the full neighborhood is that, in all instances, as expected, the solution obtained was identical to the solution obtained with the reduced neighborhood, the number of iterations was also the same, and the reduced neighborhood promoted a reduction of 52.51% in the CPU time.

When we compare the first-improvement and best-improvement strategies (Tables 1 and 2 versus Tables 3 and (4), the results are quite similar, but the best-improvement strategy always finds better quality solutions using less CPU time. Specifically, the best improvement strategy returns solutions that are on average 1.02% and 0.70% better than the solutions returned by the first-improvement strategy, when we consider the reduced and cropped neighborhoods, respectively. Therefore, from now on, we focus on evaluating the reduced neighborhood and the cropped neighborhood associated with the best-improvement strategy.

The cropped neighborhood eliminates, on average, 90.34% of the neighbors of the reduced neighborhood, promoting a proportional reduction in CPU time. However, adopting the cropped neighborhood can lead to a loss of quality in the final solution obtained by the local search method. On average, when compared to the local search with the reduced neighborhood, the local search with the cropped neighborhood finds solution with a makespan 0.69% worse. When we compare the final solution with the initial solution, the local search using the reduced neigh-
borhood improves the initial solution by, on average, 6.88%, while the local search using the cropped neighborhood improves the initial solution by 6.11%. In conclusion, the local search with the cropped neighborhood is significantly faster than the local search with the reduced neighborhood and finds solutions that are only slightly worse than the solutions found by the latter.

4.2 Experiments with the metaheuristics in the large-sized instances

In this section we report experiments to evaluate the behavior of the metaheuristics on the 50 large-sized instances, totaling 150 instances as we vary $\alpha \in\{0.1,0.2,0.3\}$. The ILS and GRASP metaheuristics (Algorithms 7 and 9, respectively) make use of the local search (Algorithm 6). We analyzed these two metaheuristics in connection with the local search using the reduced neighborhood (RN) and in connection with the local search using the cropped neighborhood (CN). We call these versions of ILS-RN, ILS-CN, GRASP-RN and GRASP-CN, respectively, hereafter. The tabu search metaheuristic was already conceived using the reduced neighborhood (see lines 16 and 17 of Algorithm 12), and applying to it the concept of cropped neighborhood corresponds simply to changing in line 11 of Algorithm 12, $v \in \mathcal{O}$ by $v \in \mathcal{P}$. Hereafter we refer to these two versions as TS-RN and TS-CN, respectively. The simulated annealing metaheuristic does not use local search and therefore we considered only a single version of it, which we denote SA hereafter. In all metaheuristics we used the total CPU time as a stopping criterion and considered a maximum limit of 5 minutes. Additionally, and only during the parameters calibration phase, we placed an additional stopping criterion, also based on CPU time, which is satisfied if 5 seconds elapse without improvement of the incumbent solution.

The ILS metaheuristic has as parameters $\ell_{\min }^{p}$ and $\ell_{\max }^{p} \in \mathbb{N}$ which must satisfy $1 \leq \ell_{\min }^{p} \leq$ $\ell_{\max }^{p}$. In the calibration experiments, we evaluated $\ell_{\min }^{p}, \ell_{\max }^{p} \in\{1,2,3,4,5\}$. The GRASP metaheuristic has as a single parameter $\alpha \in \mathbb{R}$ which must satisfy $0 \leq \alpha \leq 1$. In the calibration experiments we evaluated $\alpha \in\{0.10,0.11, \ldots, 0.99\}$. The TS metaheuristic has as a single parameter $t_{\text {max }} \in \mathbb{N}$. In the calibration experiments, we evaluated $t_{\text {max }}=\lceil(|\mathcal{O}|+|\mathcal{F}|) \times t\rceil$ with $t \in\{0.1,0.2, \ldots, 5.0\}$. In the SA metaheuristic, the parameters are $\bar{\ell} \in \mathbb{N}$ and $T_{0}, T_{f}, \delta \in \mathbb{R}$ and must satisfy $1 \leq \bar{\ell}, T_{0} \geq T_{f}>0$ and $\delta \in(0,1)$. In the calibration experiments, we evaluated $\bar{\ell} \in\{1,000,2,000, \ldots, 5,000\}, T_{0}=-T_{0}^{m} / \ln \left(T_{0}^{p}\right)$ with $T_{0}^{m} \in\{0.10,0.11, \ldots, 0.99\}$ and $T_{0}^{p} \in\{0.10,0.11, \ldots, 0.99\}, T_{f} \in\left\{10^{-1}, 10^{-3}, 10^{-5}\right\}$, and $\delta \in\{0.80,0.81, \ldots, 0.99\}$. (See [30] for details on how to choose the initial temperature in SA). We calibrated the seven methods independently using the irace package 40. In irace all default parameters were considered, except for maxExperiments $=10,000$. We considered in the calibration only the 50 largesized instances with learning rate $\alpha=0.2$. We separated these instances into two sets of 25 instances each, one for training and the other for testing. As a result, irace returned the following parameters: ILS-RN: $\ell_{\min }^{p}=2$ and $\ell_{\max }^{p}=4$, ILS-CN: $\ell_{\min }^{p}=1$ and $\ell_{\max }^{p}=3$, GRASPRN: $\alpha=0.38$, GRASP-CN: $\alpha=0.59$, TS-RN: $t_{\max }=\lceil(|\mathcal{O}+|\mathcal{F}|) \times t\rceil$ with $t=0.9$, TS-CN: $t_{\text {max }}=\left\lceil(|\mathcal{O}+|\mathcal{F}|) \times t\rceil\right.$ with $t=0.5, \mathrm{SA}: \bar{\ell}=3, T_{0}^{m}=0.79, T_{0}^{p}=0.78, T_{f}=10^{-3}$, and $\delta=0.82$.

With the selected parameters, we ran the metaheuristics on the 50 large instances by varying the learning rate $\alpha \in\{0.1,0.2,0.3\}$. Since methods ILS-RN, ILS-CN, GRASP-RN, GRASPCN, and SA have random components, these methods were applied 5 times to each instance. The same does not apply for methods TS-RN and TS-CN, which were run only once for each

instance	$\alpha=0.1$				$\alpha=0.2$				$\alpha=0.3$			
	Cropped		Reduced		Cropped		Reduced		Cropped		Reduced	
	$C_{\text {max }}$	\#it										
miniDAFJS01	23,264	1	23,019	2	22,099	3	21,741	4	20,007	4	19,767	7
miniDAFJS02	23,242	1	22,927	4	22,161	1	22,046	2	21,136	2	20,987	2
miniDAFJS03	18,363	1	18,363	1	17,972	1	17,972	1	17,619	2	17,619	2
miniDAFJS04	21,690	1	21,151	4	20,757	2	19,602	5	19,867	2	18,800	5
miniDAFJS05	22,598	1	22,418	2	20,826	1	20,523	2	19,253	1	18,878	2
miniDAFJS06	23,370	1	23,370	1	20,783	2	20,783	2	18,712	3	18,712	3
miniDAFJS07	28,644	1	28,644	1	25,088	1	24,715	2	24,636	2	24,256	4
miniDAFJS08	19,878	1	19,878	1	18,857	1	18,857	1	17,900	2	17,900	2
miniDAFJS09	25,425	1	25,425	1	23,830	1	23,715	2	22,398	1	22,258	2
miniDAFJS10	21,563	1	20,359	4	21,021	1	18,823	6	19,723	2	17,466	6
miniDAFJS11	33,689	2	33,686	3	30,941	2	30,550	5	28,510	2	27,907	6
miniDAFJS12	20,342	1	20,342	1	19,624	1	19,624	1	19,094	1	19,094	1
miniDAFJS13	17,091	2	16,313	3	16,616	2	15,143	3	15,278	2	15,053	2
miniDAFJS14	23,248	4	23,140	5	21,990	5	21,817	5	20,711	5	20,620	5
miniDAFJS15	22,472	1	22,472	1	20,653	4	20,620	5	18,628	3	20,328	2
miniDAFJS16	25,691	1	25,426	2	24,593	1	24,114	2	22,939	3	22,939	3
miniDAFJS17	21,070	1	20,155	3	20,183	2	20,183	2	19,139	2	19,139	2
miniDAFJS18	18,512	3	18,135	7	18,829	1	18,201	4	17,784	1	17,295	2
miniDAFJS19	21,293	1	20,945	3	20,107	1	19,642	3	19,030	1	18,474	3
miniDAFJS20	23,443	2	23,212	3	21,286	1	21,286	1	19,587	1	19,587	1
miniDAFJS21	24,404	3	24,274	4	22,215	2	22,151	6	21,182	3	20,368	5
miniDAFJS22	25,923	4	25,923	4	24,273	4	24,273	4	22,767	3	22,767	3
miniDAFJS23	25,839	2	25,788	3	24,253	2	24,164	3	21,772	5	21,561	6
miniDAFJS24	26,932	1	26,610	4	24,500	1	23,709	3	22,524	1	21,714	4
miniDAFJS25	23,370	1	22,982	2	22,613	1	21,946	2	19,900	3	19,900	3
miniDAFJS26	22,306	6	22,230	9	20,724	5	20,724	7	19,333	5	19,333	7
miniDAFJS27	27,086	3	27,086	3	23,865	6	23,145	9	22,513	3	22,334	4
miniDAFJS28	23,841	10	23,841	11	22,745	7	22,745	7	20,020	2	20,020	2
miniDAFJS29	21,151	1	21,057	2	19,789	1	19,789	1	18,560	1	18,414	3
miniDAFJS30	26,428	2	26,126	5	23,736	2	22,973	5	21,356	2	20,760	5
mean wins	$\begin{gathered} \hline 23,405.60 \\ 12 \\ \hline \end{gathered}$		$\begin{gathered} \hline 23,176.57 \\ 30 \\ \hline \end{gathered}$		$\begin{gathered} \hline 21,897.63 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 21,519.20 \\ 30 \\ \hline \end{gathered}$		$\begin{gathered} \hline 20,395.93 \\ 12 \\ \hline \end{gathered}$		$\begin{gathered} \hline 20,141.67 \\ 19 \end{gathered}$	3.47

instance	$\alpha=0.1$				$\alpha=0.2$				$\alpha=0.3$			
	Cropped		Reduced		Cropped		Reduced		Cropped		Reduced	
	$C_{\text {max }}$	\#it										
miniYFJS01	35,243	1	35,046	2	34,443	1	33,132	4	33,697	1	32,199	2
miniYFJS02	28,688	1	28,688	1	27,557	1	27,557	1	25,969	1	25,969	1
miniYFJS03	48,141	3	47,391	6	44,195	3	42,896	6	39,880	8	38,935	11
miniYFJS04	25,394	1	25,394	1	24,669	1	24,485	2	24,017	1	23,774	2
miniYFJS05	26,371	2	25,750	3	25,635	3	24,235	3	24,743	1	24,743	1
miniYFJS06	30,952	1	30,952	1	29,080	1	29,080	1	27,366	1	27,366	1
miniYFJS07	46,782	2	45,705	6	43,886	3	42,578	5	41,487	3	39,694	5
miniYFJS08	33,954	2	33,883	7	31,992	2	31,773	7	30,276	2	29,990	6
miniYFJS09	37,049	2	37,049	2	36,098	2	36,098	2	34,357	1	34,357	1
miniYFJS10	29,416	6	29,416	6	30,290	3	29,858	2	27,547	2	27,425	2
miniYFJS11	51,212	1	51,129	2	47,079	1	46,939	2	43,254	1	43,254	1
miniYFJS12	36,343	4	36,343	6	33,404	5	33,404	5	29,989	5	29,989	5
miniYFJS13	32,915	7	32,792	8	30,219	5	30,219	7	25,881	3	25,619	4
miniYFJS14	31,826	7	31,826	9	31,284	4	31,284	4	28,131	6	28,131	6
miniYFJS15	45,901	4	45,442	6	42,828	4	45,903	5	39,862	4	46,387	2
miniYFJS16	33,965	3	33,791	7	32,481	3	32,165	7	30,483	2	30,483	2
miniYFJS17	44,181	5	52,936	3	41,316	5	48,475	4	38,739	5	44,650	3
miniYFJS18	34,133	4	34,044	9	29,883	3	30,201	5	27,944	3	29,698	2
miniYFJS19	39,165	4	36,706	14	33,965	6	33,805	12	31,743	6	31,743	9
miniYFJS20	36,071	9	36,071	11	35,100	4	34,689	8	32,603	4	32,718	5
miniYFJS21	40,994	7	39,978	10	37,414	5	35,570	16	33,355	5	33,355	7
miniYFJS22	35,319	7	34,282	15	32,485	1	32,337	2	30,212	1	29,512	4
miniYFJS23	45,713	9	45,725	10	42,016	3	42,016	7	38,777	4	37,963	9
miniYFJS24	40,291	6	36,367	14	38,144	2	38,144	4	30,173	11	31,054	14
miniYFJS25	43,592	3	43,555	4	40,933	1	40,425	3	34,388	6	34,388	5
miniYFJS26	54,739	2	54,675	3	49,412	1	49,412	1	44,766	8	43,452	18
miniYFJS27	36,899	6	36,765	18	34,359	7	34,943	7	32,539	3	31,749	7
miniYFJS28	41,951	2	41,838	3	38,640	2	33,096	8	35,729	2	35,729	7
miniYFJS29	44,930	9	47,807	4	38,993	3	36,561	9	35,726	3	38,122	5
miniYFJS30	44,038	3	43,725	8	41,290	3	41,640	5	32,238	6	33,215	13
mean wins	$\begin{gathered} 38,538.93 \\ 11 \end{gathered}$	4.10	$\begin{gathered} \hline 38,502.37 \\ 27 \end{gathered}$		$\begin{gathered} 35,969.67 \\ 14 \\ \hline \end{gathered}$		$\begin{gathered} 35,764.00 \\ 25 \end{gathered}$		$\begin{gathered} \hline 32,862.37 \\ 19 \end{gathered}$	3.63	$\begin{gathered} \hline 33,188.77 \\ 13 \end{gathered}$	

Table 1: Local search results with the first-improvement strategy using the reduced neighborhood and the cropped neighborhood, applied to the small-sized instances with learning rate $\alpha \in$ $\{0.1,0.2,0.3\}$.

instance	$\alpha=0.1$						$\alpha=0.2$						$\alpha=0.3$					
	Cropped			Reduced			Cropped			Reduced			Cropped			Reduced		
	$C_{\text {max }}$	\#it	Time															
DAFJS01	28,036	4	0.001	26,794	14	0.004	26,371	3	0.000	25,970	19	0.001	21,685	3	0.000	21,439	5	0.000
DAFJS02	28,098	9	0.002	28,098	10	0.001	28,141	2	0.000	27,860	5	0.000	23,672	8	0.000	23,808	7	0.000
DAFJS03	53,688	1	0.001	51,579	15	0.005	47,879	3	0.000	45,458	37	0.011	43,509	3	0.000	42,867	13	0.005
DAFJS04	54,082	1	0.001	52,563	15	0.001	47,778	5	0.000	46,577	8	0.001	41,899	2	0.000	41,697	3	0.000
DAFJS05	40,195	25	0.004	41,604	24	0.002	39,771	16	0.001	37,797	36	0.006	35,610	9	0.000	31,254	47	0.009
DAFJS06	41,271	37	0.006	50,586	10	0.002	38,087	20	0.001	36,252	69	0.014	32,168	29	0.002	31,122	36	0.006
DAFJS07	54,989	7	0.004	54,802	36	0.026	45,737	34	0.006	48,959	29	0.021	40,830	6	0.001	39,662	24	0.024
DAFJS08	58,930	13	0.006	60,359	27	0.026	52,816	5	0.001	50,928	28	0.022	44,590	4	0.001	42,777	43	0.038
DAFJS09	45,139	11	0.001	44,917	17	0.003	36,871	29	0.002	36,735	39	0.009	34,185	19	0.002	34,025	39	0.011
DAFJS10	53,977	6	0.001	51,565	50	0.011	45,971	4	0.000	45,560	12	0.003	36,279	8	0.001	34,289	42	0.010
DAFJS11	66,872	6	0.003	63,878	55	0.052	51,746	37	0.016	54,661	30	0.049	45,657	17	0.006	44,809	46	0.068
DAFJS12	62,198	31	0.014	59,612	157	0.155	53,738	9	0.002	52,467	38	0.040	44,490	8	0.004	43,717	28	0.043
DAFJS13	57,874	16	0.005	57,310	36	0.021	48,847	22	0.004	48,816	29	0.016	41,717	4	0.001	41,960	11	0.006
DAFJS14	70,169	39	0.008	65,321	59	0.029	56,639	35	0.006	55,881	44	0.027	46,392	26	0.006	44,707	54	0.035
DAFJS15	61,882	62	0.032	63,408	124	0.166	53,807	6	0.003	53,686	14	0.031	47,692	10	0.004	47,474	33	0.067
DAFJS16	70,727	40	0.017	70,838	84	0.125	63,277	11	0.005	58,436	107	0.183	55,112	12	0.006	53,095	78	0.172
DAFJS17	68,446	50	0.018	70,306	26	0.016	57,893	41	0.009	57,518	54	0.031	46,340	80	0.026	47,331	96	0.087
DAFJS18	71,871	31	0.006	74,631	21	0.015	58,533	19	0.004	58,907	29	0.019	50,818	7	0.002	48,672	26	0.015
DAFJS19	63,999	12	0.002	63,314	26	0.019	52,824	24	0.006	57,082	10	0.014	41,426	28	0.004	41,865	56	0.029
DAFJS20	64,005	75	0.020	63,841	225	0.207	61,871	5	0.002	57,378	99	0.115	46,868	53	0.018	48,600	40	0.051
DAFJS21	72,142	57	0.020	76,433	31	0.032	61,483	12	0.004	62,677	9	0.009	50,318	15	0.005	49,422	39	0.040
DAFJS22	60,081	132	0.043	60,143	315	0.448	53,248	44	0.014	54,318	42	0.097	43,566	17	0.011	41,615	94	0.235
DAFJS23	48,338	9	0.001	48,054	18	0.012	41,433	17	0.003	44,473	31	0.018	39,105	3	0.000	38,334	12	0.006
DAFJS24	55,507	9	0.004	55,353	33	0.032	47,277	14	0.004	47,656	9	0.007	40,921	17	0.004	42,473	27	0.019
DAFJS25	79,286	26	0.011	76,253	92	0.227	59,672	68	0.033	61,805	92	0.184	48,469	25	0.013	49,390	39	0.098
DAFJS26	73,969	54	0.020	75,329	96	0.190	70,211	8	0.003	65,524	109	0.373	53,944	39	0.023	55,269	39	0.117
DAFJS27	79,234	13	0.004	79,064	23	0.053	62,437	21	0.010	62,596	29	0.079	53,719	46	0.023	55,569	46	0.134
DAFJS28	59,201	18	0.003	54,866	109	0.103	48,414	21	0.004	47,884	46	0.039	41,408	11	0.003	40,097	34	0.050
DAFJS29	68,684	21	0.006	66,929	80	0.106	57,356	16	0.005	57,179	34	0.044	49,819	7	0.005	49,519	24	0.050
DAFJS30	57,350	17	0.005	60,016	13	0.013	51,283	14	0.004	50,961	45	0.052	43,426	3	0.001	42,592	6	0.008
mean wins	$\begin{gathered} 59,008.00 \\ 12 \end{gathered}$	27.73	0.009	$\begin{gathered} 58,925.53 \\ 19 \end{gathered}$	61.37	0.070	$\begin{gathered} \hline 50,713.70 \\ 10 \end{gathered}$	18.83	0.005	$\begin{array}{\|c\|} \hline 50,400.03 \\ 20 \end{array}$	39.40	0.051	$\begin{gathered} 42,854.47 \\ 9 \end{gathered}$	17.30	0.006	$\begin{gathered} \hline 42,315.00 \\ 12 \end{gathered}$	36.23	0.048

instance	$\alpha=0.1$						$\alpha=0.2$						$\alpha=0.3$					
	Cropped			Reduced			Cropped			Reduced			Cropped			Reduced		
	$C_{\text {max }}$	\#it	Time															
YFJS01	79,662	10	0.000	79,737	21	0.003	74,547	9	0.000	70,624	31	0.004	66,246	9	0.000	67,588	10	0.001
YFJS02	76,529	3	0.000	76,813	4	0.000	66,853	1	0.000	66,853	1	0.000	59,211	3	0.000	59,001	4	0.001
YFJS03	38,424	3	0.000	35,936	14	0.000	33,273	5	0.000	33,273	5	0.000	30,995	3	0.000	31,407	2	0.000
YFJS04	45,683	3	0.000	45,533	4	0.000	42,553	4	0.000	42,553	4	0.000	38,092	5	0.000	38,092	5	0.000
YFJS05	45,421	4	0.000	45,421	4	0.000	40,738	2	0.000	40,738	2	0.000	38,324	5	0.000	38,324	9	0.000
YFJS06	44,848	13	0.000	47,384	12	0.001	43,384	15	0.000	42,207	21	0.002	45,370	2	0.000	45,370	2	0.000
YFJS07	48,980	7	0.000	45,722	21	0.001	43,925	12	0.000	45,971	11	0.000	38,453	5	0.000	38,453	5	0.000
YFJS08	43,073	7	0.000	41,658	19	0.001	42,901	3	0.000	41,573	10	0.000	35,429	2	0.000	33,432	17	0.001
YFJS09	25,067	3	0.000	24,350	4	0.000	23,059	3	0.000	22,211	5	0.000	20,916	7	0.000	20,916	7	0.000
YFJS10	42,583	1	0.000	42,278	2	0.000	39,126	5	0.000	38,683	7	0.000	34,487	8	0.000	36,415	7	0.000
YFJS11	55,765	4	0.000	55,416	7	0.001	49,781	2	0.000	49,160	6	0.001	45,051	1	0.000	44,455	4	0.000
YFJS12	56,674	24	0.001	54,852	59	0.007	55,174	11	0.000	53,329	21	0.003	47,092	3	0.000	44,873	12	0.001
YFJS13	44,083	16	0.000	45,844	16	0.001	42,442	10	0.000	39,720	27	0.003	35,776	16	0.000	35,524	19	0.003
YFJS14	119,977	27	0.016	124,518	60	0.141	104,506	19	0.010	105,770	58	0.181	89,687	12	0.007	87,368	61	0.182
YFJS15	126,713	33	0.016	127,073	171	0.481	106,511	28	0.016	108,412	58	0.192	93,075	14	0.007	86,141	166	0.529
YFJS16	116,201	37	0.018	121,141	73	0.196	101,164	13	0.005	99,801	65	0.129	87,351	10	0.005	87,648	48	0.136
YFJS17	104,688	21	0.026	102,614	159	1.134	83,355	18	0.014	82,211	87	0.621	71,201	26	0.036	71,075	65	0.493
YFJS18	126,647	34	0.032	128,529	87	0.752	97,157	15	0.022	94,689	179	2.000	84,518	9	0.015	82,967	77	0.834
YFJS19	93,306	96	0.100	100,855	209	1.353	86,398	21	0.026	85,028	128	1.115	68,792	53	0.054	68,955	135	0.984
YFJS20	96,248	17	0.019	92,240	196	1.205	79,408	85	0.088	80,875	294	1.923	71,676	8	0.009	68,562	123	0.993
mean wins	$\begin{gathered} \hline 71,528.60 \\ 10 \end{gathered}$	18.15		$\begin{gathered} 71,895.70 \\ 11 \end{gathered}$	57.10		$\begin{gathered} 62,812.75 \\ 8 \end{gathered}$	14.05	0.009	$\begin{gathered} 62,184.05 \\ 16 \end{gathered}$		0.309	$\begin{gathered} 55,087.10 \\ 10 \end{gathered}$		0.007	$\begin{gathered} 54,328.30 \\ 15 \end{gathered}$	38.90	0.208

Table 2: Local search results with the first-improvement strategy using the reduced neighborhood and the cropped neighborhood, applied to the large-sized instances proposed in [8] with learning rate $\alpha \in\{0.1,0.2,0.3\}$.
instance. Tables 5, 6, and 7 show the results associated with the learning rates $\alpha \in\{0.1,0.2,0.3\}$, respectively. In the tables, for each method/instance pair, when applicable, we show the best makespan (among the five runs) and the CPU time the method needed to achieve it. If a method reached its best makespan more than once, the indicated CPU time corresponds in fact to the average CPU time among all the times the method reached the indicated makespan. In the

instance	$\alpha=0.1$				$\alpha=0.2$				$\alpha=0.3$			
	Cropped		Reduced		Cropped		Reduced		Cropped		Reduced	
	$C_{\text {max }}$	\#it										
miniDAFJS01	23,264	1	23,019	2	21,588	3	21,546	4	20,007	4	19,848	4
miniDAFJS02	23,242	1	22,927	3	22,161	1	22,046	2	21,136	2	20,987	2
miniDAFJS03	18,363	1	18,363	1	17,972	1	17,972	1	17,619	2	17,619	2
miniDAFJS04	21,690	1	21,151	4	20,691	2	19,602	4	19,867	2	18,800	4
miniDAFJS05	22,598	1	22,418	2	20,826	1	20,523	2	19,253	1	18,878	2
miniDAFJS06	23,370	1	23,370	1	20,783	2	20,783	2	19,605	2	19,605	2
miniDAFJS07	28,644	1	28,644	1	25,088	1	24,715	2	24,636	2	24,256	2
miniDAFJS08	19,878	1	19,878	1	18,857	1	18,857	1	17,900	2	17,900	2
miniDAFJS09	25,425	1	25,425	1	23,830	1	23,715	2	22,398	1	22,258	2
miniDAFJS10	21,563	1	20,359	4	21,021	1	18,823	5	19,723	2	17,466	5
miniDAFJS11	33,689	2	33,585	4	30,941	2	30,550	5	28,510	2	28,342	2
miniDAFJS12	20,342	1	20,342	1	19,624	1	19,624	1	19,094	1	19,094	1
miniDAFJS13	17,091	2	16,313	3	16,616	2	15,143	3	15,278	2	15,053	2
miniDAFJS14	23,248	4	23,140	5	21,990	5	21,817	5	20,711	5	20,620	5
miniDAFJS15	22,472	1	22,472	1	20,620	3	20,620	3	18,628	3	18,628	3
miniDAFJS16	25,691	1	25,426	2	24,593	1	24,114	2	22,939	3	22,939	3
miniDAFJS17	21,070	1	20,155	3	20,183	2	20,183	2	19,139	2	19,139	2
miniDAFJS18	18,445	2	18,135	4	18,829	1	18,201	4	17,784	1	17,295	2
miniDAFJS19	21,293	1	20,945	3	20,107	1	19,642	3	19,030	1	18,474	3
miniDAFJS20	23,443	2	23,212	3	21,286	1	21,286	1	19,587	1	19,587	1
miniDAFJS21	24,404	3	24,274	4	22,215	2	22,151	4	21,182	3	20,368	4
miniDAFJS22	25,923	3	25,923	3	24,273	3	24,273	3	22,767	3	22,767	3
miniDAFJS23	25,839	2	25,788	3	24,253	2	24,164	3	21,772	5	22,710	3
miniDAFJS24	26,932	1	26,610	4	24,500	1	23,709	3	22,524	1	21,714	4
miniDAFJS25	23,370	1	22,982	2	22,613	1	21,946	2	18,472	6	20,834	3
miniDAFJS26	22,306	3	22,230	4	20,273	4	20,273	4	18,921	4	18,921	4
miniDAFJS27	27,086	3	27,086	3	23,145	5	23,145	5	22,513	3	22,334	4
miniDAFJS28	23,841	6	23,841	6	21,927	7	21,927	7	20,020	2	20,020	2
miniDAFJS29	21,151	1	21,057	2	19,789	1	19,789	1	18,560	1	18,414	2
miniDAFJS30	26,428	2	26,126	4	23,736	2	22,973	4	21,356	2	20,760	3
mean	23,403.37	1.73	23,173.20	2.80	21,811.00	2.03	21,470.40	3.00	20,364.37	2.37	20,187.67	2.77
wins	12		30		12		30		13		18	
instance	$\alpha=0.1$				$\alpha=0.2$				$\alpha=0.3$			
	Cropped		Reduced		Cropped		Reduced		Cropped		Reduced	
	$C_{\text {max }}$	\#it										
miniYFJS01	35,243	1	35,046	2	34,443	1	33,132	4	33,697	1	32,199	2
miniYFJS02	28,688	1	28,688	1	27,557	1	27,557	1	25,969	1	25,969	1
miniYFJS03	53,381	2	52,098	3	49,111	2	46,806	3	42,787	3	42,787	3
miniYFJS04	25,394	1	25,394	1	24,669	1	24,485	2	24,017	1	23,774	2
miniYFJS05	26,371	2	25,750	3	25,635	3	24,235	3	24,743	1	24,743	1
miniYFJS06	30,952	1	30,952	1	29,080	1	29,080	1	27,366	1	27,366	1
miniYFJS07	46,782	2	46,089	4	44,137	2	42,578	5	41,737	2	39,229	5
miniYFJS08	33,954	2	33,883	3	31,992	2	31,597	4	30,276	2	29,631	4
miniYFJS09	37,049	2	37,049	2	36,098	2	36,098	2	34,357	1	34,357	1
miniYFJS10	29,416	5	29,416	5	27,604	4	29,858	2	27,547	2	27,425	2
miniYFJS11	51,212	1	51,129	2	47,079	1	46,939	2	43,254	1	43,254	1
miniYFJS12	36,343	4	36,343	4	33,404	5	33,404	5	29,989	5	29,989	5
miniYFJS13	32,915	5	32,792	5	30,219	4	30,219	4	25,881	3	25,619	4
miniYFJS14	31,826	6	31,826	6	31,284	4	31,284	4	28,131	6	28,131	6
miniYFJS15	45,597	3	45,442	4	42,306	3	41,893	4	39,187	3	38,619	4
miniYFJS16	33,965	3	33,791	7	32,481	3	32,165	6	30,483	2	30,483	2
miniYFJS17	44,181	5	44,044	7	41,316	5	41,199	5	38,739	5	38,584	5
miniYFJS18	34,133	3	34,044	4	29,883	2	29,883	2	27,944	2	27,944	2
miniYFJS19	39,165	3	39,046	4	33,965	6	33,805	7	31,743	6	31,082	8
miniYFJS20	30,837	6	30,837	6	31,304	6	31,304	6	29,599	4	29,599	4
miniYFJS21	40,523	6	40,523	6	35,570	9	35,570	9	33,355	5	33,355	5
miniYFJS22	35,019	4	35,019	4	32,485	1	31,946	2	30,212	1	29,498	2
miniYFJS23	45,725	4	45,725	4	42,446	2	42,016	3	38,777	4	37,963	5
miniYFJS24	40,291	5	40,291	6	38,144	2	38,144	2	30,173	7	31,572	9
miniYFJS25	43,592	3	43,555	3	40,933	1	40,425	3	34,388	3	34,388	3
miniYFJS26	54,739	2	54,675	3	49,412	1	49,412	1	44,633	3	44,207	6
miniYFJS27	36,765	4	36,765	4	34,125	4	34,225	6	31,749	4	31,571	6
miniYFJS28	41,951	2	41,838	3	38,640	2	38,450	3	35,729	2	35,729	2
miniYFJS29	44,930	5	44,930	5	38,993	3	38,586	4	34,330	4	34,604	3
miniYFJS30	44,038	3	43,725	4	41,290	3	40,744	4	31,093	7	31,093	7
mean	38,499.23	3.20	38,356.83	3.87	35,853.50	2.87	35,567.97	3.63	32,729.50	3.07	32,492.13	3.70
wins	14		30		13		28		17		18	

Table 3: Local search results with the best-improvement strategy using the reduced neighborhood and the cropped neighborhood, applied to the small-sized instances with learning rate $\alpha \in\{0.1,0.2,0.3\}$.

instance	$\alpha=0.1$						$\alpha=0.2$						$\alpha=0.3$					
	Cropped			Reduced			Cropped			Reduced			Cropped			Reduced		
	$C_{\text {max }}$	\#it	Time															
DAFJS01	26,465	4	0.000	26,203	7	0.004	26,371	3	0.000	24,993	8	0.001	21,685	3	0.000	21,685	3	0.000
DAFJS02	28,098	3	0.000	28,098	3	0.001	27,949	2	0.000	27,727	4	0.000	23,021	3	0.000	23,021	3	0.000
DAFJS03	53,688	1	0.000	51,580	14	0.009	47,879	2	0.000	45,916	15	0.011	43,509	2	0.000	42,258	8	0.006
DAFJS04	54,082	1	0.000	52,494	11	0.004	47,571	4	0.000	46,502	7	0.003	41,899	2	0.000	41,533	4	0.001
DAFJS05	40,723	10	0.006	40,723	12	0.005	37,118	15	0.002	38,484	12	0.005	33,331	12	0.001	33,813	7	0.003
DAFJS06	45,234	11	0.007	44,877	15	0.009	41,995	6	0.001	41,909	9	0.005	33,956	5	0.001	30,556	20	0.011
DAFJS07	54,937	5	0.006	53,651	15	0.032	44,414	16	0.009	44,147	21	0.046	40,442	5	0.002	40,057	13	0.027
DAFJS08	58,941	10	0.009	56,561	14	0.031	52,803	3	0.001	51,128	16	0.038	44,590	4	0.001	43,737	16	0.034
DAFJS09	43,032	9	0.003	45,796	5	0.002	38,062	12	0.002	37,876	12	0.007	36,488	5	0.001	36,303	10	0.008
DAFJS10	54,858	5	0.002	51,277	24	0.025	45,971	4	0.001	45,868	3	0.002	35,273	8	0.002	35,023	9	0.009
DAFJS11	63,795	8	0.010	64,796	20	0.066	53,770	7	0.007	52,845	17	0.061	44,701	7	0.005	44,599	11	0.035
DAFJS12	62,433	15	0.024	61,533	28	0.128	54,073	5	0.007	52,355	17	0.080	44,051	5	0.004	43,449	11	0.045
DAFJS13	58,902	6	0.004	56,453	22	0.027	48,838	13	0.007	49,179	10	0.011	41,717	4	0.001	41,717	4	0.005
DAFJS14	62,637	42	0.029	70,357	8	0.014	55,503	19	0.012	54,609	25	0.040	44,777	16	0.008	44,646	23	0.042
DAFJS15	64,527	21	0.032	62,030	39	0.205	52,115	9	0.011	53,677	7	0.035	46,921	12	0.012	47,268	15	0.071
DAFJS16	69,300	21	0.029	66,153	71	0.358	61,676	8	0.011	60,010	20	0.093	54,072	15	0.015	49,031	46	0.260
DAFJS17	70,803	9	0.011	69,975	22	0.054	55,294	6	0.006	54,456	18	0.045	45,667	17	0.016	47,550	28	0.103
DAFJS18	67,984	27	0.022	71,052	10	0.031	57,965	16	0.012	57,274	25	0.042	48,351	7	0.004	49,753	5	0.013
DAFJS19	57,786	16	0.014	57,471	22	0.046	51,065	8	0.004	51,065	8	0.019	43,998	9	0.003	40,678	26	0.053
DAFJS20	67,045	22	0.021	66,674	30	0.115	57,271	27	0.027	55,355	47	0.180	45,160	23	0.024	49,481	14	0.055
DAFJS21	72,979	17	0.025	71,913	23	0.103	58,044	14	0.018	57,787	20	0.070	48,693	16	0.023	48,912	16	0.064
DAFJS22	60,238	46	0.068	62,189	29	0.196	54,147	11	0.017	53,728	15	0.088	41,480	28	0.040	42,035	25	0.156
DAFJS23	47,719	9	0.004	47,520	15	0.022	42,480	8	0.003	42,943	11	0.014	39,105	3	0.001	38,185	8	0.011
DAFJS24	54,427	13	0.009	55,115	12	0.033	46,797	15	0.012	46,985	12	0.024	41,832	4	0.005	39,979	21	0.063
DAFJS25	74,359	37	0.049	73,353	48	0.301	58,767	31	0.043	61,465	29	0.165	49,919	9	0.013	49,527	14	0.059
DAFJS26	68,577	50	0.076	76,328	12	0.080	63,243	36	0.049	68,469	18	0.142	51,544	16	0.021	50,829	31	0.219
DAFJS27	79,254	2	0.004	78,967	6	0.036	62,520	12	0.020	62,359	18	0.120	51,382	29	0.041	53,010	23	0.168
DAFJS28	58,564	4	0.004	53,505	41	0.100	48,593	12	0.012	48,941	9	0.029	41,206	4	0.004	40,923	7	0.019
DAFJS29	70,450	6	0.005	65,758	36	0.120	56,387	20	0.014	57,708	14	0.054	49,906	5	0.005	48,412	18	0.074
DAFJS30	57,326	6	0.004	56,839	13	0.032	49,649	17	0.012	49,312	30	0.092	42,819	2	0.002	42,592	4	0.011
mean wins	$\begin{gathered} 58,305.43 \\ 9 \end{gathered}$	14.53	0.016	$\begin{gathered} 57,974.70 \\ 23 \end{gathered}$	20.90	0.073	$\begin{gathered} 49,944.33 \\ 10 \end{gathered}$	12.03	0.011	$\begin{gathered} 49,835.73 \\ 21 \end{gathered}$	15.90	0.051	$\begin{gathered} 42,383.17 \\ 11 \end{gathered}$		0.009	$\begin{gathered} 42,018.73 \\ 13 \end{gathered}$	14.77	0.054
instance	$\alpha=0.1$						$\alpha=0.2$						$\alpha=0.3$					
	Cropped			Reduced			Cropped			Reduced			Cropped			Reduced		
	$C_{\text {max }}$	\#it	Time															
YFJS01	80,167	6	0.000	79,657	8	0.002	71,592	9	0.001	68,822	14	0.004	66,246	6	0.000	60,208	15	0.005
YFJS02	76,529	3	0.000	76,529	3	0.000	66,853	1	0.000	66,853	1	0.000	59,001	2	0.000	59,001	2	0.000
YFJS03	34,166	5	0.000	36,409	4	0.000	32,864	5	0.000	32,864	5	0.000	30,995	3	0.000	31,407	2	0.000
YFJS04	45,683	3	0.000	45,533	4	0.000	42,553	4	0.000	42,553	4	0.000	38,092	3	0.000	38,092	3	0.000
YFJS05	45,421	3	0.000	45,421	3	0.000	40,738	2	0.000	40,738	2	0.000	38,324	4	0.000	38,324	8	0.001
YFJS06	44,936	10	0.001	44,936	10	0.002	40,272	9	0.000	43,744	6	0.001	43,123	6	0.000	43,099	7	0.001
YFJS07	48,491	9	0.000	48,355	10	0.002	40,941	12	0.001	40,941	12	0.002	38,453	2	0.000	38,453	2	0.000
YFJS08	47,429	3	0.000	41,754	9	0.001	41,994	3	0.000	37,681	10	0.001	35,429	2	0.000	33,392	5	0.000
YFJS09	24,413	2	0.000	23,944	4	0.000	23,059	2	0.000	22,211	4	0.000	20,916	7	0.000	20,916	7	0.001
YFJS10	42,583	1	0.000	42,278	2	0.000	39,126	4	0.000	39,361	4	0.000	34,487	7	0.000	34,487	10	0.001
YFJS11	52,815	4	0.000	52,196	8	0.002	49,781	2	0.000	49,206	4	0.001	45,051	1	0.000	44,729	2	0.000
YFJS12	53,094	11	0.001	52,650	12	0.004	56,022	7	0.000	54,186	12	0.004	46,471	5	0.000	43,150	9	0.003
YFJS13	47,064	4	0.000	46,578	9	0.003	41,618	5	0.000	41,498	6	0.002	36,962	4	0.000	35,800	11	0.003
YFJS14	119,792	13	0.016	118,731	27	0.202	97,201	18	0.022	100,177	23	0.161	89,371	6	0.008	87,518	21	0.162
YFJS15	121,960	14	0.020	125,754	66	0.553	110,858	8	0.011	109,314	33	0.284	90,041	15	0.019	88,664	28	0.220
YFJS16	116,033	19	0.024	115,312	31	0.204	101,073	7	0.008	98,976	34	0.238	88,521	5	0.006	85,252	27	0.176
YFJS17	104,862	9	0.025	104,466	18	0.396	83,240	14	0.042	82,167	42	0.895	71,114	9	0.027	70,851	46	1.004
YFJS18	124,738	13	0.043	119,224	84	1.872	97,366	9	0.027	94,472	45	1.123	83,681	9	0.030	82,795	27	0.639
YFJS19	98,795	24	0.072	100,158	38	0.847	86,289	9	0.031	83,530	48	1.159	70,454	22	0.061	68,592	69	1.435
YFJS20	95,573	10	0.030	94,201	42	0.764	79,653	24	0.062	79,638	35	0.630	70,928	9	0.028	70,253	19	0.365
mean	71,227.20	8.30	0.012	70,704.30	19.60	0.243	62,154.65	7.70	0.010	61,446.60	17.20	0.225	54,883.00	6.35	0.009	53,749.15	16.00	0.201
wins	6			17			8			17			7			19		

Table 4: Local search results with the best-improvement strategy using the reduced neighborhood and the cropped neighborhood, applied to the large-sized instances proposed in 8 with learning rate $\alpha \in\{0.1,0.2,0.3\}$.
tables, additional lines show some statistics. The line named $\bar{C}_{\text {max }}$ shows the average of the makespans found by each method (for each instance, the average considers the best over the five runs, when applicable). The line named \#best shows, for each method, the number of instances in which the method found the best solution among the solutions found by the seven methods being considered. The line named gap(\%), shows, for each method, the average gap
when, for each instance, the solution found is compared with the best solution found by the seven methods. If the seven methods applied to the same instance found makespans c_{1}, \ldots, c_{7}, the gap of method i in the considered instance corresponds to $100 \% \times\left(c_{i}-c_{\min }\right) / c_{\min }$, where $c_{\text {min }}=\min \left\{c_{1}, \ldots, c_{7}\right\}$. The gap reported in line gap $(\%)$ for each method corresponds to the average over all instances in the table. In the previous sentence, if a method i is run five times per instance, the value c_{i} made reference to the best over the five runs. So the value reported in line gap(\%) does not refer to what happened in "the other four runs". In these other cases, does each method find something close to its best makespan or something much worse? To answer this question, let us now consider that the values $\bar{c}_{1}, \ldots, \bar{c}_{7}$ correspond to the average of the makespans found in the five runs. The line $\overline{\mathrm{gap}}(\%)$ shows the same as line gap(\%) but considering $\bar{c}_{1}, \ldots, \bar{c}_{7}$ instead of c_{1}, \ldots, c_{7}. Both lines coincide for the case of TSRN and TS-CN which have no random components and are therefore only executed once per instance. Thus, when TS-RN or TS-CN is compared with other method, it is the value of $\overline{\mathrm{gap}}(\%)$ that must be compared. Otherwise, we would be comparing a method that is run only once against a method that is run five times and keeps the best solution found only. Statistics, consolidating the individual statistics for the DA-type and Y-type instances and the learning rates $\alpha \in\{0.1,0.2,0.3\}$, appear at the top of Table 13 .

Figure 3: This figure shows the value of $\bar{C}_{\text {max }}$ as a function of the CPU time for each of the seven methods applied to the large-sized instances. The average makespan shown in the graphic is the average of the different values shown in Tables 5. 6, and 7, that separate the instances by DA type, Y type and learning rates $\alpha \in\{0.1,0.2,0.3\}$.

Figure 3 shows, for each method, the average value of $\bar{C}_{\max }$ as a function of the CPU time. As mentioned above, the considered average is the average of the makespans shown in Tables 5 ,

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{instance} \& \multicolumn{2}{|c|}{ILS-RN} \& \multicolumn{2}{|c|}{ILS-CN} \& \multicolumn{2}{|l|}{GRASP-RN} \& \multicolumn{2}{|l|}{GRASP-CN} \& \multicolumn{2}{|l|}{TS-RN} \& \multicolumn{2}{|c|}{TS-CN} \& \multicolumn{2}{|c|}{SA}

\hline \& $C_{\text {max }}$ \& Time

\hline DAFJS01 \& 23,460 \& 12.29 \& 23,460 \& 3.39 \& 24,172 \& 90.48 \& 23,961 \& 131.52 \& 24,424 \& 0.05 \& 24,661 \& 0.01 \& 23,992 \& 46.48

\hline DAFJS02 \& 26,432 \& 60.95 \& 26,432 \& 25.84 \& 26,989 \& 0.01 \& 26,869 \& 0.28 \& 26,432 \& 0.32 \& 27,620 \& 0.00 \& 27,577 \& 0.55

\hline DAFJS03 \& 50,343 \& 164.37 \& 50,462 \& 34.55 \& 50,424 \& 241.44 \& 51,028 \& 156.99 \& 50,343 \& 7.20 \& 51,612 \& 0.26 \& 50,458 \& 261.30

\hline DAFJS04 \& 51,872 \& 62.24 \& 51,992 \& 181.28 \& 51,927 \& 30.24 \& 52,358 \& 275.80 \& 52,291 \& 0.11 \& 53,348 \& 0.00 \& 51,927 \& 151.36

\hline DAFJS05 \& 34,660 \& 167.91 \& 34,660 \& 45.10 \& 37,081 \& 35.04 \& 36,883 \& 80.14 \& 35,278 \& 1.96 \& 36,009 \& 0.26 \& 36,141 \& 139.08

\hline DAFJS06 \& 35,435 \& 111.76 \& 35,302 \& 176.69 \& 37,023 \& 122.84 \& 36,338 \& 98.55 \& 35,636 \& 15.04 \& 37,854 \& 0.05 \& 35,697 \& 256.36

\hline DAFJS07 \& 45,805 \& 240.68 \& 45,306 \& 72.33 \& 46,624 \& 107.20 \& 46,791 \& 57.95 \& 44,281 \& 158.67 \& 45,060 \& 297.79 \& 44,219 \& 241.82

\hline DAFJS08 \& 53,202 \& 52.07 \& 53,463 \& 41.54 \& 53,575 \& 174.57 \& 54,129 \& 129.70 \& 53,002 \& 261.88 \& 54,018 \& 0.69 \& 53,292 \& 276.00

\hline DAFJS09 \& 40,573 \& 145.06 \& 40,537 \& 166.88 \& 41,066 \& 119.76 \& 40,759 \& 184.35 \& 41,123 \& 4.34 \& 42,241 \& 0.09 \& 41,265 \& 4.00

\hline DAFJS10 \& 44,523 \& 99.32 \& 44,058 \& 254.61 \& 44,917 \& 217.73 \& 44,735 \& 277.52 \& 45,820 \& 10.28 \& 47,438 \& 0.32 \& 44,851 \& 70.25

\hline DAFJS11 \& 55,180 \& 121.71 \& 55,393 \& 151.06 \& 58,257 \& 219.22 \& 58,527 \& 228.89 \& $\mathbf{5 4 , 3 5 1}$ \& 260.24 \& 55,337 \& 158.73 \& 54,708 \& 264.50

\hline DAFJS12 \& 54,035 \& 227.92 \& 53,175 \& 20.54 \& 56,670 \& 237.70 \& 56,495 \& 79.61 \& 51,432 \& 238.43 \& 51,794 \& 224.88 \& 51,067 \& 234.61

\hline DAFJS13 \& 54,654 \& 35.35 \& 54,371 \& 0.05 \& 54,392 \& 277.63 \& 54,583 \& 107.84 \& 53,340 \& 233.35 \& 53,792 \& 0.10 \& 54,502 \& 93.52

\hline DAFJS14 \& 61,500 \& 133.79 \& 60,882 \& 169.24 \& 61,487 \& 185.43 \& 61,641 \& 265.85 \& 59,668 \& 196.33 \& 61,524 \& 0.74 \& 59,573 \& 254.00

\hline DAFJS15 \& 57,552 \& 111.67 \& 57,554 \& 216.92 \& 59,362 \& 201.70 \& 59,997 \& 220.71 \& 55,086 \& 253.37 \& 55,381 \& 115.31 \& 55,164 \& 197.01

\hline DAFJS16 \& 58,828 \& 213.11 \& 58,327 \& 98.92 \& 63,365 \& 189.53 \& 62,494 \& 242.24 \& 55,927 \& 242.72 \& 56,758 \& 115.48 \& 55,868 \& 208.74

\hline DAFJS17 \& 65,252 \& 138.93 \& 65,121 \& 1.17 \& 64,804 \& 269.21 \& 65,643 \& 74.78 \& 64,262 \& 283.76 \& 65,525 \& 1.33 \& 65,602 \& 55.29

\hline DAFJS18 \& 66,429 \& 288.91 \& 65,889 \& 271.51 \& 66,633 \& 179.15 \& 66,419 \& 214.60 \& 64,916 \& 134.40 \& 67,040 \& 0.23 \& 64,820 \& 219.02

\hline DAFJS19 \& 45,416 \& 136.34 \& 44,744 \& 95.28 \& 46,757 \& 147.62 \& 46,301 \& 76.22 \& 44,633 \& 121.09 \& 45,602 \& 1.30 \& 44,086 \& 144.96

\hline DAFJS20 \& 59,190 \& 298.29 \& 58,137 \& 241.93 \& 59,670 \& 43.48 \& 59,323 \& 79.25 \& 56,432 \& 155.97 \& 57,141 \& 9.73 \& 57,245 \& 290.79

\hline DAFJS21 \& 65,432 \& 83.75 \& 66,006 \& 217.22 \& 66,547 \& 87.71 \& 66,752 \& 277.45 \& 64,563 \& 264.94 \& 64,902 \& 13.37 \& 64,059 \& 124.80

\hline DAFJS22 \& 58,025 \& 2.64 \& 57,426 \& 227.59 \& 59,477 \& 62.55 \& 59,086 \& 30.34 \& 55,246 \& 269.80 \& 55,038 \& 24.67 \& 55,624 \& 283.70

\hline DAFJS23 \& 42,818 \& 226.75 \& 42,255 \& 149.85 \& 43,565 \& 66.68 \& 43,426 \& 150.96 \& 41,941 \& 57.87 \& 42,426 \& 1.56 \& 41,286 \& 227.89

\hline DAFJS24 \& 48,266 \& 207.07 \& 48,911 \& 123.21 \& 51,313 \& 127.05 \& 51,532 \& 43.92 \& 47,443 \& 139.28 \& 47,365 \& 281.95 \& 46,945 \& 217.47

\hline DAFJS25 \& 62,813 \& 127.68 \& 63,039 \& 16.33 \& 65,321 \& 147.01 \& 65,866 \& 65.19 \& 60,824 \& 205.95 \& 60,308 \& 248.14 \& 60,187 \& 270.84

\hline DAFJS26 \& 62,389 \& 131.50 \& 61,645 \& 158.57 \& 65,982 \& 299.75 \& 65,951 \& 196.11 \& 58,995 \& 185.68 \& 58,749 \& 67.28 \& 59,450 \& 297.29

\hline DAFJS27 \& 69,386 \& 73.63 \& 68,795 \& 254.71 \& 70,375 \& 231.60 \& 70,762 \& 6.13 \& 66,539 \& 245.31 \& 66,003 \& 148.50 \& 66,070 \& 204.00

\hline DAFJS28 \& 48,091 \& 133.90 \& 47,738 \& 187.43 \& 48,669 \& 164.03 \& 49,309 \& 294.79 \& 47,428 \& 164.05 \& 47,551 \& 75.18 \& 46,569 \& 268.66

\hline DAFJS29 \& 57,824 \& 58.01 \& 57,384 \& 259.73 \& 59,825 \& 173.11 \& 59,564 \& 234.87 \& 55,820 \& 10.14 \& 56,122 \& 37.45 \& 54,686 \& 296.94

\hline DAFJS30 \& 48,572 \& 292.30 \& 48,329 \& 137.76 \& 50,395 \& 59.47 \& 50,593 \& 18.06 \& 47,140 \& 237.35 \& 47,307 \& 76.44 \& 46,344 \& 232.86

\hline $$
\begin{gathered}
\hline C_{\max } \\
\text { \#best } \\
\operatorname{gap}(\%) \\
\overline{\operatorname{gap}}(\%) \\
\hline
\end{gathered}
$$ \& 51,59
5
2.7
3. \& . 57 \& 51,3
6
2.
2.9 \& 9.77 \& 52,888

5.
6. \& 8.80 \& 52,9
0
7.
8. \& 7.17 \& 50,48
8
0.91
0.91 \& \& 51,18 \& 5.20 \& 50,44
1
0.8
1.8 \& 247

\hline
\end{tabular}

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
YFJS01	68,714	0.51	68,714	0.80	68,714	0.12	69,189	0.02	68,714	0.34	75,595	0.03	68,714	0.81
YFJS02	72,465	1.40	72,465	2.82	73,053	0.12	73,149	0.44	72,465	0.02	73,053	0.04	72,465	1.79
YFJS03	32,538	0.03	32,538	0.02	32,538	254.14	32,538	0.08	32,538	0.10	33,174	0.00	32,538	0.47
YFJS04	35,883	1.73	35,883	0.17	36,946	0.15	35,883	0.10	35,883	1.25	37,340	0.02	35,883	0.59
YFJS05	40,186	9.99	40,186	1.76	41,034	160.74	41,034	0.52	40,186	4.42	41,034	0.03	41,034	0.74
YFJS06	40,441	218.75	40,441	122.67	41,123	3.28	41,174	59.04	40,522	13.18	41,123	0.61	40,784	0.76
YFJS07	40,887	131.61	40,887	37.21	41,625	54.84	41,354	11.63	40,887	38.15	41,394	0.17	40,887	16.55
YFJS08	32,573	0.69	32,573	0.88	32,623	0.09	32,655	29.50	32,573	0.91	34,452	0.00	32,573	63.60
YFJS09	22,681	2.68	22,681	0.54	22,681	6.30	22,681	56.94	22,681	0.01	22,681	0.24	22,681	2.03
YFJS10	37,372	11.63	37,372	19.65	37,685	1.92	37,685	0.62	39,621	0.03	37,482	0.00	37,372	3.04
YFJS11	47,800	12.50	47,800	94.06	49,493	174.55	49,208	41.96	48,195	4.95	49,721	0.04	47,800	85.90
YFJS12	46,728	26.81	46,728	15.79	49,411	13.84	48,774	92.81	46,728	149.42	48,608	0.02	46,728	63.09
YFJS13	36,911	12.30	36,911	13.38	38,042	2.35	37,361	108.86	36,926	33.80	39,207	0.02	36,911	76.79
YFJS14	110,185	216.19	110,558	269.22	112,062	221.06	113,009	59.06	110,625	9.33	117,667	0.03	111,282	147.69
YFJS15	105,935	192.42	106,221	189.75	108,296	17.04	111,374	226.73	105,837	259.22	116,525	0.19	106,892	149.18
YFJS16	105,003	56.50	105,423	119.50	111,439	107.53	111,432	284.88	105,905	197.45	115,417	0.07	105,112	56.87
YFJS17	93,469	198.07	94,558	174.10	99,912	159.01	101,069	107.68	96,737	226.68	98,329	0.99	94,950	112.29
YFJS18	101,013	215.24	101,517	63.58	109,763	247.62	107,336	230.38	103,359	239.97	115,332	0.48	102,477	184.95
YFJS19	82,879	221.94	81,172	115.47	94,020	109.95	92,172	67.18	86,500	242.82	88,400	2.14	81,946	93.62
YFJS20	83,689	233.90	83,731	259.71	94,228	280.03	93,689	13.39	85,867	282.07	88,516	3.63	84,707	200.84
$\bar{C}_{\text {max }}$	61,867.60		61,917.95		64,734.40		64,638.30		62,637.45		65,752.50		62,186.80	
\#best	18		14		3		3		10		1		11	
gap(\%)	0.11		0.14		3.84		3.51		1.17		5.15		0.51	
$\overline{\mathrm{gap}}(\%)$	0.40		0.23		4.59		4.02		1.17		5.15		0.97	

Table 5: Results of applying the metaheuristics to the large-sized instances with learning rate $\alpha=0.1$.

	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
ce	$C_{\text {max }}$	Time												
DAFJS01	21,683	17.45	21,683	7.46	21,861	8.41	21,861	136.04	22,286	0.03	22,703	0.01	21,936	0.38
DAFJS02	24,235	48.48	24,235	55.62	24,618	0.05	24,571	4.00	24,875	0.14	24,477	0.00	25,141	0.51
DAFJS03	44,266	213.30	44,453	208.60	44,481	211.71	45,079	169.49	44,419	12.80	45,275	0.37	44,266	147.45
DAFJS04	44,713	54.08	44,938	53.17	44,713	298.64	45,644	29.88	44,821	1.41	46,807	0.28	44,816	239.37
DAFJS05	30,904	28.28	30,773	144.29	31,848	54.88	32,065	22.88	32,028	0.92	31,772	0.66	31,295	61.32
DAFJS06	30,602	65.94	30,553	16.14	31,994	90.56	31,768	145.27	31,521	5.17	31,039	0.52	31,216	44.70
DAFJS07	40,343	46.23	39,788	223.54	40,321	121.98	40,891	84.05	38,731	37.49	39,488	223.99	38,833	112.43
DAFJS08	45,636	273.46	45,784	218.76	45,955	9.16	46,589	7.49	45,162	133.36	46,129	119.13	45,302	128.92
DAFJS09	35,098	25.22	35,244	74.17	35,759	18.62	35,507	224.49	35,161	5.16	36,004	0.20	35,418	193.84
DAFJS10	37,326	238.28	37,172	198.27	37,736	257.38	37,856	76.13	36,791	293.02	38,453	0.75	37,183	11.88
DAFJS11	47,417	203.56	47,221	248.85	49,271	182.94	49,049	30.18	45,861	300.00	46,470	169.13	45,822	242.59
DAFJS12	45,613	256.81	45,394	45.36	48,195	14.33	47,896	195.90	44,167	232.32	43,932	259.97	43,227	261.22
DAFJS13	45,230	112.83	45,187	255.42	45,154	195.56	45,422	200.48	44,180	128.30	46,329	0.17	45,309	154.25
DAFJS14	50,958	250.28	50,897	103.42	51,082	235.59	50,954	267.23	49,611	171.05	51,800	0.36	50,555	271.75
DAFJS15	49,326	277.73	49,120	158.41	50,696	137.86	50,910	95.17	47,211	221.78	47,414	152.93	47,151	282.47
DAFJS16	50,300	40.01	49,896	227.89	53,242	121.42	54,087	243.46	48,972	297.39	48,312	169.85	47,661	169.18
DAFJS17	53,388	122.05	52,783	157.04	52,905	171.59	53,513	237.27	51,715	55.57	52,459	2.64	52,081	94.05
DAFJS18	54,313	275.00	54,237	103.14	54,569	292.99	55,154	147.54	52,624	164.38	54,008	1.39	53,942	183.68
DAFJS19	39,480	94.81	39,312	77.07	41,046	124.48	40,931	162.08	38,740	130.01	38,941	6.77	38,012	150.83
DAFJS20	49,099	259.17	49,226	160.00	49,290	184.19	50,041	197.61	48,088	230.79	49,274	0.55	47,680	282.84
DAFJS21	54,311	5.09	54,163	118.65	54,851	216.71	55,002	20.65	52,681	264.76	53,996	9.95	53,196	291.79
DAFJS22	46,679	213.56	46,468	161.65	48,169	285.94	47,938	42.82	46,088	288.61	44,851	59.63	45,011	251.83
DAFJS23	37,459	248.79	36,733	262.51	38,106	230.28	38,487	243.86	36,137	166.72	36,190	13.53	36,373	49.89
DAFJS24	42,129	124.24	41,596	275.85	43,617	113.82	43,693	295.60	40,079	216.52	41,307	26.26	40,453	297.11
DAFJS25	53,096	203.63	52,727	274.34	54,913	107.96	55,011	220.93	52,604	264.38	50,965	248.46	50,887	116.74
DAFJS26	52,492	211.10	52,147	218.93	54,563	21.44	54,439	241.66	50,006	140.87	50,465	74.69	50,062	110.48
DAFJS27	57,249	244.03	56,428	299.00	58,674	259.45	59,078	30.84	55,599	293.44	55,398	29.41	55,291	270.23
DAFJS28	41,928	91.85	42,013	119.00	42,847	90.69	43,197	208.33	40,686	26.31	41,780	30.78	40,431	212.68
DAFJS29	49,863	282.73	49,538	162.49	51,391	213.00	51,881	188.89	48,953	155.28	48,942	2.58	47,091	293.59
DAFJS30	42,001	145.84	42,138	130.38	43,276	119.87	43,617	4.51	40,839	246.80	40,746	63.14	40,325	137.56
$\begin{gathered} C_{\max } \\ \text { \#best } \\ \operatorname{gap}(\%) \\ \overline{\operatorname{gap}}(\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 43,904.57 \\ 5 \\ 2.91 \\ 3.49 \\ \hline \end{gathered}$		$\begin{gathered} 43,728.23 \\ 4 \\ 2.52 \\ 3.15 \end{gathered}$		$\begin{gathered} 44,838.10 \\ 1 \\ 5.12 \\ 5.99 \\ \hline \end{gathered}$		$\begin{gathered} 45,071.03 \\ 0 \\ 5.62 \\ 6.30 \\ \hline \end{gathered}$		$\begin{gathered} \hline 43,021.20 \\ 11 \\ 1.13 \\ 1.13 \\ \hline \end{gathered}$		$\begin{gathered} 43,524.20 \\ 1 \\ 2.27 \\ 2.27 \end{gathered}$		$\begin{gathered} 42,865.53 \\ 12 \\ 0.74 \\ 1.69 \\ \hline \end{gathered}$	
instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Ti	$C_{\text {max }}$	T	$C_{\text {max }}$	Ti	$C_{\text {max }}$	Time	$C_{\text {max }}$	Ti	$C_{\text {max }}$	Time	max	me
YFJS01	61,606	1.10	61,606	1.12	64,456	0.19	62,327	9.05	61,606	3.43	62,366	0.05	62,124	2.24
YFJS02	64,172	0.59	64,172	1.35	65,967	0.99	66,394	0.87	64,172	1.65	64,805	0.16	64,172	28.72
YFJS03	30,073	0.36	30,073	0.26	30,073	0.08	30,073	0.02	30,073	0.01	30,073	0.00	30,073	0.59
YFJS04	32,670	0.51	32,670	0.37	33,302	226.25	32,802	166.10	32,670	1.53	33,302	0.01	32,670	0.65
YFJS05	37,182	7.66	37,182	6.16	37,670	0.33	37,255	0.79	37,182	4.32	38,682	0.01	37,682	0.68
YFJS06	36,749	68.53	36,749	11.18	37,293	94.00	36,812	17.99	36,749	137.03	37,943	0.17	37,107	1.01
YFJS07	36,611	102.75	36,611	57.41	37,159	3.75	37,159	8.11	36,611	77.85	37,159	0.34	36,611	1.07
YFJS08	30,184	0.23	30,184	0.51	30,267	0.46	30,384	227.80	30,267	1.93	32,595	0.00	30,184	1.10
YFJS09	21,363	12.05	21,363	1.63	21,363	130.79	21,363	141.45	21,363	10.87	21,363	0.89	21,450	2.64
YFJS10	34,364	10.57	34,364	8.30	35,389	0.03	34,689	11.28	35,251	0.14	35,116	0.00	34,364	38.75
YFJS11	43,454	158.07	43,544	164.27	45,613	12.83	45,649	33.90	44,094	0.53	46,983	0.00	43,454	81.93
YFJS12	42,232	177.44	42,397	131.72	45,207	91.71	44,084	69.04	42,597	221.30	46,047	0.01	42,232	4.28
YFJS13	33,875	34.01	33,875	18.97	34,401	4.99	34,240	50.77	33,875	34.33	34,335	0.20	33,875	3.48
YFJS14	92,522	58.55	93,435	164.41	96,665	218.81	96,415	81.18	93,409	43.69	97,155	0.11	93,812	117.48
YFJS15	91,555	188.91	91,006	203.20	96,697	210.91	97,126	71.71	90,801	216.11	95,840	0.40	91,216	253.51
YFJS16	90,957	133.94	90,591	138.68	95,294	289.35	96,871	283.70	91,357	103.88	100,478	0.11	90,266	150.82
YFJS17	78,747	203.06	78,585	294.38	85,736	0.00	85,736	0.00	78,982	276.75	83,631	0.18	79,177	283.88
YFJS18	85,415	255.16	85,191	56.76	92,382	86.94	94,410	189.36	92,710	70.33	97,864	0.04	86,119	263.05
YFJS19	70,527	299.05	68,718	122.25	78,364	245.26	79,427	14.98	74,284	184.84	71,701	8.45	69,662	57.52
YFJS20	72,991	221.56	70,286	170.65	80,074	29.02	81,808	36.17	71,131	268.24	74,652	0.97	73,215	138.10
$\bar{C}_{\text {max }}$	54,362.45		54,130.10		57,168.60		57,251.20		54,959.20		57,104.50		54,473.25	
\#best	14		15						10				10	
gap(\%)	0.43		0.11		4.63		4.47		1.30		4.77		0.64	
gap (\%)	0.80		0.26		5.67		4.97		1.30		4.77		1.36	

Table 6: Results of applying the metaheuristics to the large-sized instances with learning rate $\alpha=0.2$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
DAFJS01	19,716	42.15	19,716	93.26	19,969	181.01	19,994	1.14	20,137	0.35	21,082	0.01	20,092	0.59
DAFJS02	22,147	44.81	22,147	33.01	22,404	1.20	22,236	0.04	22,191	0.44	22,429	0.00	22,695	25.70
DAFJS03	38,916	229.98	38,994	282.80	39,280	94.82	40,454	111.31	38,928	105.79	40,724	7.17	38,853	42.33
DAFJS04	39,117	275.95	39,492	39.94	39,358	60.46	39,943	283.63	39,347	1.53	40,425	0.53	39,285	246.66
DAFJS05	27,192	175.00	27,221	266.61	27,438	55.27	28,152	92.66	27,401	0.83	28,767	0.14	27,453	0.86
DAFJS06	26,565	224.96	26,552	138.78	27,706	107.01	27,111	240.56	26,535	10.26	28,134	0.06	26,763	23.70
DAFJS07	35,287	15.78	35,262	252.14	36,318	168.90	36,309	197.95	35,735	8.84	35,074	74.05	34,493	271.96
DAFJS08	39,120	225.81	39,413	106.90	39,394	121.44	40,345	135.78	38,629	192.08	39,620	201.57	38,605	53.16
DAFJS09	30,627	93.31	30,945	4.12	31,421	14.02	31,004	255.55	30,353	79.14	32,242	0.11	30,833	46.92
DAFJS10	30,880	131.80	31,191	202.19	31,544	192.89	31,802	279.43	30,983	182.18	31,853	1.87	31,252	197.99
DAFJS11	40,212	68.69	40,549	187.16	41,870	242.15	42,027	84.21	39,227	253.69	39,751	124.91	38,537	252.92
DAFJS12	38,128	83.41	38,671	61.78	40,625	271.43	40,937	93.63	37,351	174.33	37,394	263.18	37,030	286.43
DAFJS13	37,672	48.20	37,699	163.35	37,806	244.56	38,010	273.30	37,324	59.41	38,811	0.32	37,197	242.77
DAFJS14	42,469	275.82	42,260	88.40	42,350	198.57	42,507	278.76	41,203	164.66	41,969	0.43	41,854	234.65
DAFJS15	42,125	156.71	42,172	190.76	43,215	186.52	43,776	40.58	40,092	252.92	40,345	40.70	40,465	180.67
DAFJS16	43,378	39.90	42,572	191.37	45,354	201.36	45,439	214.16	41,337	298.16	41,201	18.64	40,487	102.62
DAFJS17	43,350	289.76	43,143	193.23	43,698	248.64	43,121	173.83	42,367	156.85	42,622	6.69	43,083	219.02
DAFJS18	44,635	0.79	45,043	140.76	45,611	263.32	45,211	76.37	43,899	105.90	43,981	0.84	44,417	250.00
DAFJS19	34,218	89.09	34,104	52.36	35,401	198.41	35,425	94.86	33,501	43.82	34,187	0.66	33,250	238.49
DAFJS20	41,035	31.13	41,242	196.95	41,550	118.66	42,268	165.12	40,059	214.87	40,245	8.86	39,812	262.00
DAFJS21	45,000	50.80	44,519	215.72	45,409	141.46	44,883	249.15	44,190	297.58	43,840	25.11	43,684	173.57
DAFJS22	37,634	290.20	37,610	55.93	38,705	135.46	39,392	124.86	37,083	120.04	36,276	131.71	36,866	124.16
DAFJS23	33,077	95.58	32,960	10.78	33,756	107.08	33,543	44.93	31,860	39.67	32,412	15.90	32,017	188.80
DAFJS24	36,252	239.59	36,121	68.70	37,838	92.47	37,964	29.84	35,122	299.58	35,273	54.63	34,422	268.69
DAFJS25	44,698	215.09	45,061	277.98	46,361	44.37	47,007	1.62	43,654	198.69	43,176	115.77	43,050	244.18
DAFJS26	44,105	263.42	43,877	72.88	47,208	44.13	46,799	79.24	43,025	189.92	42,082	249.03	42,080	211.51
DAFJS27	47,643	81.38	47,648	269.30	48,748	188.12	49,400	275.14	46,192	284.20	46,887	17.37	46,510	204.55
DAFJS28	36,496	246.88	36,494	299.25	37,703	157.63	37,808	192.62	35,694	31.02	36,285	31.11	35,637	191.18
DAFJS29	42,923	148.58	43,334	244.96	45,174	110.20	44,735	40.40	42,218	267.02	42,648	22.61	41,410	281.11
DAFJS30	37,051	148.59	37,006	190.53	38,067	194.66	37,421	258.42	35,609	250.85	35,593	14.62	35,242	283.70
$C_{\text {max }}$	37,388.93		37,433.93		38,376.03		38,500.77		36,708.20		37,177.60		36,579.13	
\#best	5		2		0		0		8		1		16	
gap(\%)	2.58		2.71		5.26		5.57		0.89		2.38		0.59	
gap (\%)	3.31		3.17		6.04		6.23		0.89		2.38		1.53	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
YFJS01	55,128	1.60	55,128	1.29	55,458	0.18	56,790	2.84	55,693	0.92	57,900	0.02	55,128	0.73
YFJS02	57,187	1.20	57,187	2.25	59,000	0.32	58,470	0.21	57,187	1.60	57,634	0.18	57,187	10.48
YFJS03	27,686	0.03	27,686	0.03	27,686	0.00	27,686	0.01	27,686	0.02	28,772	0.00	27,686	0.47
YFJS04	29,692	0.29	29,692	1.66	29,692	23.14	30,683	160.12	29,692	0.20	29,692	0.05	29,692	0.49
YFJS05	33,736	2.48	33,736	3.45	34,430	2.41	33,856	182.52	33,736	12.59	35,577	0.01	33,736	0.90
YFJS06	33,276	35.79	33,276	111.43	33,557	23.84	33,557	6.56	33,276	32.04	33,892	0.09	33,892	0.78
YFJS07	33,011	91.58	33,011	82.50	33,352	30.98	33,059	126.97	33,092	4.76	33,317	0.01	33,092	0.55
YFJS08	28,192	0.35	28,192	0.62	28,597	0.07	28,355	0.14	28,192	0.09	28,638	0.00	28,192	0.82
YFJS09	20,077	3.69	20,077	2.38	20,077	33.66	20,077	22.83	20,077	9.58	20,077	0.23	20,121	165.05
YFJS10	31,559	33.20	31,559	119.22	32,582	0.72	32,159	0.57	31,998	0.77	33,111	0.00	31,559	74.40
YFJS11	40,204	102.14	40,103	105.15	41,079	136.76	40,619	20.45	40,350	6.53	41,547	0.00	40,319	2.58
YFJS12	38,003	173.04	38,003	154.12	39,993	21.82	38,618	35.05	38,392	268.63	41,620	0.02	38,392	103.93
YFJS13	30,711	88.73	30,711	89.29	31,823	1.59	31,518	55.89	30,714	180.10	33,449	0.01	30,874	1.20
YFJS14	79,051	186.80	79,386	200.32	81,558	137.18	84,481	176.28	78,762	142.02	83,816	0.18	79,486	38.18
YFJS15	79,374	139.96	78,660	198.52	84,181	133.33	84,277	230.45	79,092	191.45	87,555	0.10	78,545	69.16
YFJS16	78,426	106.57	78,333	198.20	83,753	2.48	85,453	284.11	78,491	112.32	83,317	0.43	78,004	83.92
YFJS17	66,188	295.79	66,029	82.47	73,682	0.00	73,682	0.00	66,802	275.82	71,161	0.04	66,388	158.14
YFJS18	73,732	298.52	71,791	115.35	80,279	246.11	82,201	17.58	76,031	298.20	77,670	1.43	73,078	243.24
YFJS19	61,283	149.66	58,933	123.03	70,115	118.17	68,545	185.31	60,919	297.73	61,788	4.36	59,633	299.10
YFJS20	60,960	148.73	59,846	186.72	68,963	197.07	71,916	244.37	60,137	237.53	62,668	1.26	61,277	170.47
$\bar{C}_{\text {max }}$	47,873.80		47,566.95		50,492.85		50,800.10		48,015.95		50,160.05		47,814.05	
\#best	12		17		3		2		8		2		9	
gap(\%)	0.55		0.07		4.97		5.23		0.83		4.84		0.56	
$\overline{\operatorname{gap}}(\%)$	0.94		0.25		5.87		5.98		0.83		4.84		1.39	

Table 7: Results of applying the metaheuristics to the large-sized instances with learning rate $\alpha=0.3$.
6. and 7, i.e., it is the average of the best makespan over the five runs for each method/instance pair. Using this value in the comparison is harmful for the TS-RN and TS-CN methods. Note that if, we consider five minutes of CPU time, the TN-RN method is the second best, even using this unfair measure in the comparison. Figure 4 shows the same thing except that, for methods that solve each instance five times, instead of considering the best of the five makespan, we consider the average of the five makespan. With this measure, and considering that we have five minutes of CPU time available, the TS-RN method appears as the best. The ranking of all the other methods, considering the five-minutes CPU time budget, remains the same.

Figure 4: This figure is similar to Figure 3. The difference is that, for methods that solve each instance five times, instead of considering the best of the five makespan, we consider the average of the five makespan. This measure is more fair when in the comparison there are methods that do not posses a random ingredient and, therefore, are run only one time per instance.

Figures 3 and 4 show that the ranking of the methods in relation to the average quality of the solutions found is affected by the time limit used in the stopping criterion, since shorter times would yield a different ranking. On the other hand, the figures also show that longer times would have little effect on the comparison. (Note that the time axis in the figures is in logarithmic scale and that the methods almost stabilize at five minutes). Figures 3 and 4 and Table 13 clearly show that GRASP-RN, GRASP-CN and TS-CN were the worst performing methods. There seems to be an explanation for that: lack of diversification. In the case of TS-CN, the difference in efficacy is remarkable when compared to TS-RN. It is worth noting that the cropped neighborhood is radically smaller than the reduced neighborhood and this fact limits the ability of the tabu search to escape from local solutions. Something similar occurs in the two versions of GRASP, in which local searches are initiated from solutions constructed by a randomized
version of the constructive heuristics ECT and EST. Apparently, the randomization of these constructive heuristics was not able to generate sufficiently diverse solutions and repeated runs of the local search ended up repeatedly converging to the same local solutions. On the other side of the spectrum, TS-RN and SA performed outstandingly well, followed closely by the two versions of ILS. The fact that SA (see Figures 3 and (4) takes a little longer to get good quality solutions is entirely expected, since it is the method that less explores the neighborhood of the current solution in the search for a new solution. Regardless of anything else, it is important to note that all metaheuristics substantially improved the solutions delivered by the constructive heuristics and found by the local search. The constructive heuristics EST and ECT deliver solutions that are, on average, 32.36% and 33.01% worse than the best solutions found, respectively. The local search with the reduced neighborhood, which considered as a stand-alone method finds solutions of better quality than the local search with the cropped neighborhood, provides solutions that are on average 16.18% worse than the best solutions found. On the other hand, all metaheuristics deliver solutions that are, on average, at no more than 6% of the best solutions found. If we discard the three worst performing methods, this number drops to approximately 2%. The highlight is for TS-RN and SA, which deliver solutions, on average, at approximately 1% and 1.5% of the best solutions found. The two versions of ILS deliver solutions that at approximately 2% of the best solutions found, in average. SA also stands out for the number of best solutions obtained, 71 out of a total of 150 , followed closely by ILS-RN and ILS-CN, with 59 and 58, respectively. TS-RN finds 55 best solutions with the merit of having run only once for each instance, while the others run five times and the best of the five is considered in these statistics.

In order to strengthen the comparison between the methods, we applied the Wilcoxon 46] test for each pair of methods, with a significance level of $\alpha=0.05$, to accept or reject the null hypothesis "the samples of the two methods come from the same distribution" or, equivalently, "the difference between the samples of the two methods follows a symmetrical distribution around zero". In this test we left out the GRASP-RN and GRASP-CN methods, which clearly performed worse than all the others. Table 8 shows the results. Suppose that two methods M_{1} and M_{2} are compared and that these methods, when applied to a set of N instances, find solutions with makespan $c_{1 i}$ and $c_{2 i}$, respectively, for $i=1, \ldots, N$. Instances i with $c_{2 i}=c_{1 i}$ are eliminated from the test. For simplicity, let's assume that N already represents the number of instances in which the methods found different makespans. The test assigns each instance i a weight R_{i} which corresponds to the position of the instance when they are ordered from lowest to highest by the value of $\left|c_{2 i}-c_{1 i}\right|$. In the case of ties, R_{i} corresponds to the average of the positions of the tied values. With the values of R_{i} for each instance, we calculate the statistic

$$
W=R^{+}-R^{-}, \text {where } R^{+}=\sum_{\left\{i \mid c_{2 i}>c_{1 i}\right\}} R_{i} \text { and } R^{-}=\sum_{\left\{i \mid c_{1 i}>c_{2 i}\right\}} R_{i} .
$$

Under the null hypothesis and for large values of N, the value of W is divided by its variance $N(N+1)(2 N+1) / 6$ to obtain z. In a two-tailed test, the null hypothesis is rejected if $|z|>$ $z_{\text {critical }}(\alpha / 2)$ or, equivalently, if $p<\alpha$. The table shows, for each pair of methods compared, the values of R^{+}, R^{-}, and the p-value of z. The comparison considering a CPU time limit of 10 seconds shows that ILS-RN is worse than the other four methods compared and that the other four methods are equivalent to each other. This coincides with Figure 4, which uses the
average makespan as a measure of comparison. The comparison considering a CPU time limit of 5 minutes shows that all the methods are different. Furthermore, the two-by-two comparison makes it possible to construct a ranking between the methods in which TS-RN is the best of all, followed by SA, ILS-CN, ILS-RN and TS-CN in that order. This ranking also coincides with that shown on the right-hand side of Figure 4, which uses the average makespan as a criterion.

comparison	0 seconds of CPU time limit		5 minutes of CPU time limit			
	R^{+}	R^{-}	p-value	R^{+}	R^{-}	p-value
ILS-RN versus ILS-CN	804	7,974	0.000	1,402	5,385	0.000
ILS-RN versus TS-RN	2,544	6,636	0.000	1,692	6,437	0.000
ILS-RN versus TS-CN	3,844	6,887	0.003	6,311	4,274	0.044
ILS-RN versus SA	3,579	7,006	0.001	3,221	7,075	0.000
ILS-CN versus TS-RN	5,036	4,009	0.254	1,996	5,879	0.000
ILS-CN versus TS-CN	5,296	5,289	0.994	6,777	3,808	0.003
ILS-CN versus SA	5,624	4,961	0.513	4,102	6,051	0.047
TS-RN versus TS-CN	5,015	5,570	0.584	9,533	1,052	0.000
TS-RN versus SA	5,623	4,962	0.514	7,142	3,443	0.000
TS-CN versus SA	6,452	4,724	0.102	1,939	9,236	0.000

Table 8: Details of the Wilcoxon test comparing each pair of methods, when applied to the large-sized instances, to accept or reject the null hypothesis "the difference between the two methods follows a symmetrical distribution around zero".

We close this section by analyzing the behavior of the seven methods in the seven large-sized instances for which proved optimal solutions were reported in 4. Table 9 shows the results. The table shows the instance name and instance learning rate for the seven instances for which the optimal value $C_{\text {max }}^{\star}$ is known. Then, for each method, it shows, as in the previous tables, when applicable, the best makespan found over the five runs in each of these instances. It can be seen that ILS-RN, ILS-CN and SA found the optimal solutions in all the seven instances, followed by TS-RN that found six out of the seven optimal solutions. Independently of finding the optimal solutions, appart from TS-CN, the methods found solutions with an average gap to the optimal solution smaller than 1%. It must be highlighted that ILS-RN and ILS-CN found the optimal solutions in all the five runs of each instance. An evidence of this is the line "gap to optimal" that exhibits a 0.0% gap.

4.3 Experiments with the metaheuristics in the small-sized instances

In this section we analyze the behavior of the metaheuristics on the small-sized instances. It is important to note that for all metaheuristics we considered their parameters exactly as defined in the previous section, i.e., with the calibration done for the large-sized instances. Tables A1, A2, and A3 in the Appendix show the results for the instances with learning effect rate $\alpha \in\{0.1,0.2,0.3\}$, respectively. As in the case of the large-sized instances, a summary consolidating the data of Tables A1, A2, and A3 can be seen in the middle of Table 13. Unlike in the large-sized instances, the ILS-RN, ILS-CN, GRASP-RN, GRASP-CN, GRASP-CN, TS-RN and SA methods stand out in terms of performance, while only TS-CN underperforms. Of partic-

instance	α	$C_{\max }^{\star}$	ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA
YFJS03	0.1	32,538	32,538	32,538	32,538	32,538	32,538	33,174	32,538
YFJS04	0.1	35,883	35,883	35,883	36,946	35,883	35,883	37,340	35,883
YFJS08	0.1	32,573	32,573	32,573	32,623	32,655	32,573	34,452	32,573
YFJS03	0.2	30,073	30,073	30,073	30,073	30,073	30,073	30,073	30,073
YFJS08	0.2	30,184	30,184	30,184	30,267	30,384	30,267	32,595	30,184
YFJS03	0.3	27,686	27,686	27,686	27,686	27,686	27,686	28,772	27,686
YFJS08	0.3	28,192	28,192	28,192	28,597	28,355	28,192	28,638	28,192
\#optimal	7	7	3	4	6	1	7		
gap to optimal (\%)	0.00	0.00	0.69	0.21	0.04	3.61	0.00		
gap to optimal (\%)	0.00	0.00	0.73	0.31	0.04	3.61	0.24		

Table 9: Performance of the metaheuristics in the seven large-sized instances for which proved optimal solutions are known.
ular interest is the comparison of the performance of the metaheuristics in the 173 small-sized instances, out of a total of 180 , for which optimal solutions were reported in [4]. Table 10 shows this comparison. In the table, for each method, we show the number of instances in which the method found an optimal solution (\#optimal). We also show the average gap in relation to the optimal solution when, for each method and instance, we consider the best solution of those found in the five runs of that method/instance pair (line "gap to optimal"). Finally, in another line of the table we show the gap in relation to the optimal solution when, for a method/instance pair, we consider the average makespan of the five runs of that pair (line "gap to optimal"). The numbers in the table show that ILS-RN and ILS-CN found optimal solutions in all 173 instances and, moreover, in all five runs of each method in each instance. Leaving aside TS-CN, the other methods also perform well, finding a large number of optimal solutions and with average gaps relative to the optimal solution of less than 1%.

4.4 Experiments with classical instances without sequencing flexibility

To the authors' knowledge, no other method has been developed so far that applies to the exact problem considered in this paper. For this reason, in order to be able to relate the developed methods with those existing in the literature, we decided to apply them to a problem that is a particular case of the problem considered. We are referring to the FJS with position-based learning effect but without sequencing flexibility. A method that also applies to this problem and minimizes the makespan was developed in [44]. The developed method is a hybrid metaheuristic that mixes genetic algorithms with variable neighborhood search with affinity function, thus named GVNSWAF. This method was chosen because, its careful and detailed description allowed us to reimplement it in C++, the same language in which the introduced methods were implemented. In [44, for lack of a better option, random instances were considered, and the Taguchi's robust design method was used to determine the best method's parameters. In our experiments, we considered the parameters determined in [44. In that respect, the comparison is fair, since neither method was specifically calibrated for the instances that were considered in this section. Our implementation of GVNSWAF is also available for download at

			ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA	
	DA-type	\#optimal	30	30	28	29	22	7	27	
		gap to optimal (\%)	0.00	0.00	0.14	0.13	0.95	2.61	0.10	
\circ		gap to optimal (\%)	0.00	0.00	0.18	0.17	0.95	2.61	0.35	
$\begin{aligned} & \\| \\ & \nabla \end{aligned}$	Y-type	\#optimal	30	30	28	29	25	10	29	
		gap to optimal (\%)	0.00	0.00	0.03	0.02	0.67	2.92	0.02	
		$\overline{\mathrm{gap}}$ to optimal (\%)	0.00	0.00	0.39	0.06	0.67	2.92	0.18	
$\begin{aligned} & \text { N. } \\ & \text { O } \\ & \text { O} \end{aligned}$	DA-type	\#optimal	28	28	26	27	20	6	26	
		gap to optimal (\%)	0.00	0.00	0.04	0.03	1.13	2.63	0.02	
		gap to optimal (\%)	0.00	0.00	0.13	0.16	1.13	2.63	0.31	
	Y-type	\#optimal	30	30	29	28	24	7	30	
		gap to optimal (\%)	0.00	0.00	0.15	0.05	0.54	3.36	0.00	
		gap to optimal (\%)	0.00	0.00	0.43	0.17	0.54	3.36	0.24	
	DA-type	\#optimal	27	27	27	27	19	5	26	
		gap to optimal (\%)	0.00	0.00	0.00	0.00	0.81	2.99	0.03	
		gap to optimal (\%)	0.00	0.00	0.13	0.11	0.81	2.99	0.48	
	Y-type	\#optimal	28	28	25	28	25	4	28	
		gap to optimal (\%)	0.00	0.00	0.11	0.00	0.37	3.58	0.00	
		gap to optimal (\%)	0.00	0.00	0.29	0.14	0.37	3.58	0.13	
Summary		\#optimal	173	173	163	168	135	39	166	
		gap to optimal (\%)	0.00	0.00	0.08	0.04	0.74	3.01	0.03	
		gap to optimal (\%)	0.00	0.00	0.26	0.13	0.74	3.01	0.28	

Table 10: Behavior of the seven metaheuristics on the 173 small-sized instances for which a proven optimal solution is known.

https://github.com/kennedy94/FJS.

In the experiments of this section, we consider 35 instances of the classic FJS from the literature [12, 20], without sequencing flexibility, to which we added the position-based learning effect. As we considered learning effect rates $\alpha \in\{0.1,0.2,0.3\}$, we have in total 105 instances. On this set of instances, we compared the methods introduced in the present work with the method introduced in [44], which we denote GVNSWAF hereafter. Since the method has random components, it was run five times on each instance, as well as the methods introduced in the present work that contain random components as well. Tables A4, A5, and A6 in the Appendix show the results. A summary of the results from these tables can be seen at the bottom of Table 13 . Table 13 shows that the methods that stand out are ILS-RN and ILS-CN. It also shows that the ILS-RN, ILS-CN and SA methods have superior performance to the GVNSWAF method. The GVNSWAF method has a performance similar to the performance of GRASP-RN, GRASP-CN and TS-RN methods and only outperforms the TS-CN methods which already showed the worst performance among all the considered methods. The Wilcoxon test, details of which are shown in the Table 11 shows that, with a CPU time limit of 10 seconds, the performance of GVNSWAF is equal to the performance of TS-CN, and GVNSWAF is outperformed by all the other six methods. With the CPU time limit of 5 minutes, GVNSWAF outperforms only TS-CN and is equal to GRASP-RN, but is outperformed by all the other five methods.

As a final experiment, we tried to solve with an exact commercial solver models of these classical instances to obtain proven optimal solutions. We were able to obtain proven optimal
solutions for 47 instances, out of the total of 105 instances. Table 12 compares the solutions obtained by the eight methods in relation to the known optima on that set of 47 instances. Again, the ILS-RN and ILS-CN methods found all optimal solutions in all five runs of each method/instance pair. The GVNSWAF method also achieved the same result. Apart from TS-CN, all others found solutions with average gap less than 1%.

comparison	10 seconds of CPU time limit		5 minutes of CPU time limit			
	R^{+}	R^{-}	p-value	R^{+}	R^{-}	p-value
ILS-RN versus GVNSWAF	2,262	153	0.000	2,004	12	0.000
ILS-CN versus GVNSWAF	2,415	0	0.000	2,016	0	0.000
GRASP-RN versus GVNSWAF	1,792	623	0.000	1,016	1,064	0.872
GRASP-CN versus GVNSWAF	2,193	222	0.000	1,327	689	0.029
TS-RN versus GVNSWAF	2,132	718	0.000	1,628	787	0.012
TS-CN versus GVNSWAF	1,991	1,412	0.181	1,081	2,079	0.015
SA versus GVNSWAF	2,187	228	0.000	1,953	532	0.000

Table 11: Details of the Wilcoxon test comparing each introduced method versus GVNSWAF, when applied to classical instances of the FJS with learning effect but without sequencing flexibility, to accept or reject the null hypothesis "the difference between the two methods follows a symmetrical distribution around zero".

In addition to the tests described above, we tested 168 additional instances of the classical FJS from the literature [7, 17, 28] which, considering $\alpha \in\{0.1,0.2,0.3\}$, amounted to 504 . The results essentially confirmed what we have already shown. For more details, see [3].

5 Conclusions

In this paper we introduced a local search and four trajectory metaheuristics for the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect. For the local search, we showed that, in the presence of learning effect, the classical approach of considering reallocations of operations in the critical path only fails to consider potentially better neighbors than the current solution. Consequently, we proposed a new neighborhood reduction that does not eliminate potentially better neighbors and cuts the neighborhood by approximately 50%. We further proposed a neighborhood cutoff that reduces the neighborhood size significantly (by about an order of magnitude) and finds solutions that are at most 1% worse. The introduced local searches and/or neighborhoods were used in the development of four trajectory metaheuristics. We performed extensive numerical experiments and showed that variants of ILS, TS, and SA stands out for its effectiveness and efficiency. As a whole, we build a test suite that can be used in the development of future work. The methods introduced and the solutions found are freely available.

As future work, we intend to consider different learning effects, which do not depend only on the position of the operation in the machine to which it was attributed. We also intend to consider objective functions that take into account the energy consumption (green scheduling).

Instance	α	$C_{\max }^{\star}$	ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA	GVNSWAF
mfjs01	0.10	45,306	45,306	45,306	45,306	45,306	46,264	46,264	45,306	45,306
mfjs02	0.10	42,986	42,986	42,986	42,986	42,986	42,986	42,986	42,986	42,986
mfjs03	0.10	45,331	45,331	45,331	45,331	45,331	45,331	45,331	45,331	45,331
mfjs04	0.10	52,012	52,012	52,012	52,480	52,012	52,012	54,075	52,630	52,012
mfjs05	0.10	47,630	47,630	47,630	47,630	47,630	47,630	47,630	49,988	47,630
mfjs06	0.10	59,523	59,523	59,523	59,523	59,523	59,523	60,854	60,402	59,523
sfjs01	0.10	6,459	6,459	6,459	6,459	6,459	6,459	6,459	6,459	6,459
sfjs02	0.10	10,271	10,271	10,271	10,271	10,271	10,271	10,271	10,271	10,271
sfjs03	0.10	20,623	20,623	20,623	20,623	20,623	20,623	21,716	20,623	20,623
sfjs04	0.10	33,429	33,429	33,429	33,429	33,429	33,429	34,483	33,429	33,429
sfjs05	0.10	11,006	11,006	11,006	11,006	11,006	11,006	12,107	11,006	11,006
sfjs06	0.10	29,926	29,926	29,926	29,926	29,926	31,835	32,057	29,926	29,926
sfjs07	0.10	37,824	37,824	37,824	37,824	37,824	37,824	37,824	37,824	37,824
sfjs08	0.10	23,842	23,842	23,842	23,842	23,842	23,842	23,842	23,842	23,842
sfjs09	0.10	19,406	19,406	19,406	19,406	19,406	19,406	19,406	19,406	19,406
sfjs10	0.10	49,368	49,368	49,368	49,368	49,368	49,368	49,368	49,368	49,368
\#optimal	16	16	15	16	14	9	13	16		
gap to optimal $(\%)$	0.00	0.00	0.06	0.00	0.53	2.12	0.48	0.00		
gap to optimal (\%)	0.00	0.00	0.32	0.18	0.53	2.12	0.69	0.00		

Instance	α	$C_{\max }^{\star}$	ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA	GVNSWAF
mfjs01	0.20	43,208	43,208	43,208	43,208	43,208	43,208	44,880	43,208	43,208
mfjs02	0.20	41,273	41,273	41,273	41,273	41,273	41,273	45,208	41,273	41,273
mfjs03	0.20	43,412	43,412	43,412	43,412	43,412	43,412	43,412	43,412	43,412
mfjs04	0.20	47,717	47,717	47,717	49,024	49,024	47,717	47,717	49,921	47,717
mfjs05	0.20	45,670	45,670	45,670	45,670	45,670	45,670	45,670	45,670	45,670
mfjs06	0.20	56,743	56,743	56,743	56,743	57,005	57,093	57,889	57,055	56,743
sfjs01	0.20	6,328	6,328	6,328	6,328	6,328	6,328	6,328	6,328	6,328
sfjs02	0.20	9,872	9,872	9,872	9,872	9,872	9,872	9,872	9,872	9,872
sfjs03	0.20	19,281	19,281	19,281	19,281	19,281	19,281	20,027	19,281	19,281
sfjs04	0.20	31,553	31,553	31,553	31,553	31,553	32,472	32,472	31,553	31,553
sfjs05	0.20	10,198	10,198	10,198	10,198	10,198	10,198	11,209	10,198	10,198
sfjs06	0.20	28,024	28,024	28,024	28,024	28,024	28,024	28,024	28,024	28,024
sfjs07	0.20	36,075	36,075	36,075	36,075	36,075	36,075	36,075	36,075	36,075
sfjs08	0.20	22,515	22,515	22,515	22,515	22,515	22,515	22,515	22,515	22,515
sfjs09	0.20	17,552	17,552	17,552	17,552	17,552	17,552	17,552	17,552	17,552
sfjs10	0.20	47,323	47,323	47,323	47,323	47,323	47,323	47,323	47,323	47,323
\#optimal	16	16	15	14	14	10	14	16		
gap to optimal (\%)	0.00	0.00	0.17	0.20	0.22	2.01	0.32	0.00		
gap to optimal (\%)	0.00	0.00	0.28	0.21	0.22	2.01	0.74	0.00		

Instance	α	$C_{\text {max }}^{\star}$	ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA	GVNSWAF
mfjs01	0.30	40,508	40,508	40,508	40,508	40,508	42,562	41,785	40,508	40,508
mfjs02	0.30	38,996	38,996	38,996	38,996	38,996	38,996	39,834	38,996	38,996
mfjs03	0.30	41,318	41,318	41,318	41,318	41,318	41,318	44,254	41,318	41,318
mfjs04	0.30	44,869	44,869	44,869	44,869	46,048	46,048	46,558	46,048	44,869
mfjs05	0.30	44,376	44,376	44,376	44,376	44,738	44,376	44,738	44,376	44,376
sfjs01	0.30	6,206	6,206	6,206	6,206	6,206	6,206	6,206	6,206	6,206
sfjs02	0.30	9,498	9,498	9,498	9,498	9,498	9,498	9,498	9,498	9,498
sfjs03	0.30	18,062	18,062	18,062	18,062	18,062	18,062	18,062	18,062	18,062
sfjs04	0.30	29,852	29,852	29,852	29,852	29,852	30,648	30,648	29,852	29,852
sfjs05	0.30	9,465	9,465	9,465	9,465	9,465	9,465	10,288	9,465	9,465
sfjs06	0.30	26,281	26,281	26,281	26,281	26,281	26,281	26,281	26,281	26,281
sfjs07	0.30	34,443	34,443	34,443	34,443	34,443	34,443	34,443	34,443	34,443
sfjs08	0.30	21,309	21,309	21,309	21,309	21,309	21,715	21,309	21,309	21,309
sfjs09	0.30	15,973	15,973	15,973	15,973	15,973	15,973	15,973	15,973	15,973
sfjs10	0.30	45,450	45,450	45,450	45,450	45,450	45,450	45,450	45,450	45,450
\#optimal			15	15	15	13	11	8	14	15
gap to optimal (\%)			0.00	0.00	0.00	0.23	0.82	1.89	0.18	0.00
gap to optimal (\%)			0.00	0.00	0.18	0.26	0.82	1.89	0.33	0.00
\#optimal			47	47	45	43	39	27	41	47
gap to optimal (\%)			0.00	0.00	0.08	0.14	0.52	2.01	0.33	0.00
gap to optimal (\%)			0.00	0.00	0.26	0.21	0.52	2.01	0.59	0.00

Table 12: Performance of the metaheuristics and GVNSWAF in the 47 classical instances for which proved optimal solutions are known.

instance group	metric	ILS-RN	ILS-CN	GRASP-RN	GRASP-CN	TS-RN	TS-CN	SA	GVNSWAF
large-sized	$\bar{C}_{\text {max }}$	48,458.93	48,319.72	50,206.70	50,327.07	48,125.00	49,446.14	47,907.31	-
	\#best	59	58	9	7	55	10	71	-
	$\operatorname{gap}(\%)$	1.80	1.55	4.96	5.10	1.02	3.39	0.66	-
	$\overline{\operatorname{gap}}(\%)$	2.33	1.95	5.80	5.73	1.02	3.39	1.51	-
small-sized	$\bar{C}_{\text {max }}$	26,756.48	26,756.48	26,783.73	26,778.00	26,977.45	27,570.54	26,768.89	-
	\#best	180	180	168	170	140	39	169	-
	$\operatorname{gap}(\%)$	0.00	0.00	0.11	0.09	0.75	2.99	0.05	-
	$\overline{\operatorname{gap}}(\%)$	0.00	0.00	0.30	0.19	0.75	2.99	0.32	-
classical	$\bar{C}_{\text {max }}$	31,989.65	31,915.34	32,565.66	32,480.55	32,362.34	32,975.85	32,122.78	32,288.28
	\#best	64	88	49	46	52	30	63	53
	$\operatorname{gap}(\%)$	0.40	0.15	2.10	1.88	1.81	3.78	0.54	1.78
	$\overline{\mathrm{gap}}(\%)$	0.74	0.31	2.63	2.26	1.81	3.78	1.06	2.97

Table 13: Summary of the performance of the seven methods analyzed on the 150 large-sized instances, the 180 small-sized instances, and the 105 classical instances from the literature, the latter without sequencing flexibility.

Conflict of interest statement: On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author contributions: All authors contributed equally to all phases of the development of this work.

Data availability: The datasets generated during and/or analysed during the current study are available in the GitHub repository, https://github.com/kennedy94/FJS.

Funding: This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/05803-3, and 2023/08706-1) and CNPq (grants 311536/2020-4 and 302073/2022$1)$.

References

[1] R. Alvarez-Valdes, A. Fuertes, J. M. Tamarit, G. Giménez, and R. Ramos. A heuristic to schedule flexible job-shop in a glass factory. European Journal of Operational Research, 165(2):525-534, 2005.
[2] J. L. Andrade-Pineda, D. Canca, P. L. Gonzalez-R, and M. Calle. Scheduling a dualresource flexible job shop with makespan and due date-related criteria. Annals of Operations Research, 291(1):5-35, 2020.
[3] K. A. G. Araujo. O problema de sequenciamento job shop com flexibilidade de sequenciamento e efeito de aprendizagem baseado em posição. PhD thesis, University of São Paulo, 2024.
[4] K. A. G. Araujo, E. G. Birgin, and D. P. Ronconi. Models, constructive heuristics, and
benchmark instances for the flexible job shop scheduling problem with sequencing flexibility and position-based learning effect. Technical Report MCDO02022024, University of São Paulo, São Paulo, SP, Brazil, 2024.
[5] A. Azzouz, A. Chaabani, M. Ennigrou, and L. B. Said. Handling sequence-dependent setup time flexible job shop problem with learning and deterioration considerations using evolutionary bi-level optimization. Applied Artificial Intelligence, 34(6):433-455, 2020.
[6] A. Azzouz, M. Ennigrou, and L. Ben Said. Scheduling problems under learning effects: classification and cartography. International Journal of Production Research, 56(4):16421661, 2018.
[7] J. W. Barnes and J. B. Chambers. Flexible job shop scheduling with tabu search. Technical Report ORP9609, Graduate program in Operations Research and Industrial Engineering, University of Texas, Austin, 1996.
[8] E. G. Birgin, P. Feofiloff, C. G. Fernandes, E. L. de Melo, M. T. I. Oshiro, and D. P. Ronconi. A MILP model for an extended version of the flexible job shop problem. Optimization Letters, 8(4):1417-1431, 2014.
[9] E. G. Birgin, J. E. Ferreira, and D. P. Ronconi. List scheduling and beam search methods for the flexible job shop scheduling problem with sequencing flexibility. European Journal of Operational Research, 247(2):421-440, 2015.
[10] D. Biskup. Single-machine scheduling with learning considerations. European Journal of Operational Research, 115(1):173-178, 1999.
[11] D. Biskup. A state-of-the-art review on scheduling with learning effects. European Journal of Operational Research, 188(2):315-329, 2008.
[12] P. Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3):157-183, 1993.
[13] Z.-C. Cao, C.-R. Lin, and M.-C. Zhou. A knowledge-based cuckoo search algorithm to schedule a flexible job shop with sequencing flexibility. IEEE Transactions on Automation Science and Engineering, 18(1):56-69, 2021.
[14] T. C. E. Cheng and G. Wang. Single machine scheduling with learning effect considerations. Annals of Operations Research, 98(1/4):273-290, 2000.
[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, Cambridge, MA, USA, 4th edition, 2022.
[16] S. Dauzère-Pérès, J. Ding, L. Shen, and K. Tamssaouet. The flexible job shop scheduling problem: A review. European Journal of Operational Research, 314(2):409-432, 2024.
[17] S. Dauzère-Pérès and J. Paulli. An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations Research, 70:281-306, 1997.
[18] J. R. De Jong. The effects of increasing skill on cycle time and its consequences for time standars. Ergonomics, 1(1):51-60, 1957.
[19] P. De Moerloose and B. Maenhout. A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints. Operational Research, 23(1):2, 2023.
[20] P. Fattahi, M. Saidi Mehrabad, and F. Jolai. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3):331-342, 2007.
[21] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of Global Optimization, 6(2):109-133, 1995.
[22] P. Y. Gan and K. S. Lee. Scheduling of flexible-sequenced process plans in a mould manufacturing shop. The International Journal of Advanced Manufacturing Technology, 20(3):214222, 2002.
[23] J. Gao, M. Gen, and L. Sun. Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm. Journal of Intelligent Manufacturing, 17(4):493-507, 2006.
[24] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2):117-129, 1976.
[25] F. Glover. Tabu search-Part I. ORSA Journal on Computing, 1(3):190-206, 1989.
[26] F. Glover. Tabu search-Part II. ORSA Journal on Computing, 2(1):4-32, 1990.
[27] J. N. D. Gupta and S. K. Gupta. Single facility scheduling with nonlinear processing times. Computers and Industrial Engineering, 14(4):387-393, 1988.
[28] J. Hurink, B. Jurisch, and M. Thole. Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4):205-215, 1994.
[29] A. Janiak, T. Krysiak, and R. Trela. Scheduling problems with learning and ageing effects: A survey. Decision Making in Manufacturing and Services, 5(1):19-36, 2011.
[30] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated annealing: An experimental evaluation-Part I, graph partitioning. Operations Research, 37(6):865-892, 1989.
[31] G. A. Kasapidis, S. Dauzère-Pérès, D. C. Paraskevopoulos, P. P. Repoussis, and C. D. Tarantilis. On the multiresource flexible job-shop scheduling problem with arbitrary precedence graphs. Production and Operations Management, 32(7):2322-2330, 2023.
[32] G. A. Kasapidis, D. C. Paraskevopoulos, P. P. Repoussis, and C. D. Tarantilis. Flexible job shop scheduling problems with arbitrary precedence graphs. Production and Operations Management, 30(11):4044-4068, 2021.
[33] Y. K. Kim, K. Park, and J. Ko. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Computers and Operations Research, 30(8):11511171, 2003.
[34] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
[35] J. Y.-T. Leung, H. Li, and M. Pinedo. Order scheduling in an environment with dedicated resources in parallel. Journal of Scheduling, 8(5):355-386, 2005.
[36] Z. Li and Y. Chen. Minimizing the makespan and carbon emissions in the green flexible job shop scheduling problem with learning effects. Scientific Reports, 13(1):6369, 2023.
[37] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations Research and Management Science, pages 320-353, Boston, MA, 2003. Springer.
[38] W. T. Lunardi, E. G. Birgin, P. Laborie, D. P. Ronconi, and H. Voos. Mixed integer linear programming and constraint programming models for the online printing shop scheduling problem. Computers and Operations Research, 123:105020, 2020.
[39] W. T. Lunardi, E. G. Birgin, D. P. Ronconi, and H. Voos. Metaheuristics for the online printing shop scheduling problem. European Journal of Operational Research, 293(2):419441, 2021.
[40] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle. The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43-58, 2016.
[41] M. Mastrolilli and L. M. Gambardella. Effective neighbourhood functions for the flexible job shop problem. Journal of Scheduling, 3(1):3-20, 2000.
[42] J. Pei, Y. Zhou, P. Yan, and P. M. Pardalos. A concise guide to scheduling with learning and deteriorating effects. International Journal of Production Research, 61(6):2010-2031, 2022.
[43] Z. Peng, H. Zhang, H. Tang, Y. Feng, and W. Yin. Research on flexible job-shop scheduling problem in green sustainable manufacturing based on learning effect. Journal of Intelligent Manufacturing, 33(6):1725-1746, 2021.
[44] M. E. Tayebi Araghi, F. Jolai, and M. Rabiee. Incorporating learning effect and deterioration for solving a SDST flexible job-shop scheduling problem with a hybrid meta-heuristic approach. International Journal of Computer Integrated Manufacturing, 27(8):733-746, 2014.
[45] A. Vital-Soto, A. Azab, and M. F. Baki. Mathematical modeling and a hybridized bacterial foraging optimization algorithm for the flexible job-shop scheduling problem with sequencing flexibility. Journal of Manufacturing Systems, 54:74-93, 2020.
[46] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83, 1945.
[47] R. Wu, Y. Li, S. Guo, and W. Xu. Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by a hybrid genetic algorithm. Advances in Mechanical Engineering, 10(10):168781401880409, 2018.
[48] X. Wu, X. Shen, and C. Li. The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously. Computers and Industrial Engineering, 135:1004-1024, 2019.
[49] L. Yu, C. Zhu, J. Shi, and W. Zhang. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility. Scientific Programming, 2017:1-15, 2017.
[50] H. Zhu, Q. Deng, L. Zhang, X. Hu, and W. Lin. Low carbon flexible job shop scheduling problem considering worker learning using a memetic algorithm. Optimization and Engineering, 21(4):1691-1716, 2020.

Appendix

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
miniDAFJS01	22,875	0.01	22,875	0.05	22,875	8.09	22,875	16.21	22,875	0.00	23,264	0.00	22,875	0.40
miniDAFJS02	22,708	0.00	22,708	0.00	22,708	0.03	22,708	0.04	22,708	0.00	23,242	0.00	22,708	0.14
miniDAFJS03	18,363	0.00	18,363	0.00	18,363	0.00	18,363	0.00	18,363	0.00	18,363	0.00	18,363	0.00
miniDAFJS04	20,498	0.00	20,498	0.00	20,498	0.00	20,498	0.00	20,498	0.00	21,172	0.00	20,498	0.10
miniDAFJS05	20,593	0.01	20,593	0.00	20,593	2.01	20,593	6.26	20,593	0.01	21,324	0.00	20,593	0.32
miniDAFJS06	22,867	0.01	22,867	0.00	22,867	0.69	22,867	1.04	23,370	0.00	23,370	0.00	22,867	0.33
miniDAFJS07	25,715	0.01	25,715	0.01	25,715	0.15	25,715	0.31	25,715	0.00	26,978	0.00	25,715	0.18
miniDAFJS08	19,878	0.00	19,878	0.00	19,878	0.00	19,878	0.00	19,878	0.00	19,878	0.00	19,878	0.00
miniDAFJS09	24,267	0.03	24,267	0.16	24,267	1.30	24,267	8.19	24,267	0.00	24,304	0.00	24,267	0.41
miniDAFJS10	20,336	0.00	20,336	0.00	20,336	0.00	20,336	0.00	20,359	0.00	20,873	0.00	20,336	0.24
miniDAFJS11	29,968	0.01	29,968	0.02	29,968	1.11	29,968	0.00	33,263	0.00	33,689	0.00	29,968	0.42
miniDAFJS12	18,670	0.01	18,670	0.01	18,670	0.00	18,670	2.87	20,222	0.00	20,342	0.00	18,670	0.26
miniDAFJS13	16,313	0.00	16,313	0.00	16,313	0.00	16,313	0.00	16,313	0.00	17,091	0.00	16,313	0.01
miniDAFJS14	23,140	0.00	23,140	0.00	23,140	0.00	23,140	3.36	23,140	0.00	23,140	0.00	23,140	0.30
miniDAFJS15	21,715	0.00	21,715	0.00	21,715	0.00	21,715	0.24	21,715	0.00	21,882	0.00	21,715	0.16
miniDAFJS16	25,426	0.00	25,426	0.00	25,426	0.00	25,426	0.00	25,426	0.00	25,691	0.00	25,426	0.26
miniDAFJS17	20,155	0.00	20,155	0.00	20,155	0.00	20,155	0.00	20,155	0.00	20,155	0.00	20,155	0.19
miniDAFJS18	18,135	0.00	18,135	0.00	18,135	0.00	18,135	0.00	18,135	0.00	18,445	0.00	18,135	0.25
miniDAFJS19	20,945	0.00	20,945	0.00	20,945	0.00	20,945	0.00	20,945	0.00	21,293	0.00	20,945	0.18
miniDAFJS20	21,838	0.02	21,838	0.01	21,838	12.83	21,838	0.60	21,838	0.00	22,675	0.00	21,838	0.30
miniDAFJS21	23,344	0.60	23,344	0.14	23,344	50.28	23,344	74.78	23,456	0.02	24,554	0.00	23,563	35.44
miniDAFJS22	25,923	0.00	25,923	0.00	25,923	0.00	25,923	0.03	25,923	0.00	25,923	0.00	25,923	0.41
miniDAFJS23	24,038	3.23	24,038	0.85	24,998	0.03	24,998	0.01	24,585	0.11	24,438	0.00	24,438	0.49
miniDAFJS24	24,579	0.04	24,579	0.01	24,579	0.01	24,579	0.02	25,521	0.01	25,694	0.00	24,579	0.43
miniDAFJS25	21,143	0.01	21,143	0.00	21,143	23.97	21,143	0.00	21,143	0.00	22,682	0.00	21,143	0.33
miniDAFJS26	21,120	0.16	21,120	0.11	21,120	42.71	21,120	43.64	21,120	0.00	21,468	0.00	21,120	0.57
miniDAFJS27	22,050	0.14	22,050	0.20	22,106	0.12	22,050	0.24	22,106	0.03	22,106	0.00	22,106	0.41
miniDAFJS28	22,708	0.03	22,708	0.02	22,708	0.00	22,708	0.00	22,708	0.00	23,120	0.00	22,708	0.33
miniDAFJS29	20,278	0.01	20,278	0.01	20,278	0.01	20,278	0.00	20,278	0.00	20,278	0.00	20,278	0.33
miniDAFJS30	23,558	0.05	23,558	0.03	23,558	33.60	23,558	48.64	23,558	0.09	23,558	0.01	23,558	0.44
$C_{\text {max }}$	22,104.87		22,104.87		22,138.73		22,136.87		22,339.20		22,699.73		22,127.37	
\#best	30		30		28		29		22		7		27	
gap(\%)			0.00		0.1		0.1		0.95		2.6		0.1	
gap(\%)					0.18		0.17		0.95		2.61		0.35	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
miniYFJS01	35,046	0.00	35,046	0.00	35,046	0.00	35,046	0.00	35,046	0.00	35,243	0.00	35,046	0.20
miniYFJS02	24,359	0.01	24,359	0.01	24,359	0.00	24,359	0.00	24,359	0.00	25,654	0.00	24,359	0.29
miniYFJS03	47,391	0.00	47,391	0.01	47,391	0.00	47,391	0.14	52,098	0.00	53,381	0.00	47,391	0.35
miniYFJS04	25,394	0.00	25,394	0.00	25,394	0.00	25,394	0.00	25,394	0.00	25,394	0.00	25,394	0.00
miniYFJS05	23,985	0.00	23,985	0.00	23,985	0.00	23,985	0.00	23,985	0.00	26,371	0.00	23,985	0.24
miniYFJS06	29,469	0.01	29,469	0.01	29,469	0.35	29,469	0.25	30,508	0.00	30,952	0.00	29,469	0.30
miniYFJS07	45,705	0.01	45,705	0.05	45,705	0.01	45,705	14.81	45,705	0.01	47,524	0.00	45,705	0.43
miniYFJS08	33,829	0.01	33,829	0.03	33,829	0.00	33,829	0.16	33,883	0.00	34,338	0.00	33,829	0.38
miniYFJS09	37,049	0.00	37,049	0.00	37,049	0.00	37,049	0.00	37,049	0.00	37,354	0.00	37,049	0.30
miniYFJS10	27,310	0.01	27,310	0.00	27,310	0.01	27,310	0.00	27,310	0.00	27,310	0.00	27,310	0.33
miniYFJS11	41,300	0.00	41,300	0.01	41,300	0.00	41,300	0.05	41,300	0.00	41,423	0.00	41,300	0.39
miniYFJS12	30,145	0.11	30,145	0.06	30,145	55.26	30,145	64.48	30,145	0.03	33,329	0.00	30,145	0.54
miniYFJS13	30,962	0.01	30,962	0.00	30,962	0.00	30,962	0.01	30,962	0.01	30,962	0.00	30,962	0.35
miniYFJS14	31,398	0.01	31,398	0.01	31,398	0.00	31,398	0.00	31,398	0.00	31,398	0.00	31,398	0.38
miniYFJS15	45,442	0.00	45,442	0.00	45,442	0.00	45,442	0.00	45,442	0.00	45,442	0.00	45,442	0.39
miniYFJS16	33,791	0.00	33,791	0.02	33,791	0.00	33,791	19.85	33,791	0.00	33,791	0.00	33,791	0.41
miniYFJS17	42,838	0.02	42,838	0.02	42,838	0.00	42,838	13.56	42,838	0.00	44,181	0.00	42,838	0.46
miniYFJS18	28,247	0.01	28,247	0.01	28,247	0.01	28,247	0.00	28,247	0.00	28,247	0.00	28,247	0.41
miniYFJS19	33,601	0.04	33,601	0.05	33,601	0.00	33,601	0.01	33,601	0.01	36,706	0.00	33,601	0.45
miniYFJS20	30,837	0.00	30,837	0.00	30,837	0.00	30,837	0.00	30,837	0.02	33,385	0.00	30,837	0.41
miniYFJS21	37,096	0.74	37,096	0.34	37,308	0.03	37,275	0.23	37,096	0.41	37,275	0.02	37,308	70.41
miniYFJS22	34,282	0.03	34,282	0.03	34,282	0.01	34,282	0.08	34,282	0.00	34,917	0.00	34,282	0.48
miniYFJS23	42,079	0.04	42,079	0.02	42,079	0.07	42,079	38.95	42,079	0.01	42,079	0.00	42,079	0.51
miniYFJS24	30,905	0.11	30,905	0.08	30,965	69.07	30,905	53.76	30,905	0.14	33,144	0.00	30,905	0.56
miniYFJS25	36,170	0.10	36,170	0.13	36,170	76.58	36,170	1.25	36,170	0.11	37,251	0.00	36,170	0.94
miniYFJS26	51,466	0.01	51,466	0.02	51,466	0.83	51,466	1.23	54,534	0.03	51,793	0.00	51,466	0.49
miniYFJS27	36,719	0.01	36,719	0.01	36,719	0.00	36,719	0.02	36,719	0.01	36,823	0.00	36,719	0.47
miniYFJS28	34,509	0.04	34,509	0.03	34,509	87.68	34,509	52.00	34,509	0.04	34,509	0.02	34,509	31.22
miniYFJS29	39,798	0.06	39,798	0.14	39,798	0.07	39,798	0.05	39,949	0.01	40,891	0.00	39,798	0.63
miniYFJS30	33,974	0.03	33,974	0.06	33,974	0.05	33,974	0.08	33,974	0.12	33,974	0.00	33,974	0.52
$C_{\text {max }}$	35,169.87		35,169.87		35,178.93		35,175.83		35,470.50		36,168.03		35,176.93	
\#best	30		30		28		29		25		10		29	
gap(\%)	. 00		0.00		0.03		0.02		0.67		2.92		0.02	
gap(\%)	0.00		0.00		0.39		0.06		0.67		2.92		0.18	

Table A1: Results of applying the metaheuristics to the small-sized instances with learning rate $\alpha=0.1$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
miniDAFJS01	21,327	0.02	21,327	0.03	21,327	0.03	21,327	28.07	21,546	0.00	21,546	0.00	21,327	0.33
miniDAFJS02	20,635	0.01	20,635	0.01	20,635	0.05	20,635	0.04	20,635	0.00	22,161	0.00	20,635	0.19
miniDAFJS03	17,972	0.00	17,972	0.00	17,972	0.00	17,972	0.00	17,972	0.00	17,972	0.00	17,972	0.00
miniDAFJS04	19,602	0.00	19,602	0.00	19,602	0.00	19,602	0.00	19,602	0.00	20,691	0.00	19,602	0.11
miniDAFJS05	18,803	0.00	18,803	0.01	18,803	3.57	18,803	4.21	18,803	0.01	18,803	0.00	18,803	0.28
miniDAFJS06	20,568	0.04	20,568	0.04	20,568	0.01	20,568	0.01	20,783	0.00	20,783	0.00	20,568	0.31
miniDAFJS07	24,715	0.00	24,715	0.01	24,715	0.10	24,715	0.63	24,715	0.00	24,715	0.00	24,715	0.22
miniDAFJS08	18,857	0.00	18,857	0.00	18,857	0.00	18,857	0.00	18,857	0.00	18,857	0.00	18,857	0.00
miniDAFJS09	22,660	0.02	22,660	0.05	22,660	4.57	22,660	2.76	22,730	0.01	22,730	0.00	22,660	0.31
miniDAFJS10	18,823	0.00	18,823	0.00	18,823	0.00	18,823	0.00	18,823	0.00	20,180	0.00	18,823	0.18
miniDAFJS11	27,455	0.02	27,455	0.01	27,455	2.05	27,455	0.00	30,550	0.00	30,941	0.00	27,455	0.35
miniDAFJS12	17,874	0.01	17,874	0.01	17,874	0.92	17,874	1.47	19,624	0.00	18,974	0.00	17,874	0.24
miniDAFJS13	15,143	0.00	15,143	0.00	15,143	0.00	15,143	0.00	15,143	0.00	16,593	0.00	15,143	0.01
miniDAFJS14	21,817	0.00	21,817	0.00	21,817	0.00	21,817	3.31	21,817	0.00	21,990	0.00	21,817	0.27
miniDAFJS15	20,236	0.00	20,236	0.00	20,236	0.00	20,236	0.00	20,236	0.00	20,236	0.00	20,236	0.14
miniDAFJS16	24,114	0.00	24,114	0.00	24,114	0.00	24,114	0.01	24,114	0.00	24,593	0.00	24,114	0.27
miniDAFJS17	19,145	0.00	19,145	0.00	19,145	0.00	19,145	0.00	19,145	0.00	19,145	0.00	19,145	0.15
miniDAFJS18 ${ }^{+}$	17,270	0.00	17,270	0.00	17,270	0.00	17,270	0.00	17,270	0.00	17,966	0.00	17,270	0.25
miniDAFJS19	19,642	0.00	19,642	0.00	19,642	0.00	19,642	0.00	19,642	0.00	20,107	0.00	19,642	0.16
miniDAFJS20	20,086	0.04	20,086	0.01	20,086	24.76	20,086	1.87	21,286	0.00	20,646	0.00	20,086	0.28
miniDAFJS21	21,352	0.21	21,352	0.92	21,433	43.93	21,536	93.99	21,352	0.04	21,783	0.01	21,433	1.51
miniDAFJS22	23,852	0.01	23,852	0.02	23,852	38.91	23,852	24.30	24,273	0.00	24,273	0.00	23,852	0.41
miniDAFJS23 ${ }^{+}$	22,390	2.60	22,390	0.82	23,228	0.02	23,300	0.02	22,390	0.31	22,491	0.02	23,120	0.49
miniDAFJS24	22,521	0.07	22,521	0.07	22,521	19.38	22,521	44.36	22,521	0.03	22,551	0.00	22,521	0.40
miniDAFJS25	19,809	0.01	19,809	0.03	19,809	38.66	19,809	0.00	19,913	0.01	19,913	0.00	19,809	0.35
miniDAFJS26	19,724	0.20	19,724	0.23	19,724	24.84	19,724	48.07	19,724	0.00	19,994	0.00	19,773	0.33
miniDAFJS27	20,245	0.13	20,245	0.03	20,245	0.07	20,245	35.36	20,245	0.02	20,646	0.00	20,245	0.47
miniDAFJS28	20,635	0.02	20,635	0.04	20,635	0.00	20,635	0.00	20,635	0.00	21,693	0.00	20,635	0.38
miniDAFJS29	19,201	0.01	19,201	0.00	19,201	1.39	19,201	0.00	19,201	0.00	19,448	0.00	19,201	0.31
miniDAFJS30	21,552	0.06	21,552	0.21	21,698	46.08	21,552	63.33	21,552	0.15	21,645	0.00	21,552	0.45
$\bar{C}_{\text {max }}$	20,600.83		20,600.83		20,636.33		20,637.30		20,836.63		21,135.53		20,629.50	
\#best	30		30		27		28		22		6		27	
gap(\%)	0.00		0.00		0.16		0.16		1.06		2.60		0.13	
gap(\%)	0.00		0.00		0.24		0.28		1.06		2.60		0.42	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	time												
miniYFJS01	33,132	0.00	33,132	0.00	33,132	0.00	33,132	4.67	33,132	0.00	34,443	0.00	33,132	0.28
miniYFJS02	23,100	0.00	23,100	0.01	23,100	0.00	23,100	0.00	23,100	0.00	25,032	0.00	23,100	0.30
miniYFJS03	42,896	0.00	42,896	0.01	42,896	0.00	42,896	0.01	46,806	0.00	49,111	0.00	42,896	0.34
miniYFJS04	24,485	0.00	24,485	0.00	24,485	0.00	24,485	0.00	24,485	0.00	24,485	0.00	24,485	0.31
miniYFJS05	23,597	0.00	23,597	0.00	23,597	0.00	23,597	0.00	23,597	0.00	23,597	0.00	23,597	0.25
miniYFJS06	28,655	0.01	28,655	0.01	28,655	0.00	28,655	0.00	28,655	0.01	28,750	0.01	28,655	0.32
miniYFJS07	42,239	0.00	42,239	0.05	42,239	0.01	42,239	7.75	42,239	0.00	45,493	0.00	42,239	0.40
miniYFJS08	31,471	0.02	31,471	0.15	31,471	0.00	31,471	22.11	31,597	0.00	32,669	0.00	31,471	0.42
miniYFJS09	35,250	0.02	35,250	0.01	35,250	4.98	35,250	0.01	35,794	0.00	36,098	0.00	35,250	0.32
miniYFJS10	26,145	0.01	26,145	0.00	26,145	5.41	26,145	0.00	26,145	0.00	26,145	0.00	26,145	0.32
miniYFJS11	38,545	0.01	38,545	0.02	38,545	3.71	38,545	7.90	38,545	0.00	38,756	0.00	38,545	0.44
miniYFJS12	27,895	0.15	27,895	0.09	27,895	48.02	28,281	0.01	27,895	0.10	30,851	0.00	27,895	7.80
miniYFJS13	28,120	0.01	28,120	0.00	28,120	0.00	28,120	0.02	28,120	0.00	28,120	0.00	28,120	0.38
miniYFJS14	29,682	0.02	29,682	0.00	29,682	0.00	29,682	0.00	29,682	0.00	29,682	0.00	29,682	0.37
miniYFJS15	41,619	0.00	41,619	0.00	41,619	0.00	41,619	0.01	41,619	0.00	42,415	0.00	41,619	0.41
miniYFJS16	31,280	0.02	31,280	0.02	31,280	0.00	31,280	0.00	31,280	0.05	32,366	0.00	31,280	0.48
miniYFJS17	40,388	0.01	40,388	0.03	40,388	0.00	40,388	10.05	40,388	0.01	41,316	0.00	40,388	0.44
miniYFJS18	26,297	0.00	26,297	0.01	26,297	0.00	26,297	0.01	26,297	0.01	26,297	0.00	26,297	0.38
miniYFJS19	30,717	0.02	30,717	0.06	30,717	0.01	30,717	0.01	30,717	0.02	33,965	0.00	30,717	0.47
miniYFJS20	28,832	0.03	28,832	0.02	28,832	0.04	28,832	0.03	28,832	0.03	31,304	0.00	28,832	0.38
miniYFJS21	34,811	0.13	34,811	0.09	34,811	0.07	34,811	0.06	34,876	0.00	34,811	0.05	34,811	24.18
miniYFJS22	31,702	0.01	31,702	0.03	31,702	0.03	31,747	0.17	31,702	0.03	31,946	0.00	31,702	0.54
miniYFJS23	38,639	0.08	38,639	0.14	38,639	33.88	38,639	39.04	38,639	0.04	39,721	0.00	38,639	0.50
miniYFJS24	28,884	0.05	28,884	0.05	30,200	21.84	28,884	46.64	28,884	0.06	30,568	0.00	28,884	0.53
miniYFJS25	34,231	0.04	34,231	0.04	34,231	26.59	34,231	41.59	34,231	0.01	35,256	0.00	34,231	0.46
miniYFJS26	47,519	0.01	47,519	0.01	47,519	1.48	47,519	5.00	49,202	0.04	48,066	0.00	47,519	0.50
miniYFJS27	34,042	0.08	34,042	0.09	34,042	0.03	34,042	1.61	34,042	0.01	34,225	0.00	34,042	0.55
miniYFJS28	32,080	0.04	32,080	0.04	32,080	69.04	32,080	43.21	32,080	0.02	32,852	0.00	32,080	0.60
miniYFJS29	36,093	0.11	36,093	0.31	36,093	0.13	36,093	0.03	36,561	0.00	36,561	0.00	36,093	0.47
miniYFJS30	31,888	0.53	31,888	0.42	31,888	59.15	31,888	46.43	31,888	0.26	33,118	0.00	31,888	1.15
$\bar{C}_{\text {max }}$	32,807.80		32,807.80		32,851.67		32,822.17		33,034.33		33,933.97		32,807.80	
\#best	30		30		29		28		24		7		30	
gap(\%)	0.00		0.00		0.15		0.05		0.54		3.36		0.00	
gap(\%)	0.00				0.43		0.17		0.54		3.36		0.24	

Table A2: Results of applying the metaheuristics to the small-sized instances with learning rate $\alpha=0.2$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	Time												
miniDAFJS01	19,443	0.03	19,443	0.06	19,443	24.05	19,443	54.44	19,652	0.00	19,702	0.00	19,443	0.34
miniDAFJS02	18,916	0.00	18,916	0.02	18,916	0.02	18,916	0.05	18,916	0.00	21,136	0.00	18,916	0.25
miniDAFJS03	17,419	0.00	17,419	0.00	17,419	0.00	17,419	0.00	17,419	0.00	17,619	0.00	17,419	0.16
miniDAFJS04	18,800	0.00	18,800	0.00	18,800	0.00	18,800	0.00	18,800	0.00	20,124	0.00	18,800	0.13
miniDAFJS05	17,596	0.05	17,596	0.07	17,596	3.01	17,596	35.51	17,657	0.02	17,657	0.00	17,596	0.30
miniDAFJS06	18,692	0.03	18,692	0.05	18,692	0.00	18,692	0.04	18,692	0.00	18,952	0.00	18,692	0.33
miniDAFJS07	24,256	0.00	24,256	0.01	24,256	0.11	24,256	0.43	24,256	0.00	24,636	0.00	24,256	0.23
miniDAFJS08	17,900	0.00	17,900	0.00	17,900	0.00	17,900	0.00	17,900	0.00	17,900	0.00	17,900	0.03
miniDAFJS09	20,797	0.01	20,797	0.05	20,797	0.05	20,797	0.00	20,797	0.00	21,298	0.00	20,797	0.32
miniDAFJS10	17,395	0.00	17,395	0.00	17,395	0.00	17,395	0.10	17,395	0.00	19,472	0.00	17,395	0.22
miniDAFJS11	25,304	0.02	25,304	0.01	25,304	1.06	25,304	0.00	27,387	0.00	25,554	0.00	25,304	0.37
miniDAFJS12	17,105	0.01	17,105	0.01	17,105	1.01	17,105	1.98	17,105	0.00	17,745	0.00	17,105	0.25
miniDAFJS13	14,077	0.00	14,077	0.00	14,077	0.00	14,077	0.00	14,077	0.00	14,077	0.00	14,077	0.01
miniDAFJS14	20,620	0.00	20,620	0.00	20,620	0.00	20,620	7.65	20,620	0.00	20,711	0.00	20,620	0.28
miniDAFJS15	18,625	0.00	18,625	0.00	18,625	0.00	18,625	0.00	18,625	0.00	18,625	0.00	18,625	0.18
miniDAFJS16	22,734	0.01	22,734	0.01	22,734	0.00	22,734	4.24	22,939	0.00	22,939	0.00	22,734	0.29
miniDAFJS17	18,253	0.00	18,253	0.00	18,253	0.00	18,253	0.00	18,253	0.00	18,253	0.00	18,253	0.09
miniDAFJS18	16,495	0.00	16,495	0.00	16,495	0.00	16,495	0.01	16,495	0.00	17,270	0.00	16,495	0.24
miniDAFJS19	18,474	0.00	18,474	0.00	18,474	0.00	18,474	0.00	18,474	0.00	19,030	0.00	18,474	0.14
miniDAFJS20	18,521	0.04	18,521	0.03	18,521	7.15	18,521	0.64	19,587	0.00	18,602	0.00	18,521	0.27
miniDAFJS21 ${ }^{+}$	19,430	0.34	19,430	0.52	19,430	40.61	19,448	49.57	20,368	0.00	20,624	0.00	19,550	0.45
miniDAFJS22	22,322	0.04	22,322	0.22	22,322	56.51	22,322	84.04	22,396	0.01	22,767	0.00	22,322	0.42
miniDAFJS23 ${ }^{+}$	20,932	1.75	20,932	0.63	21,372	0.02	21,372	0.02	21,176	0.01	21,540	0.01	21,031	0.27
miniDAFJS24	20,389	0.03	20,389	0.04	20,389	0.01	20,389	0.02	20,938	0.00	20,389	0.01	20,389	0.39
miniDAFJS25	18,400	0.01	18,400	0.00	18,400	0.00	18,400	35.30	18,400	0.01	18,472	0.00	18,400	0.36
miniDAFJS26	18,396	0.04	18,396	0.02	18,396	17.47	18,396	55.17	18,870	0.01	19,427	0.00	18,396	0.37
miniDAFJS27	18,501	0.12	18,501	0.04	18,501	79.26	18,501	22.10	18,501	0.02	20,586	0.00	18,501	0.38
miniDAFJS28	18,762	0.11	18,762	0.06	18,762	0.00	18,762	3.62	18,762	0.01	20,020	0.00	18,916	0.35
miniDAFJS29	18,253	0.01	18,253	0.00	18,253	1.39	18,253	0.01	18,253	0.00	18,560	0.00	18,253	0.31
miniDAFJS30 ${ }^{+}$	19,504	0.14	19,504	0.46	19,504	31.31	20,137	30.57	19,504	0.27	19,659	0.00	19,618	0.38
$\bar{C}_{\text {max }}$	19,210.37		19,210.37		19,225.03		19,246.73		19,407.13		19,778.20		19,226.60	
\#best	30		30		29		27		20		5		26	
gap(\%)	0.000.00		$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$				0.18		0.93		3.0		0.0	
¢ap(\%)			0.24	0.32		0.93		3.02		0.61				

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA	
	$C_{\text {max }}$	time												
miniYFJS01	31,008	0.00	31,008	0.00	31,008	0.00	31,008	13.25	31,008	0.00	32,506	0.00	31,008	0.25
miniYFJS02	22,010	0.00	22,010	0.02	22,010	0.00	22,010	0.00	22,010	0.01	24,146	0.00	22,010	0.28
miniYFJS03	38,935	0.00	38,935	0.00	38,935	0.00	38,935	0.00	41,699	0.00	42,339	0.00	38,935	0.34
miniYFJS04	23,774	0.00	23,774	0.00	23,774	0.00	23,774	0.00	23,774	0.00	24,017	0.00	23,774	0.28
miniYFJS05	22,843	0.00	22,843	0.00	22,843	0.00	22,843	0.00	22,843	0.00	23,236	0.00	22,843	0.24
miniYFJS06	27,366	0.00	27,366	0.00	27,366	0.00	27,366	0.00	27,366	0.00	27,366	0.00	27,366	0.00
miniYFJS07	38,932	0.00	38,932	0.06	38,932	0.24	38,932	13.11	38,932	0.01	41,487	0.00	38,932	0.39
miniYFJS08	29,464	0.02	29,464	0.04	29,464	18.16	29,464	9.52	29,898	0.00	30,276	0.00	29,464	0.43
miniYFJS09	33,763	0.01	33,763	0.01	33,763	0.00	33,763	0.00	33,763	0.04	34,357	0.00	33,763	0.30
miniYFJS10	25,072	0.15	25,072	0.10	25,072	30.31	25,072	49.47	25,072	0.00	25,093	0.00	25,072	6.20
miniYFJS11	36,307	0.02	36,307	0.05	36,307	2.55	36,307	9.76	36,307	0.01	39,637	0.00	36,307	0.44
miniYFJS12	26,219	0.04	26,219	0.06	26,571	0.01	26,219	0.09	26,219	0.22	27,829	0.00	26,219	0.44
miniYFJS13	25,619	0.00	25,619	0.01	25,619	0.00	25,619	0.02	25,619	0.00	25,881	0.00	25,619	0.36
miniYFJS14	27,428	0.03	27,428	0.04	27,428	0.86	27,428	0.09	27,428	0.05	27,428	0.00	27,428	0.52
miniYFJS15	38,256	0.01	38,256	0.03	38,256	0.00	38,256	7.91	38,256	0.01	39,294	0.00	38,256	0.50
miniYFJS16	29,442	0.01	29,442	0.01	29,442	0.01	29,442	0.00	29,442	0.01	30,386	0.00	29,442	0.41
miniYFJS17	37,465	0.02	37,465	0.02	37,465	0.00	37,465	0.10	37,465	0.12	38,739	0.00	37,465	0.39
miniYFJS18	25,067	0.02	25,067	0.00	25,067	0.00	25,067	0.00	25,067	0.00	25,067	0.00	25,067	0.41
miniYFJS19	29,207	0.01	29,207	0.02	29,207	0.06	29,207	0.29	29,207	0.04	30,218	0.00	29,207	0.45
miniYFJS20	27,091	0.07	27,091	0.03	27,091	0.12	27,091	0.22	27,091	0.04	28,590	0.00	27,091	0.42
miniYFJS21	32,166	0.30	32,166	0.16	32,238	0.06	32,166	0.04	32,166	0.01	33,027	0.00	32,166	0.59
miniYFJS22	28,985	0.06	28,985	0.06	28,985	0.04	28,985	1.07	28,985	0.00	29,154	0.00	28,985	0.54
miniYFJS23 ${ }^{+}$	35,441	0.14	35,441	0.18	35,441	15.36	35,441	33.00	35,441	0.20	35,961	0.00	35,441	0.61
miniYFJS24	27,023	0.09	27,023	0.03	27,395	52.85	27,023	53.26	27,023	0.10	31,200	0.00	27,023	0.48
miniYFJS25 ${ }^{+}$	32,346	0.07	32,346	0.07	32,346	0.38	32,465	0.55	32,346	0.02	32,513	0.00	32,346	3.21
miniYFJS26	43,452	0.01	43,452	0.05	43,452	0.14	43,452	25.93	44,207	0.00	44,633	0.00	43,452	0.54
miniYFJS27	31,571	0.00	31,571	0.01	31,571	0.01	31,571	0.49	31,571	0.01	31,877	0.00	31,571	0.51
miniYFJS28	30,428	0.01	30,428	0.01	30,428	74.61	30,428	28.22	30,428	0.04	30,428	0.00	30,428	0.47
miniYFJS29	32,826	0.26	32,826	0.36	32,826	0.31	32,826	11.23	32,826	0.45	33,455	0.00	32,826	0.48
miniYFJS30	29,848	0.20	29,848	0.12	29,848	5.38	29,848	54.66	29,848	0.04	31,093	0.00	29,848	0.76
$\bar{C}_{\text {max }}$	30,645.13		30,645.13		30,671.67		30,649.10		30,776.90		31,707.77		30,645.13	
\#best	30		30		27		29		27		4		30	
gap(\%)	0.00		0.00		0.10		0.01		0.34		3.41		0.00	
gap(\%)	0.00		0.00		0.28		0.16		0.34		3.41		0.12	

Table A3: Results of applying the metaheuristics to the small-sized instances with learning rate $\alpha=0.3$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
mfjs01	45,306	0.01	45,306	0.00	45,306	0.50	45,306	0.02	46,264	0.00	46,264	0.00	45,306	0.25	45,306	0.01
mfjs02	42,986	0.04	42,986	0.01	42,986	4.43	42,986	4.89	42,986	0.01	42,986	0.00	42,986	0.26	42,986	4.13
mfjs03	45,331	0.03	45,331	0.02	45,331	0.90	45,331	0.68	45,331	0.01	45,331	0.00	45,331	0.74	45,331	0.08
mfjs04	52,012	1.23	52,012	1.20	52,480	116.49	52,012	197.36	52,012	0.30	54,075	0.01	52,630	75.60	52,012	65.89
mfjs05	47,630	0.23	47,630	0.12	47,630	133.82	47,630	0.22	47,630	0.02	47,630	0.02	49,988	0.47	47,630	0.34
mfjs06	59,523	18.24	59,523	3.35	59,523	124.16	59,523	226.29	59,523	1.41	60,854	0.01	60,402	0.43	59,523	0.40
mfjs07	80,877	76.04	80,877	36.62	82,438	24.41	81,453	28.70	80,877	14.62	82,686	0.06	81,371	3.15	81,364	40.51
mfjs08	80,687	205.78	80,305	70.59	82,481	140.18	83,273	76.08	80,305	216.74	83,095	0.06	82,031	1.98	82,842	7.91
mfjs09	96,922	28.84	96,236	110.23	100,332	90.60	99,159	160.79	98,028	93.66	99,576	0.58	97,358	4.42	98,417	76.61
mfjs10	109,183	149.45	107,489	227.23	115,762	271.38	114,670	38.10	110,314	165.43	110,721	0.28	109,326	25.97	114,495	11.20
$\bar{C}_{\text {max }}$	66,045.70		65,769.50		67,426.90		67,134.30		66,327.00		67,321.80		66,672.90		66,990.60	
\#best	7		10		5		6		7		3		3		6	
$\operatorname{gap}(\%)$	0.28		0.00		1.75		1.41		0.66		2.05		1.33		1.25	
$\overline{\mathrm{gap}}(\%)$	0.48		0.19		2.32		1.86		0.66		2.05		2.26		2.22	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
MK01	3,507	173.24	3,507	81.29	3,529	19.87	3,530	62.29	3,529	0.68	3,714	0.00	3,529	3.50	3,714	0.28
MK02	2,347	38.47	2,327	176.39	2,348	147.70	2,404	203.40	2,332	17.24	2,372	0.09	2,305	84.67	2,348	31.99
MK03	17,316	5.97	17,316	1.31	17,316	1.61	17,316	0.07	17,316	1.78	17,665	0.05	17,316	2.83	17,316	8.31
MK04	5,173	112.01	5,173	49.49	5,255	189.35	5,187	197.41	5,665	0.79	5,792	0.05	5,173	11.75	5,725	3.24
MK05	13,674	260.60	13,666	187.22	13,747	291.55	13,648	72.05	13,657	38.48	13,877	0.27	13,627	94.51	13,710	119.96
MK06	5,045	183.79	5,040	114.41	5,360	129.50	5,429	59.20	5,055	287.61	4,982	23.00	4,982	184.62	5,380	61.45
MK07	11,589	173.35	11,551	259.27	11,950	291.84	12,055	162.89	11,488	266.54	11,612	14.97	11,220	256.56	11,551	42.73
MK08	39,002	263.25	38,999	245.98	39,213	198.56	39,181	135.52	39,660	1.29	39,307	0.51	39,177	49.61	39,026	265.08
MK09	25,263	237.96	24,919	43.07	27,103	135.39	26,211	180.98	28,421	278.25	30,456	0.06	24,970	200.21	25,545	253.28
MK10	16,913	153.92	16,802	218.45	19,141	204.30	19,186	202.84	16,855	255.05	18,605	3.03	17,060	171.62	18,359	131.33
MK11	46,820	208.18	46,708	144.04	47,161	54.49	47,180	78.61	46,599	44.05	46,800	5.82	46,602	133.49	47,091	203.88
MK12	39,877	128.22	39,869	32.84	39,955	190.20	39,911	120.55	42,093	0.56	42,232	0.05	39,949	63.10	39,907	104.38
MK13	32,585	216.79	32,410	234.61	35,149	185.28	34,757	284.68	32,349	221.11	31,960	109.03	32,954	218.41	32,967	299.84
MK14	52,376	209.56	52,349	165.80	53,269	1.04	52,514	212.09	56,617	6.21	56,143	0.90	52,531	271.72	52,406	109.93
MK15	28,343	223.43	28,069	98.35	30,525	275.34	30,278	186.99	28,313	279.37	31,336	1.18	28,916	204.11	29,577	299.38
$\bar{C}_{\text {max }}$	22,655.33		22,580.33		23,401.40		23,252.47		23,329.93		23,790.20		22,687.40		22,974.80	
\#best	3		9		1		1		2		2		6		1	
gap(\%)	0.82		0.47		4.28		3.99		3.15		5.81		0.63		3.44	
gap(\%)	1.52		0.78		5.25		4.69		3.15		5.81		1.19		5.44	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
sfjs01	6,459	0.00	6,459	0.00	6,459	0.00	6,459	0.00	6,459	0.00	6,459	0.00	6,459	0.00	6,459	0.00
sfjs02	10,271	0.00	10,271	0.00	10,271	0.00	10,271	0.00	10,271	0.00	10,271	0.00	10,271	0.00	10,271	0.00
sfjs03	20,623	0.00	20,623	0.00	20,623	0.00	20,623	0.00	20,623	0.00	21,716	0.00	20,623	0.00	20,623	0.00
sfjs04	33,429	0.00	33,429	0.00	33,429	0.00	33,429	0.00	33,429	0.00	34,483	0.00	33,429	0.00	33,429	0.00
sfjs05	11,006	0.00	11,006	0.00	11,006	0.00	11,006	0.00	11,006	0.00	12,107	0.00	11,006	0.00	11,006	0.00
sfjs06	29,926	0.00	29,926	0.00	29,926	0.00	29,926	0.00	31,835	0.00	32,057	0.00	29,926	0.00	29,926	0.00
sfjs07	37,824	0.00	37,824	0.00	37,824	0.00	37,824	0.00	37,824	0.00	37,824	0.00	37,824	0.00	37,824	0.00
sfjs08	23,842	0.00	23,842	0.00	23,842	0.00	23,842	0.00	23,842	0.00	23,842	0.00	23,842	0.01	23,842	0.00
sfjs09	19,406	0.00	19,406	0.00	19,406	0.00	19,406	0.00	19,406	0.00	19,406	0.00	19,406	0.01	19,406	0.00
sfjs10	49,368	0.00	49,368	0.00	49,368	0.00	49,368	0.00	49,368	0.00	49,368	0.00	49,368	0.06	49,368	0.00
$\bar{C}_{\text {max }}$	24,215.40		24,215.40		24,215.40		24,215.40		24,406.30		24,753.30		24,215.40		24,215.40	
\#best	10		10		10		10		9		6		10		10	
gap(\%)	0.00		0.00		0.00		0.00		0.64		2.56		0.00		0.00	
$\overline{\mathrm{gap}}(\%)$	0.00		0.00		0.00		0.00		0.64		2.56		0.00		0.00	

Table A4: Results of applying the metaheuristics and the method introduced in [44] to classical instances of the FJS with learning effect and without sequencing flexibility, with learning effect rate $\alpha=0.1$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
mfjs01	43,208	0.01	43,208	0.01	43,208	2.14	43,208	1.04	43,208	0.01	44,880	0.00	43,208	0.33	43,208	0.01
mfjs02	41,273	0.07	41,273	0.08	41,273	5.09	41,273	0.00	41,273	0.01	45,208	0.00	41,273	0.30	41,273	47.06
mfjs03	43,412	0.11	43,412	0.12	43,412	0.31	43,412	0.16	43,412	0.05	43,412	0.00	43,412	0.39	43,412	4.23
mfjs04	47,717	2.80	47,717	0.90	49,024	78.72	49,024	0.19	47,717	0.74	47,717	0.09	49,921	0.50	47,717	1.16
mfjs05	45,670	0.13	45,670	0.06	45,670	0.09	45,670	0.04	45,670	0.18	45,670	0.00	45,670	0.44	45,670	1.88
mfjs06	56,743	3.25	56,743	6.66	56,743	135.74	57,005	281.92	57,093	4.14	57,889	0.00	57,055	178.01	56,743	3.24
mfjs07	73,865	11.61	73,865	6.71	75,640	262.56	74,821	50.66	73,865	0.60	77,533	0.01	74,646	70.58	73,865	0.73
mfjs08	74,561	165.80	74,359	246.39	76,148	275.69	76,815	3.04	75,880	7.06	78,362	0.17	75,032	1.54	75,032	269.43
mfjs09	88,457	180.68	87,676	9.06	92,100	219.33	90,970	63.40	89,991	137.38	90,853	0.54	87,676	57.99	91,006	7.48
mfjs10	97,980	129.30	97,929	206.55	100,069	164.40	102,337	214.69	97,780	90.39	98,459	0.31	98,058	158.98	99,630	38.54
$\bar{C}_{\text {max }}$	61,288.60		61,185.20		62,328.70		62,453.50		61,588.90		62,998.30		61,595.10		61,755.60	
\#best	7		9		5		4		7		3		5		7	
gap(\%)	0.14		0.02		1.49		1.62		0.53		3.01		0.74		0.66	
$\overline{\mathrm{gap}}(\%)$	0.21		0.10		2.14		1.72		0.53		3.01		2.15		2.38	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
MK01	3,041	65.31	3,041	85.94	3,047	64.27	3,048	141.02	3,052	8.72	3,179	0.01	3,041	26.52	3,201	0.72
MK02	2,118	28.65	2,118	37.89	2,120	92.83	2,129	97.06	2,118	6.64	2,134	0.13	2,118	8.97	2,129	9.10
MK03	14,781	2.17	14,781	0.33	14,781	1.71	14,781	0.16	14,781	2.68	14,908	0.09	14,781	3.08	14,781	2.68
MK04	4,483	53.69	4,483	94.48	4,484	184.38	4,484	192.52	4,738	9.04	4,983	0.03	4,483	5.74	4,853	1.24
MK05	10,885	160.49	10,892	266.12	10,945	189.24	10,894	220.20	10,875	61.39	10,902	3.61	10,818	272.66	10,940	210.49
MK06	4,377	149.74	4,243	83.62	4,499	266.52	4,592	58.84	4,958	30.18	4,255	20.77	4,134	289.16	4,591	32.71
MK07	9,469	222.13	9,393	23.84	9,642	153.59	9,728	87.87	9,427	21.45	9,857	0.14	9,393	22.45	9,531	20.83
MK08	29,784	217.05	29,758	98.74	30,184	181.23	29,841	159.05	30,962	4.87	31,816	0.20	29,868	242.44	29,895	290.79
MK09	20,641	295.19	20,359	206.55	21,454	148.53	21,176	13.41	23,186	55.94	23,806	0.52	20,435	127.97	20,939	284.25
MK10	13,648	275.95	13,694	185.13	15,879	145.53	15,179	81.71	14,079	231.51	13,770	16.78	14,246	217.07	14,974	145.47
MK11	35,747	185.40	35,680	212.31	36,110	49.28	36,238	181.46	36,093	1.58	35,813	16.15	35,756	25.72	35,893	284.24
MK12	31,539	218.99	31,512	181.46	31,654	169.42	31,592	258.89	32,605	2.07	33,358	0.23	31,625	11.56	31,586	144.52
MK13	26,428	290.21	26,238	292.55	28,472	129.83	27,598	58.96	25,764	197.92	26,690	8.26	26,471	45.26	27,285	122.26
MK14	39,864	299.22	39,829	148.40	40,464	277.76	40,047	263.88	41,968	7.49	43,123	0.23	40,030	70.85	39,891	222.06
MK15	23,815	300.52	23,442	141.00	24,740	285.86	24,859	46.53	23,472	146.44	25,612	0.71	23,862	148.48	24,466	245.22
$\bar{C}_{\text {max }}$	18,041.33		17,964.20		18,565.00		18,412.40		18,538.53		18,947.07		18,070.73		18,330.33	
\#best	5		11		1		1		3		0		7		1	
gap(\%)	0.89		0.37		3.69		3.14		3.87		5.20		0.72		3.46	
$\overline{\mathrm{gap}}(\%)$	1.58		0.63		4.53		3.88		3.87		5.20		1.18		5.03	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
sfjs01	6,328	0.00	6,328	0.00	6,328	0.00	6,328	0.00	6,328	0.00	6,328	0.00	6,328	0.00	6,328	0.00
sfjs02	9,872	0.00	9,872	0.00	9,872	0.00	9,872	0.00	9,872	0.00	9,872	0.00	9,872	0.00	9,872	0.00
sfjs03	19,281	0.00	19,281	0.00	19,281	0.00	19,281	0.00	19,281	0.00	20,027	0.00	19,281	0.00	19,281	0.00
sfjs04	31,553	0.00	31,553	0.00	31,553	0.00	31,553	0.00	32,472	0.00	32,472	0.00	31,553	0.00	31,553	0.00
sfjs05	10,198	0.00	10,198	0.00	10,198	0.00	10,198	0.00	10,198	0.00	11,209	0.00	10,198	0.00	10,198	0.00
sfjs06	28,024	0.00	28,024	0.00	28,024	0.00	28,024	0.00	28,024	0.00	28,024	0.00	28,024	0.00	28,024	0.00
sfjs07	36,075	0.00	36,075	0.00	36,075	0.00	36,075	0.00	36,075	0.00	36,075	0.00	36,075	0.00	36,075	0.00
sfjs08	22,515	0.00	22,515	0.00	22,515	0.00	22,515	0.00	22,515	0.00	22,515	0.00	22,515	0.03	22,515	0.01
sfjs09	17,552	0.00	17,552	0.00	17,552	0.00	17,552	0.00	17,552	0.00	17,552	0.00	17,552	0.01	17,552	0.00
sfjs10	47,323	0.00	47,323	0.00	47,323	0.00	47,323	0.00	47,323	0.00	47,323	0.00	47,323	0.09	47,323	0.00
$\bar{C}_{\text {max }}$	22,872.10		22,872.10		22,872.10		22,872.10		22,964.00		23,139.70		22,872.10		22,872.10	
\#best	10		10		10		10		9		7		10		10	
gap(\%)	0.00		0.00		0.00		0.00		0.29		1.67		0.00		0.00	
$\overline{\mathrm{gap}}(\%)$	0.00		0.00		0.00		0.00		0.29		1.67		0.00		0.00	

Table A5: Results of applying the metaheuristics and the method introduced in [44] to classical instances of the FJS with learning effect and without sequencing flexibility, with learning effect rate $\alpha=0.2$.

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
mfjs01	40,508	0.02	40,508	0.03	40,508	3.74	40,508	1.20	42,562	0.00	41,785	0.00	40,508	0.37	40,508	0.18
mfjs02	38,996	0.05	38,996	0.05	38,996	2.80	38,996	1.60	38,996	0.00	39,834	0.00	38,996	0.29	38,996	4.26
mfjs03	41,318	0.06	41,318	0.04	41,318	72.50	41,318	14.85	41,318	0.00	44,254	0.00	41,318	0.26	41,318	7.82
mfjs04	44,869	2.16	44,869	0.60	44,869	79.94	46,048	61.15	46,048	0.03	46,558	0.01	46,048	25.11	44,869	101.21
mfjs05	44,376	0.21	44,376	0.06	44,376	90.04	44,738	20.87	44,376	0.33	44,738	0.00	44,376	28.30	44,376	0.29
mfjs06	53,618	2.31	53,618	10.19	53,760	84.79	53,760	37.32	53,760	0.39	57,329	0.00	53,618	184.69	53,618	184.69
mfjs07	69,086	9.26	69,086	4.61	70,577	192.72	70,523	80.50	69,086	12.88	74,941	0.01	69,086	0.84	70,583	0.02
mfjs08	68,053	152.28	68,053	188.36	71,413	4.05	70,333	154.93	69,845	12.97	70,333	0.26	68,362	11.09	68,053	74.29
mfjs09	79,947	3.22	80,277	249.67	83,975	92.83	82,272	203.95	80,983	27.37	81,939	0.83	80,897	1.69	81,411	40.30
mfjs10	89,188	217.74	88,515	195.67	91,930	114.34	91,477	158.34	89,644	41.99	90,178	1.03	90,419	7.67	90,144	117.97
$C_{\text {max }}$	56,995.90		56,961.60		58,172.20		57,997.30		57,661.80		59,188.90		57,362.80		57,387.60	
\#best	9		9		5		3		4		0		6		7	
gap(\%)	0.08		0.04		1.63		1.54		1.32		4.01		0.64		0.58	
$\overline{\mathrm{gap}}(\%)$	0.21		0.16		2.09		1.97		1.32		4.01		1.89		2.64	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
MK01	2,618	111.30	2,618	79.93	2,669	26.88	2,668	40.52	2,669	38.63	2,793	0.00	2,618	10.59	2,714	1.38
MK02	1,920	7.79	1,920	3.27	1,920	80.62	1,921	89.79	1,920	1.45	1,932	0.03	1,920	1.90	1,921	1.74
MK03	12,439	3.89	12,439	9.44	12,439	3.27	12,439	2.08	12,439	11.02	12,669	0.03	12,439	3.99	12,481	2.88
MK04	3,877	296.61	3,885	298.13	3,904	117.29	3,917	237.10	3,917	6.97	4,282	0.08	3,872	253.43	4,246	4.82
MK05	8,693	256.96	8,692	246.56	8,736	276.98	8,716	163.93	8,708	56.12	8,688	3.02	8,678	63.11	8,675	266.29
MK06	3,609	168.58	3,611	232.13	3,830	266.93	3,784	120.00	3,866	188.73	3,556	40.62	3,556	148.27	4,183	267.07
MK07	7,913	46.15	7,914	224.48	8,055	103.05	8,015	216.96	7,938	19.54	8,036	0.17	7,879	54.92	7,938	7.96
MK08	23,265	117.12	23,240	198.23	23,413	30.22	23,442	246.91	23,813	12.18	24,437	0.21	23,333	44.37	23,385	172.23
MK09	16,983	219.10	16,761	121.54	17,571	206.91	17,332	260.19	18,955	47.76	19,508	0.22	16,833	61.28	17,214	48.30
MK10	11,576	263.74	11,172	130.85	12,995	278.38	12,732	234.83	11,828	297.77	12,504	2.51	11,625	155.35	12,039	220.25
MK11	27,604	208.94	27,542	125.25	27,786	235.45	27,990	57.88	27,692	81.59	27,644	10.97	27,694	74.08	27,757	275.70
MK12	25,138	187.88	25,097	127.56	25,301	30.19	25,197	72.47	25,882	2.39	26,101	0.28	25,207	44.11	25,188	268.75
MK13	21,633	143.11	21,150	227.99	22,728	141.57	22,682	15.97	21,020	133.81	21,773	3.22	21,466	47.61	22,182	214.19
MK14	30,597	134.76	30,550	94.94	31,067	283.03	30,815	124.47	31,674	131.73	31,223	1.77	30,778	88.62	30,672	280.78
MK15	19,882	260.19	19,775	196.63	20,792	10.26	20,570	79.55	20,477	266.85	24,081	0.19	19,900	269.25	21,345	56.19
$C_{\text {max }}$	14,516.47		14,424.40		14,880.40		14,814.67		14,853.20		15,281.80		14,519.87		14,796.00	
\#best	3		10		2		129		3		1				1	
gap(\%)	0.75		0.21		3.46				3.02		5.82		0.63		3.88	
gap (\%)	1.50		0.49		4.23		3.54		3.02		5.82		0.89		5.50	

instance	ILS-RN		ILS-CN		GRASP-RN		GRASP-CN		TS-RN		TS-CN		SA		GVNSWAF	
	$C_{\text {max }}$	Time														
sfjs01	6,206	0.00	6,206	0.00	6,206	0.00	6,206	0.00	6,206	0.00	6,206	0.00	6,206	0.00	6,206	0.00
sfjs02	9,498	0.00	9,498	0.00	9,498	0.00	9,498	0.00	9,498	0.00	9,498	0.00	9,498	0.00	9,498	0.00
sfjs03	18,062	0.00	18,062	0.00	18,062	0.00	18,062	0.00	18,062	0.00	18,062	0.00	18,062	0.00	18,062	0.00
sfjs04	29,852	0.00	29,852	0.00	29,852	0.00	29,852	0.00	30,648	0.00	30,648	0.00	29,852	0.00	29,852	0.00
sfjs05	9,465	0.00	9,465	0.00	9,465	0.00	9,465	0.00	9,465	0.00	10,288	0.00	9,465	0.00	9,465	0.00
sfjs06	26,281	0.00	26,281	0.00	26,281	0.00	26,281	0.00	26,281	0.00	26,281	0.00	26,281	0.00	26,281	0.00
sfjs07	34,443	0.00	34,443	0.00	34,443	0.00	34,443	0.00	34,443	0.00	34,443	0.00	34,443	0.00	34,443	0.00
sfjs08	21,309	0.00	21,309	0.00	21,309	0.00	21,309	0.00	21,715	0.00	21,309	0.00	21,309	0.02	21,309	0.00
sfjs09	15,973	0.00	15,973	0.00	15,973	0.00	15,973	0.00	15,973	0.00	15,973	0.00	15,973	0.01	15,973	0.00
sfjs10	45,450	0.00	45,450	0.00	45,450	0.00	45,450	0.00	45,450	0.00	45,450	0.00	45,450	0.01	45,450	0.00
$C_{\text {max }}$	21,653.90		21,653.90		21,653.90		21,653.90		21,774.10		21,815.80		21,653.90		21,653.90	
\#best	10		10		10		10		8		8		10		10	
gap(\%)	0.00		0.00		0.00		0.00		0.46		1.14		0.00		0.00	
$\overline{\mathrm{gap}}(\%)$	0.00		0.00		0.00		0.00		0.46		1.14		0.00		0.00	

Table A6: Results of applying the metaheuristics and the method introduced in [44] to classical instances of the FJS with learning effect and without sequencing flexibility, with learning effect rate $\alpha=0.3$.

[^0]: *This work has been partially supported by the Brazilian agencies FAPESP (grants 2013/07375-0, 2022/058033, and 2023/08706-1) and CNPq (grants 311536/2020-4 and 302073/2022-1).
 ${ }^{\dagger}$ Department of Applied Mathematics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: kennedy94@ime.usp.br
 ${ }^{\ddagger}$ Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, SP, Brazil. e-mail: egbirgin@ime.usp.br. Corresponding author.
 ${ }^{\S}$ Department of Production Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, 1380, Cidade Universitária, 05508-010 São Paulo, SP, Brazil. e-mail: dronconi@usp.br

