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Abstract. For a connected graph G, let L(G) denote the maximum
number of leaves in a spanning tree in G. The problem of computing
L(G) is known to be NP-hard even for cubic graphs. We improve on Loryś
and Zwoźniak’s result presenting a 5/3-approximation for this problem
on cubic graphs. This result is a consequence of new lower and upper
bounds for L(G) which are interesting on their own. We also show a
lower bound for L(G) that holds for graphs with minimum degree at
least 3.

1 Introduction

The MaxLeaf consists of the following problem. Given a connected graph G,
find a spanning tree in G with as many leaves as possible. This problem is NP-
hard [3] even for cubic graphs [6], and is known to be MAX SNP-complete [2].
Lu and Ravi [9,10] gave the first approximation algorithms for MaxLeaf. Solis-
Oba [11] described the currently best approximation algorithm: a greedy
2-approximation.

All graphs considered in this paper are connected, unless otherwise specified.
We use n to denote the number of vertices of the graph in question. To the best of
our knowledge, Storer [12] was the first to consider MaxLeaf on cubic graphs.
He showed that every cubic graph has a spanning tree with at least �n/4 + 2�
leaves. Griggs, Kleitman, and Shastri [4] complemented this result by showing
that this bound is tight. As a side note, they also provided a simple polynomial
time algorithm (alternative to Storer’s) that finds a spanning tree with at least
�n/4 + 2� leaves in a cubic graph. As an illustration, Fig. 1(a) presents a graph
that achieves this bound. On the other hand, Linial and Sturtevant [7] proved
that Storer’s lower bound holds even for graphs with minimum degree three.
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Kleitman and West [5] extended the study of Linial and Sturtevant and consid-
ered MaxLeaf on graphs with minimum degree at least k, for arbitrary values
of k and for small values of k as well.

(a) (b)

Fig. 1. (a) A cubic graph and a spanning tree with n/4 + 2 leaves indicated by the
dark edges. (b) A diamond.

For a graph G, we let L(G) denote the maximum number of leaves in a
spanning tree of G. As we mentioned, the result of Storer [12] is constructive
and can be restated as a proof of a lower bound on L(G) for a cubic graph G.
Furthermore, the main result provided by Griggs et al. [4] is a better lower bound
on L(G) for the case of 3-connected cubic graphs. It can actually be seen as a
constructive proof of the fact that every 3-connected and also every triangle-free
cubic graph has a spanning tree with at least �(n + 4)/3� leaves.

A diamond is a complete graph on 4 vertices minus an edge, also denoted
by K4 − e. We say that a subgraph of a given graph G is a cubic diamond if it
is a diamond in which all of its vertices have degree 3 in G (see Fig. 1 (b)). In
graphs with minimum degree at least 3, we want to distinguish those diamonds
that are cubic and those that are not. The 3-dimensional cube graph is denoted
by Q3. Specifically, the previous bound by Griggs et al. [4] holds for all cubic
graphs that do not contain diamonds. In fact, Griggs et al. observed that their
bound is tight for Q3 and that, for any other cubic graph, the sometimes stronger
lower bound of �(n + 5)/3� holds. They also noted that this lower bound is tight
for both 3-connected and triangle-free cubic graphs. (See examples in Fig. 2.)

For the purpose of this paper, it is interesting to point out that Griggs et al.
result implies a 3/2-approximation for MaxLeaf in 3-connected cubic graphs,
since any spanning tree in a cubic graph has at most n/2+1 leaves. More recently,
there has been some interest in obtaining approximation results for cubic graphs.
Indeed, Loryś and Zwoźniak [8] presented a 7/4-approximation for MaxLeaf in
cubic graphs. Very recently, Bonsma [1] proved that if G is a connected graph of
minimum degree at least 3 with d cubic diamonds, then G has a spanning tree
with at least �(2n − d + 12)/7� leaves.

In this paper, we prove a lower bound on L(G) for a cubic graph G that
also takes into account the diamonds present in the graph (but not only their
number). Our lower bound is always at least as good as the one for cubic graphs
derived from Bonsma’s lower bound.

As most previous work, our proof is constructive, so it gives a polynomial
algorithm that produces a spanning tree of the given graph with as many leaves
as the claimed lower bound. Our algorithm uses the one of Griggs et al. [4]
for diamond-free cubic graphs. The better lower bound, together with a related
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(a) (b)

Fig. 2. (a) A triangle-free cubic graph and a spanning tree, indicated by the dark
edges, with n/3 + 2 = �(n + 5)/3� leaves. (b) A 3-connected cubic graph G on n = 12
vertices obtained from K4 by replacing each of its vertices with a triangle. Observe
that L(G) = 6 = �(n + 5)/3�.

upper bound, allows us to improve upon the result of Loryś and Zwoźniak [8],
obtaining a 5/3-approximation for MaxLeaf in cubic graphs.

This paper is organized as follows. In the next section we derive the new lower
bound on L(G), while in Section 3, we prove the new upper bound on L(G). In
Section 4, we present the 5/3-approximation with its analysis. Section 5 discusses
the extension for graphs with minimum degree at least 3. We conclude with some
final remarks in Section 6.

2 A New Lower Bound

The way the diamonds are spread in the graph plays an important role in the
new lower bound. It is expressed by a new parameter whose definition follows.

Call internal the two vertices in a diamond that have all neighbors within the
diamond, and external the other two vertices of the diamond (see Fig. 3 (a)).
For a cubic graph G, let Gr be the graph obtained from G after the removal of
all internal vertices of its diamonds. We denote by c the number of components
of Gr. For instance, if G is the graph in Fig. 1(a) with d diamonds, then Gr

consists of d disjoint edges and c = d in this case.
The new lower bound is given in the next theorem. It depends on the number n

of vertices in the graph and on the parameter c defined above. Recall that Q3 is
the 3-dimensional cube graph.

Theorem 1. Let G �= Q3 be a connected cubic graph with d diamonds. Then G
has a spanning tree with at least max{lb1, lb2} leaves, where lb1 = �(n − d + 5)/3�
and lb2 = 3d − 2c + 2. Moreover, max{lb1, lb2} ≥ �(3n − 2c + 17)/10�.

(a) (b)

Fig. 3. (a) The squares indicate the internal vertices in a diamond. The other two
vertices are the external ones. (b) A double diamond.
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Proof. For the first lower bound lb1 on L(G), let G′ be the graph obtained from G
after replacing each diamond by the graph in Fig. 3 (b), which we call a double
diamond. Because of the structure of G′, from any spanning tree of G′, it is easy
to get a spanning tree of G with at most one leaf less per double diamond. The
number of vertices in G′ is n′ = n + 2d. Observe that G′ is diamond-free. So,
from the result of Griggs et al. [4], we conclude that G′ has a spanning tree T ′

with at least �(n′ + 5)/3� = �(n + 2d + 5)/3� leaves. Thus, from T ′, we can get a
spanning tree T in G with at least �(n + 2d + 5)/3� − d = �(n − d + 5)/3� = lb1
leaves. Therefore L(G) ≥ lb1.

For the second lower bound lb2 on L(G), let F be a forest in G consisting of
spanning trees in each component of Gr. As Gr has 2d vertices of degree one, F
has at least 2d leaves. Extend F in two phases to obtain a spanning tree in G.
In the first phase, add to F edges from c − 1 of the diamonds to connect the c
components of F and all vertices in these c − 1 diamonds. This can be done by
losing two leaves and gaining one for each of the c − 1 diamonds. In the second
phase, add edges from the remaining diamonds to connect its internal vertices
to F , losing one leaf and gaining two per diamond. This results in a tree with
2d − (c − 1) + (d − (c − 1)) = 3d − 2c + 2 = lb2 leaves. Thus, L(G) ≥ lb2.

The maximum of these two lower bounds on L(G) is at least the value they
achieve when they are equal. That is, when (n − d + 5)/3 = 3d − 2c + 2. From
this we deduce that d = (n + 6c − 1)/10 and, plugging it back in one of the two
lower bounds, we get that max{lb1, lb2} ≥ �(3n − 2c + 17)/10�. ��

There are tight examples for the bound on L(G) given by this theorem. For
instance, the graph in Fig. 1(a) is a tight example with c = n/4. Indeed,
Theorem 1 says that there is a spanning tree in this graph that has at least
�(3n − 2c + 17)/10� = �n/4 + 17/10� = n/4 + 2 leaves. The tree of dark edges
in Fig. 1(a) is optimal and has these many leaves. For another tight example,
consider the graph indicated in Fig. 4. It consists of d double diamonds connected
as a chain and forming a circuit, with one of the edges in each double diamond
substituted by a diamond. Call this graph H . The number of vertices in H is
n = 10d and in this case c = 1. Theorem 1 says that there is a spanning tree
in this graph that has at least �(3n − 2c + 17)/10� = �(3n + 15)/10� = 3d + 2
leaves. The spanning tree in dark edges in Fig. 4 is optimal and has exactly
3d + 2 leaves.

Based on the example in Fig. 4, one might suspect that any tight example is
not 3-connected after we replace each diamond by an edge. Note, however, that

Fig. 4. A tight example for Theorem 1



188 J.R. Correa et al.

(a) (b)

Fig. 5. (a) Another tight example for Theorem 1. (b) The 3-connected graph obtained
from the example in (a) after the replacement of each diamond by an edge.

the graph shown in Fig. 5 (a) is a tight example and it remains 3-connected even
after we perform these operations, as one can see in Fig. 5 (b).

2.1 Comparison with Bonsma’s Lower Bound

Bonsma [1] recently proved that if G is a connected graph with d diamonds and
minimum degree at least 3, then L(G) ≥ �(2n − d + 12)/7�. It is natural to ask
how this result specialized to cubic graphs compares with the lower bound we
have given in Theorem 1. To answer this question, let us consider the case d �= 0
(when d = 0 the lower bound given by Griggs et al. [4] is as good as the lower
bound given by Bonsma, and it is better when n > 8).

Let lbB = �(2n − d + 12)/7�. If c = d then n = 4d and in this case lb1 = lb2 =
lbB. If c < d then n > 4d + 1. Adding 6n − 7d + 35 on both sides of the last
inequality, we obtain 7n−7d+35 > 6n−3d+36. Thus, 7(n−d+5) > 3(2n−d+12),
and therefore lb1 ≥ lbb. (If n ≥ 4d + 22, then lb1 > lbb.)

We note that the difference between lb1 and lbB might be not so negligible. For
the tight example shown in Fig. 4, if we take n = 70p, where p is a positive integer
(that is, G is a necklace with 7p double diamonds), we have that lbB = 19p + 2,
while lb1 = lb2 = L(G) = 21p + 2. In this case, lbB is around 10 % smaller
than lb1.

3 New Upper Bound

In this section, we prove a new upper bound on L(G) that involves c. We recall
that c is the number of components of Gr, where Gr is the graph obtained from G
after the removal of all internal vertices of its diamonds. This upper bound will
be useful in the analysis of the proposed approximation, that will be presented
in the next section.

Theorem 2. If G is a connected cubic graph, then any spanning tree of G has
at most �n/2 − c + 2	 leaves.

Proof. Let T be an arbitrary spanning tree in G. As G is cubic, T has (n −
d2 + 2)/2 leaves, where d2 is the number of vertices of degree two in T . Indeed,
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denoting the number of vertices in T of degree i by di, for i = 1, 2, 3, we have
that n = d1 + d2 + d3 and 2(n − 1) = d1 + 2d2 + 3d3. From these two equalities,
we deduce that d1 = (n − d2 + 2)/2.

Now observe that, as Gr has c components, edges of at least c − 1 diamonds
will be used to connect components of Gr in T . Each diamond that is used to
connect a component of Gr to another contributes with at least two different
vertices of degree two in T . (See Fig. 6.) That is, the number of vertices of degree
two in T is at least 2(c − 1). In symbols, d2 ≥ 2(c − 1).

From this and from the previous observation, we deduce that T has at most
�n/2 − c + 2	 leaves. Hence, L(G) ≤ �n/2 − c + 2	. ��

Fig. 6. Possible ways (excluding symmetric cases) to use a diamond to connect com-
ponents of Gr spanning all vertices. The squared vertices have degree two in the graph
of dark edges.

4 The Algorithm

Now we describe an algorithm whose approximation ratio is derived from the
lower and upper bounds presented.

Algorithm A(G)
Input: a connected cubic graph G

Output: a spanning tree of G with at least 3
5L(G) leaves

1 d ← number of diamonds in G

2 G′ ← graph obtained from G by substituting each diamond by a double diamond
3 T ′ ← gks(G′) � T ′ is a spanning tree of G′ given by the algorithm of Griggs et al.

4 T1 ← spanning tree of G obtained from T ′ (see proof of Theorem 1)
5 Gr ← graph obtained from G by removing the internal vertices of each diamond
6 F ← forest consisting of a spanning tree in each component of Gr

7 c ← number of components of Gr

8 D ← set of c − 1 diamonds that, if added back to Gr, make it connected
9 for each diamond h in D

10 add to F the three edges of h incident to a same internal vertex
11 for each diamond h not in D

12 add to F the two edges of h incident to a same external vertex
13 let T2 be the resulting tree
14 let T be the one between T1 and T2 with more leaves
15 return T
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The proof of Theorem 1 gives us immediately an algorithm to construct span-
ning trees with at least max{lb1, lb2} leaves. Just for completeness, we present
it in pseudocode. We use gks to refer to the algorithm of Griggs, Kleitman, and
Shastri [4].

Theorem 3. Algorithm A is a 5/3-approximation for MaxLeaf on cubic graphs.

Proof. First note that, as gks is polynomial, A is a polynomial-time algorithm.
Indeed, all but lines 3 and 8 can be implemented to run in linear time. For line 8,
one can use some disjoint sets data structure and achieve almost linear time. So
the most time consuming step is the execution of gks in line 3.

As for the approximation ratio, let |A(G)| denote the number of leaves in the
tree produced by A with G as input. Indeed, A is a 5/3-approximation, because

L(G)
|A(G)| ≤

(
n − 2c + 4

2

)(
10

3n − 2c + 17

)

= 5
n − 2c + 4

3n − 2c + 17

≤ 5
n − 2c + 4

3n − 2c − 4c + 12

= 5
n − 2c + 4

3(n − 2c + 4)

=
5
3
.

The first inequality holds by Theorems 1 and 2. ��

5 Constructions and Extension for Minimum Degree 3

Our lower bound shown in Theorem 1 calls attention to the fact that diamonds
might not be what makes L(G) smaller, closer to n/4. Indeed, we found inter-
esting the following construction that proves this fact. Let H be a diamond-free
cubic graph, and let T be an arbitrary spanning tree in G. Let G be the graph
obtained from H by substituting every edge not in T by a diamond. Despite the
fact that G has many diamonds, there exist spanning trees in G with n/2 + 1
leaves, where n is the number of vertices of G, which is as much as it could. (The
number of diamonds in G is n/6 + 1/3.)

Another general construction that we found interesting is the one already
exemplified in Fig. 2 (b). Given a cubic graph H , substitute each vertex of H
by a triangle. Let G be the resulting graph. Note that G is (cubic) diamond-
free. Then L(G) = n/3 + 2. The fact that L(G) ≥ n/3 + 2 follows immediately
from the lower bound of Griggs et al. [4] for cubic diamond-free graphs. On the
other hand, let T be an arbitrary spanning tree of G and denote the number
of vertices in T of degree i by di, for i = 1, 2, 3. Then, as already observed,
n = d1 + d2 + d3 and 2(n − 1) = d1 + 2d2 + 3d3. From these two equalities, we
deduce that d1 = d3 + 2. But T has at most one degree 3 vertex per triangle. So
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d3 ≤ n/3 and L(G) ≤ n/3 + 2. (In fact, a similar construction was described by
Griggs et al. [4, p. 671].)

As already mentioned, Bonsma [1] proved that if G is a connected graph of
minimum degree at least 3 with d cubic diamonds, then G has a spanning tree
with at least �(2n − d + 12)/7� leaves. We used this bound to obtain a result
similar to Theorem 1 for graphs of minimum degree at least 3.

Theorem 4. Every connected graph G of minimum degree at least three with
d cubic diamonds has a spanning tree with at least max{lbB, lb2} leaves, where
lbB = �(2n − d + 12)/7� and lb2 = 3d − 2c + 2. Moreover, max{lbB, lb2} ≥
�(3n − c + 19)/11�.

In some cases, the bound lb2 is better than the bound lbB of Bonsma [1]. In fact,
for the example shown in Fig. 4, if we take n = 770p (that is, a necklace with
77p double diamonds) then lbB = 209p + 2 and lb2 = 231p.

Unfortunately, the upper bound for graphs with minimum degree 3 is n − 1
(and is tight), and therefore we cannot derive an approximation algorithm better
than Solis-Oba’s [11] for this case using this lower bound.

6 Final Remarks

Galbiati, Maffioli, and Morzenti [2] proved that MaxLeaf is MAX SNP-
complete, but there is no such proof for cubic graphs. We suspect that this
case is also MAX SNP-complete. It would be nice to settle this question.

Also, we conjecture that there is a 3/2-approximation algorithm for MaxLeaf

on cubic graphs. In fact, in many cases the algorithm described in this paper
achieves this ratio.
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