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Abstract. We present approximation algorithms for the orthogonal z-oriented three-dimen-
sional packing problem (TPPz) and analyze their asymptotic performance bound. This problem
consists in packing a list of rectangular boxes L = (b1, b2, . . . , bn) into a rectangular box B =
(l, w,∞), orthogonally and oriented in the z-axis, in such a way that the height of the packing is
minimized. We say that a packing is oriented in the z-axis when the boxes in L are allowed to
be rotated (by ninety degrees) around the z-axis. This problem has some nice applications but
has been less investigated than the well-known variant of it—denoted by TPP (three-dimensional
orthogonal packing problem)—in which rotations of the boxes are not allowed. The problem TPP
can be reduced to TPPz . Given an algorithm for TPPz , we can obtain an algorithm for TPP with the
same asymptotic bound. We present an algorithm for TPPz , called R, and three other algorithms,
called LS, BS, and SS, for special cases of this problem in which the instances are more restricted.
The algorithm LS is for the case in which all boxes in L have square bottoms; BS is for the case
in which the box B has a square bottom, and SS is for the case in which the box B and all boxes
in L have square bottoms. For an algorithm A, we denote by r(A) the asymptotic performance
bound of A. We show that 2.5 ≤ r(R) < 2.67, 2.5 ≤ r(LS) ≤ 2.528, 2.5 ≤ r(BS) ≤ 2.543, and
2.333 ≤ r(SS) ≤ 2.361. The algorithms presented here have the same complexity O(n logn) as the
other known algorithms for these problems, but they have better asymptotic performance bounds.
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1. Introduction. We present approximation algorithms for the orthogonal z-
oriented three-dimensional packing problem and show results concerning their asymp-
totic performance bound. All algorithms described here have time complexity
O(n logn), where n is the number of boxes in the input list.

Let L = (b1, b2, . . . , bn) be a list of rectangular boxes bi = (xi, yi, zi), where xi, yi,
and zi is the length, width, and height of bi, respectively. The orthogonal z-oriented
three-dimensional packing problem (TPPz), can be defined as follows. Given a box
B = (l, w,∞) and a list of boxes L = (b1, b2, . . . , bn), find an orthogonal z-oriented
packing of L into B that minimizes the total height. In the next section we define the
concept of orthogonal z-oriented packing. For the moment, let us informally say that
it is an orthogonal packing in which the boxes may be rotated around the z-axis (but
may not be turned down).

A variant of TPPz, in which the boxes may not be rotated around the z-axis,
has been more investigated and is known as the three-dimensional orthogonal packing
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problem [3, 5, 6]. We denote it by TPP. Since all packings to be mentioned here are
orthogonal we omit this term. Here we show that TPP can be reduced to TPPz.
Since the unidimensional packing problem [2] can be reduced to TPP, it follows that
both TPP and TPPz are NP-hard.

If A is an algorithm for TPPz or TPP and L is a list of boxes, then A(L) denotes
the height of the packing generated by algorithm A when applied to a list L; and
OPT(L) denotes the height of an optimal packing of L. We say that α is an asymptotic
performance bound of an algorithm A if there exists a constant β such that for all
lists L, in which all boxes have a height bounded by a constant Z, the following holds:
A(L) ≤ α · OPT(L) + β · Z. Furthermore, if for any small ε and any large M , both
positive, there is an instance L such that A(L) > (α− ε)OPT(L) and OPT(L) > M ,
then we say that α is the asymptotic performance bound of algorithm A. We denote
by r(A) the asymptotic performance bound of A.

In 1990, Li and Cheng [4] presented TPPz as a model for a job scheduling problem
in partitionable mesh connected systems. In this problem a set of jobs J1, J2, . . . , Jn
is to be processed in a partitionable mesh connected system that consists of l × w
processing elements connected as a rectangular mesh. Each job Ji is specified by a
triplet Ji = (xi, yi, ti) indicating that a submesh of size either (xi, yi) or (yi, xi) is
required by job Ji, and ti is its processing time. The objective is to assign the jobs to
the submeshes so as to minimize the total processing time. The algorithm for TPPz

described in [4] has asymptotic performance bound 44
7 .

In [3] Li and Cheng describe several algorithms for TPP: for the general case,
an algorithm whose asymptotic performance bound is 3.25, and for the special case
in which all boxes have square bottom, an algorithm whose asymptotic performance
bound is 2.6875. In 1992, these authors [5] also presented an on-line algorithm with
an asymptotic performance bound that can be made as close to 2.89 as desired.

In [6] we present an algorithm for TPP whose asymptotic performance bound is
less than 2.67. In this paper we describe an algorithm for TPPz that has a similar
asymptotic performance bound. We also describe an algorithm for the special case
of TPPz in which the box B has a square bottom and show that its asymptotic
performance bound is less than 2.528. For the case in which all boxes of L have
square bottoms, we present an algorithm with an asymptotic performance bound less
than 2.543. Moreover, for the case in which all boxes have square bottoms, we present
an algorithm whose asymptotic performance is less than 2.361. The algorithms we
describe here for special instances of TPPz are not straightforward simplifications of
the algorithm for the general case. Each one resulted from a careful analysis of the
instances under consideration.

There is a fundamental aspect in which the algorithms we have developed differ
from those of Li and Cheng. Their strategy is to divide the input list into sublists
and apply appropriate algorithms for each sublist, returning a packing that is a con-
catenation of these individual packings. The strategy we use also makes subdivisions
(different ones) of the input list, but generates not only packings of each sublist but
also those that are obtained by appropriate combinations of different sublists. In fact,
we may say that the key idea behind our algorithms is to consider sublists which can
be combined to generate better packings.

This paper is organized as follows. In section 2 we define some basic concepts,
establish the notation, and discuss relations between TPP and TPPz. In section 3
we describe the main algorithm (for TPPz) and analyze its asymptotic performance
bound. In each of the next three sections we describe an algorithm for a special
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instance of TPPz and prove results on its asymptotic performance bound.

2. Notation and basic results. Given a list of boxes L = (b1, . . . , bn) to be
packed into a box B = (l, w,∞), we assume that each box bi is of the form bi =
(xi, yi, zi), with xi ≤ l and yi ≤ w or xi ≤ w and yi ≤ l (that is, each box bi can
be packed into B in some orientation). We also assume throughout this paper that
the list L consists of boxes with height bounded by a constant Z. In all algorithms
mentioned here, unless otherwise stated, the input box B is assumed to be of the form
B = (l, w,∞).

Given a triplet t = (a, b, c), we also refer to each of its elements a, b, and c as
x(t), y(t), and z(t), respectively. For each box bi = (xi, yi, zi), we denote by ρ(bi)
the box consisting of the triplet (yi, xi, zi) and we set Γ(L) = {(c1, c2, . . . , cn) : ci ∈
{bi, ρ(bi)}}. Given a real function f : C → R and a subset C ′ ⊆ C, we denote by
f(C ′) the sum

∑
e∈C′ f(e).

Although a list is given as an ordered n-tuple of boxes, when the order of the
boxes is irrelevant, the corresponding list may be viewed as a set.

Note that, by using a three-dimensional coordinate system, the box B = (l, w,∞)
can be seen as the region [0, l)×[0, w)×[0,∞); and we may define a z-oriented packing
P of a list of boxes L into B as a mapping P : L′ = (b1, . . . , bn)→ [0, l)×[0, w)×[0,∞),
such that

L′ ∈ Γ(L), Px(bi) + xi ≤ l and Py(bi) + yi ≤ w ,

where P(bi) = (Px(bi),Py(bi),Pz(bi)), i = 1, . . . , n.
Furthermore, if R(bi) is defined as

R(bi) = [Px(bi),Px(bi) + xi)× [Py(bi),Py(bi) + yi)× [Pz(bi),Pz(bi) + zi),

then the following must hold:

R(bi) ∩R(bj) = ∅ ∀i, j, 1 ≤ i 6= j ≤ n .

If in the above definition we replace L′ ∈ Γ(L) by L′ = L, then we have the
concept of oriented packing (note that the condition L′ = L means that the boxes in
L may not be rotated around the z-axis).

In what follows, we may use the term packing to refer to both the z-oriented and
the oriented packing. To be precise, sometimes we should refer to a z-oriented packing
(when some boxes are being rotated), but we simply say packing as this will be clear
from the context. When this may cause confusion we specify which packing we are
referring to.

Given a packing P of L, we denote by H(P) the height of the packing P, i.e.,
H(P) := max{Pz(b) + z(b) : b ∈ L}.

If P1,P2, . . . ,Pv are packings of disjoint lists L1, L2, . . . , Lv, respectively, we de-
fine the concatenation of these packings as a packing P = P1‖P2‖ · · · ‖Pv of L =

L1∪L2∪· · ·∪Lv, where P(b) = (Pxi (b),Pyi (b),
∑i−1
j=1H(Pj)+Pzi (b)), for all b ∈ Li, 1 ≤

i ≤ v. If each list Li = (bi1, b
i
2, . . . , b

i
ni), i = 1, . . . , v, then the concatenation of these

lists, denoted by L1‖L2‖ · · · ‖Lv, is the list (b11, . . . , b
1
n1
, b21, . . . , b

2
n2
, . . . , bv1, . . . , b

v
nv ).

The following notation is used to consider sublists of the list L.
• C := {bi = (xi, yi, zi) : 0 ≤ xi ≤ l, 0 ≤ yi ≤ w, zi > 0};
• C[p′′, p′ ; q′′, q′] := {bi = (xi, yi, zi) : p′′ · l < xi ≤ p′ · l, q′′ · w < yi ≤ q′ · w} ,

for 0 ≤ p′′ < p′ ≤ 1, 0 ≤ q′′ < q′ ≤ 1;
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• Q[p′′, p′ ; q′′, q′] := {bi = (xi, yi, zi) : bi ∈ C[p′′, p′ ; q′′, q′] and xi = yi};
• X := {bi = (xi, yi, zi) : yi < xi} , Y := {bi = (xi, yi, zi) : yi ≥ xi};
• Cm := C[0, 1

m ; 0, 1
m ], Qm := Q[0, 1

m ; 0, 1
m ], for m > 0;

• R1 := C[0, 1
2 ; 0, 1

2 ],R2 := C[0, 1
2 ; 1

2 , 1],R3 := C[ 1
2 , 1 ; 0, 1

2 ],R4 := C[ 1
2 , 1 ; 1

2 , 1].
If R is a set of boxes, then we say that a box b is of type R if b ∈ R or ρ(b) ∈ R.
We denote by S(b) and V (b) the bottom area (i.e., S(b) := x(b)y(b)) and the

volume of the box b, respectively.
A level N in a packing P is a region [0, l)× [0, w)× [Z1, Z2) in which there is a set

L′ of boxes such that for all b ∈ L′, Pz(b) = Z1 and Z2 − Z1 = max{z(b) : b ∈ L′}.
Sometimes we shall consider the level N as a packing of the list L′; we denote by
S(N) the sum

∑
b∈L′ S(b).

A layer (in the x-axis direction) in a level is a region [0, l)× [Y1, Y2)× [Z1, Z2) in
which there is a set L′ of boxes such that, for all b ∈ L′, Py(b) = Y1 and Pz(b) = Z1;
and moreover, Y2 − Y1 = max{y(b) : b ∈ L′} and Z2 − Z1 = max{z(b) : b ∈ L′}.

Relations between TPP and TPPz. One way to solve TPPz is to adapt algo-
rithms for TPP. A simple approach is to generate for each instance L = (b1, b2, . . . , bn)
a new instance φ(L) ∈ Γ(L), such that φ(L) = (d1, d2, . . . , dn), where

di =

{
bi if xi ≤ l and yi ≤ w,
ρ(bi) otherwise,

and then apply an algorithm for TPP on the list φ(L).

For each algorithm A for TPP, let us denote by Â the corresponding algorithm
for TPPz, as described above. That is, for every instance L of TPPz, algorithm Â
applies algorithm A on the list φ(L). It is easy to see that the algorithm Â may not
preserve the asymptotic performance of the original algorithm A.

The next result shows that there is no algorithm Â for TPPz, obtained from an
algorithm A for TPP, as described previously, that has an asymptotic performance
bound less than 3.

Proposition 2.1. If Â is an algorithm for TPPz obtained from an algorithm A
for TPP, as described above, then the asymptotic performance bound of Â is at least
3.

Proof. Let L = (b1, b2, . . . , b3k) and B = (3 + 3ε, 2,∞) be an instance of of TPPz,
where b1 = b2 = · · · = b3k = (2, 1 + ε, 1), k is a positive integer, and ε is a positive
small number.

First, observe that it is possible to pack L in k levels, that is, OPT(L) ≤ k. For
that, initially rotate each box in L and generate a packing putting three boxes per
level. Now it suffices to note that, since L = φ(L), any algorithm A for TPP is such

that Â(L) ≥ 3k (as the algorithm Â packs only one box per level).
Now suppose we have an algorithm A for TPPz. There is a natural way to adapt

it to an algorithm, say A′, for TPP. The question is what can we say about the
performance of A′. The next result gives the answer.

Theorem 2.2. There is a polynomial reduction of TPP to TPPz that preserves
the approximability. Moreover, this reduction also preserves the additive constant β.
That is, if A is a polynomial algorithm for TPPz, such that A(L) ≤ α ·OPT(L)+β ·Z
then there exists a polynomial algorithm A′ for TPP such that A′(L) ≤ α ·OPT′(L)+
β · Z, where OPT′(L) is the height of an optimum oriented packing of L.

Proof. Let L, as described, and B = (l, w,∞) be an instance of TPP. Consider
the following algorithm A′. First scale B to B′ = (l′, w′,∞) and L to L′ in the same
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proportion in such a way that min{x(b) : b ∈ L′} > w; then apply algorithm A to
pack L′ into the box B′, obtaining a packing P ′. Finally, rescale P ′ back, obtaining
a packing of the original list L (into B). It is clear that A′(L) ≤ α · OPT′(L)
+ βZ.

For all algorithms presented in the next sections, we consider, without loss of
generality, that L = φ(L). That is, we may assume that the boxes in L need not be
rotated to fit in the box B.

Before we present the algorithms for TPPz, let us mention some algorithms used
as subroutines and also the related results that are needed.

We denote by NFDH the next fit decreasing height algorithm for TPP, presented
by Li and Cheng in [3]. For the description of this algorithm the reader may refer
to [3] or [6]. This algorithm has two variants: NFDHx and NFDHy. The notation
NFDH is used to refer to any of these variants.

Li and Cheng [3] proved the following result.

Lemma 2.3. If L ⊂ C[ 1
m+1 ,

1
m ; 0, 1

m ], then NFDHy(L) ≤ (m+1
m−1 )V (L)

l·w + Z.
The same result also holds for the algorithm NFDHx when applied to a list L ⊂
C[0, 1

m ; 1
m+1 ,

1
m ].

The following result is more general and gives as a corollary the result above [6].

Lemma 2.4. Let L be an instance of TPP and P be a packing of L consisting
of levels N1, . . . , Nv such that min{z(b) : b ∈ Ni} ≥ max{z(b) : b ∈ Ni+1}, and

S(Ni) ≥ s · l ·w for a given constant s > 0, i = 1, . . . , v−1. Then H(P) ≤ 1
s
V (L)
l·w +Z.

The constant s mentioned in the above lemma is called an area guarantee of the
packing P.

Li and Cheng presented in [4] an algorithm called LL for instances L ⊂ Cm,
m ≥ 3. We write LL(L,m) to indicate that we are applying the algorithm LL to a
list L ⊂ Cm. They proved that the following result holds for this algorithm.

Lemma 2.5. Let L ⊂ C[0, 1
m ; 0, 1

m ] be an instance of TPP and P be a packing

of L obtained by applying the algorithm LL. Then H(P) ≤ ( m
m−2 )V (L)

l·w + Z.

We give an idea of the algorithm LL(L,m), as we need to refer to it in the proof
of Lemma 2.6. Initially, it sorts the boxes in L in nonincreasing order of their height.
Then it divides L into sublists L1, . . . , Lv, such that L = L1‖L2‖ · · · ‖Lv, each sublist
preserving the (nonincreasing) order of the boxes, and

S(Li) ≤
[(
m−2
m

)
+
(

1
m

)2]
lw for i = 1, . . . , v ,

S(Li) + S(first(Li+1)) >
[(
m−2
m

)
+
(

1
m

)2]
lw for i = 1, . . . , v − 1 ,

where first(L′) is the first box in L′. Then, the algorithm LL uses a two-dimensional
packing algorithm to pack each list Li in only one level, say, Ni. The final packing is
the concatenation of each of these levels.

The next lemma is used to prove lower bounds for the asymptotic performance
bound of some algorithms shown here.

Lemma 2.6. Let A be an algorithm for TPP (TPPz) that partitions the input
list L into two sublists L1 ⊂ R4 and L2 ⊂ Qm, m ≥ 3, and generates a packing P =
P1||P2, where P1 is any packing of L1 and P2 is a packing of L2 using the algorithm
LL. Then the asymptotic performance bound r(A) of A is such that r(A) ≥ 7m−8

4m−8 .

Proof. Consider a box B = (1, 1,∞). Let L be a list of boxes, L = L1 ∪ L2, with
L1 ⊂ R4 and L2 ⊂ Qm, m ≥ 3. Let L1 = (b′1, . . . , b

′
N ′) and L2 = (b′′1 , . . . , b

′′
M ·N ′′),
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where

b′i =

(
1

2
+

1

k
,

1

2
+

1

k
, 1

)
and b′′i =

{ (
1
m ,

1
m , 1− (i− 1)ξ

)
if i mod M = 1,(

1
k ,

1
k , 1− (i− 1)ξ

)
otherwise.

Recall that the algorithm LL groups the first boxes with total bottom area no

greater than
(
m−2
m

)
+
(

1
m

)2
. This instance was chosen in such a way that, in the

packing generated by the algorithm LL, each level has M boxes whose bottom area

is
(
m−2
m

)
+
(

1
k

)2
.

Note that the algorithm LL divides the list L2 into N ′′ sublists, each sublist
consisting of one box of the form

(
1
m ,

1
m , 1− (i− 1)ξ

)
and M − 1 boxes of the form(

1
k ,

1
k , 1− (i− 1)ξ

)
.

The strategy is to take the instance L = L1 ∪L2 in such a way that the optimum
packing consists of N ′ levels, each level containing one box of L1 and the remaining
space (in each level) almost filled with boxes of L2. Taking N ′ and k as very large in-
tegers, with N ′′ = d 3

4N
′ m
m−2e and k a multiple of 2m, we may choose M appropriately

so that r(A) can be made as close to 7m−8
4m−8 as desired.

Another algorithm that plays an important role for the algorithms presented
here is the algorithm COMBINE. This algorithm is a slightly modified version of the
algorithm COLUMN presented in [6]. This algorithm generates a partial packing of
a list L. The packing consists of several stacks of boxes, referred to as columns. Each
column is built by putting one box on top of the other, and each column consists only
of boxes of type either T 1 or T 2.

The algorithm COMBINE is called with the parameters (L, T 1, p1, T 2, p2), where
p1 = [p1

1, p
1
2, . . . , p

1
n1

] consists of the positions in the bottom of box B where the
columns of boxes of type T 1 should start and p2 = [p2

1, p
2
2, . . . , p

2
n2

] consists of the
positions in the bottom of box B where the columns of boxes of type T 2 should start.
Each point pij = (xij , y

i
j) represents the x-axis and the y-axis coordinates where the

first box (if any) of each column of the respective type must be packed. Note that
the z-axis coordinate need not be specified since it may always be assumed to be 0
(corresponding to the bottom of box B). Here we are assuming that the positions p1,
p2 and the types T 1, T 2 are chosen in such a way that the defined packing can always
be performed.

We call height of a column the sum of the height of all boxes in that column.
Initially, all n1 + n2 columns are empty, starting at the bottom of box B. At

each iteration, the algorithm chooses a column with the smallest height, say a column
given by the position pij , and packs the next box b of type T i, updating the list L
after each iteration. If there is no such box b, then the algorithm halts returning the
partial packing P of L. We also say that P combines the lists of types T 1 and T 2.

If each box of type T i has bottom area at least si · l ·w, then (n1s1 + n2s2) · l ·w
is called the combined area of the packing generated by the algorithm COMBINE.

The following result about this algorithm holds. The proof is analogous to the
one given in [6] for the algorithm COLUMN.

Lemma 2.7. Let P be the packing of L′ ⊆ L generated by the algorithm COM-
BINE when applied to lists of types T 1 and T 2 and list of positions pi1, p

i
2, . . . , p

i
ni ,

i = 1, 2. If S(b) ≥ si · l · w for all boxes b in T i (i = 1, 2), then

H(P) ≤ 1

s1n1 + s2n2

V (L′)
l · w + Z.
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To simplify the notation, given two lists L1 and L2, we denote by COLUMN(L1,
p1, L2, p2) the algorithm COMBINE called with parameters (L1||L2, L1, p1, L2, p2)
and assume that it returns a pair (P ′, L′) where P ′ is the partial packing of L1||L2

and L′ is the set of boxes packed in P ′.
Another simple algorithm that we use is the algorithm OC (one column). Given

a list of boxes, say L = (b1, . . . , bn), this algorithm packs each box bi+1 on top of the
box bi for i = 1, . . . , n− 1. It is easy to verify the following results.

Lemma 2.8. If P is the packing generated by the algorithm OC when applied
to a list L and s is a constant such that S(b) ≥ s · l · w for all boxes b in L, then

H(P) ≤ V (L)
s·l·w .

Lemma 2.9. If P is the packing generated by the algorithm OC when applied to a
list L of boxes b such that b ∈ R4 and (ρ(b) ∈ R4 or ρ(b) /∈ C), then H(P) = OPT(L).

We use two other algorithms, UDx and UDy, described in [6]. These algorithms
are based on the algorithm UD, developed by Baker, Brown, and Kattseff [1] for the
strip packing problem. The following results hold for these algorithms [6].

Lemma 2.10. Let L be an instance for TPP such that b ∈ C[ 1
2 , 1 ; 0, 1] (resp.,

b ∈ C[0, 1 ; 1
2 , 1]) for all boxes b in L. Then the packing P generated by the algorithm

UDx (resp., UDy) is such that H(P) ≤ 5
4OPT(L) + 53

8 Z.

Lemma 2.11. Let L be an instance for TPPz consisting of boxes b such that b ∈
C[ 1

2 , 1 ; 0, 1] (resp., b ∈ C[0, 1 ; 1
2 , 1]), and whenever x(b) > y(b) (resp., y(b) > x(b))

then ρ(b) /∈ C. That is, no two boxes of L can be packed side by side in the x-direction
(resp., y-direction). Then the packing P generated by the algorithm UDx (resp., UDy)
is such that H(P) ≤ 5

4OPT(L) + 53
8 Z.

Proof. This result follows directly from the previous lemma and the fact that no
two boxes can be packed side by side in the x-direction (resp., y-direction), even if
rotations are allowed.

3. The algorithm Rk. In [6] we presented an algorithm for TPP, called Ak,
that has an asymptotic performance bound less than 2.67. In this section we present
an algorithm for TPPz, called Rk, that is based on the algorithm Ak. The algorithm
depends on a parameter k, an integer that is assumed to be greater than 5.

Before we give the description of the algorithm we define some numbers which
are used to define sublists, called critical sets.

Definition 3.1. Let r
(k)
1 , r

(k)
2 , . . . , r

(k)
k+15 and s

(k)
1 , s

(k)
2 , . . . , s

(k)
k+14 be real numbers

defined as follows:

• r(k)
1 , r

(k)
2 , . . . , r

(k)
k are such that

r
(k)
1

1
2 = r

(k)
2 (1 − r(k)

1 ) = r
(k)
3 (1 − r(k)

2 ) = · · · = r
(k)
k (1 − r(k)

k−1) = 1
3 (1 − r(k)

k )

and r
(k)
1 < 4

9 ;

• r(k)
k+1 = 1

3 , r
(k)
k+2 = 1

4 , . . . , r
(k)
k+15 = 1

17 ;

• s(k)
i = 1− r(k)

i for i = 1, . . . , k;

• s(k)
k+i = 1− (

2i+4−b i+2
3 c

4i+10 ) for i = 1, . . . , 14.

The following result can be proved using a continuity argument.

Claim 3.1. The numbers r
(k)
1 , r

(k)
2 , . . . , r

(k)
k are such that r

(k)
1 > r

(k)
2 > · · · >

r
(k)
k > 1

3 and r
(k)
1 → 4

9 as k →∞.

For simplicity we omit the superscripts (k) of the notation r
(k)
i , s

(k)
i when k is

clear from the context.
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Using the numbers in Definition 3.1, we define the following critical sets.

CAi = C[ri+1, ri ;
1

2
, si], CBi = C[ 1

2
, si ; ri+1, ri],

CA =
k+14⋃
i=1

CAi , CB =
k+14⋃
i=1

CBi , CA[1−k] =
k⋃
i=1

CAi , CB[1−k] =
k⋃
i=1

CBi .

The next result refers to a list of positions pi,j , qi,j , p
′
j , q
′
j , p
′′
j and q′′j to be consid-

ered when applying the algorithm COMBINE. In [6] we give such a list of positions,
defined for a box B = (1, 1,∞). To use in this context, we have to consider a propor-
tional reparameterization for a box B = (l, w,∞). For completeness, we define here
these positions (only for i < j, since the case i > j is symmetric). See Figure 3.1(a).

Positions to combine sublists of CAi and CBj . For simplicity, we denote by

Ai the list of boxes of type CAi , and by Bj the list of boxes of type CBj .
• To combine the lists Ai (1 ≤ i ≤ k) and Bj (i ≤ j ≤ k), take

pi,j =
[
(0, 0),

(
1
2 , 0
)]

and qi,j = [(0, si)] .

In this case we have an area guarantee of at least 1
2 .

• To combine the list A[1−k] = A1 ∪ · · · ∪ Ak with Bj (k + 1 ≤ j ≤ k + 14),
we consider two phases. We divide A[1−k] into A′ and A′′, taking A′ = {b ∈
A[1−k] : x(b) ≤ 1− sj} and A′′ = A[1−k] \A′.
? To combine A′ with Bj , take

p′j = [(sj , 0)] and

q′j =
[
(0, 0) ,

(
0, 1

j−k+2

)
,
(

0, 2
j−k+2

)
, . . . ,

(
0, j−k+1

j−k+2

)]
.

In this case we have an area guarantee of at least 13
24 . This minimum is

attained when j = k + 1.
? To combine A′′ with Bj , take

p′′j =
[
(0, 0), ( 1

2 , 0)
]

and

q′′j =
[(

0, 2
3

)
,
(

0, 2
3 + 1

j−k+2

)
,
(

0, 2
3 + 2

j−k+2

)
, . . . ,(

0, 2
3 +

(
b j−k+2

3 c − 1
)

1
j−k+2

)]
.

Here we obtain an area guarantee of at least 27
56 .

• To combine the lists Ai (k + 1 ≤ i ≤ k + 14) and Bj (i ≤ j ≤ k + 14), take

pi,j =
[
(sj , 0) ,

(
sj + 1

i−k+2 , 0
)
,
(
sj + 2

i−k+2 , 0
)
, . . . ,(

sj + (b(1− sj) · (i− k + 2)c − 1) 1
i−k+2 , 0

)]
and

qi,j =
[
(0, 0) ,

(
0, 1

j−k+2

)
,
(

0, 2
j−k+2

)
, . . . ,

(
0, j−k+1

j−k+2

)]
.

In this case we also obtain an area guarantee of at least 27
56 .

Lemma 3.2. The following statements are valid for the list of positions pi,j, qi,j,
p′j, q

′
j, p
′′
j , and q′′j :

(a) If P is a packing generated by the algorithm COMBINE with parameters
(L, CAi , pi,j , CBj , qi,j), 1 ≤ i, j ≤ k or k + 1 ≤ i, j ≤ k + 14, then we have that

H(P) ≤ 56
27
V (P)
l·w + Z.

(b) There is a partition of CA[1−k] into sets C′A,j and C′′A,j such that a packing P ′
generated by the algorithm COMBINE with parameters (L, C′A,j , p′j , CBj , q′j),
k + 1 ≤ j ≤ k + 14, is such that H(P ′) ≤ 56

27
V (P′′)
l·w + Z and a packing P ′′
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Fig. 3.1. Partition of list L for algorithm Rk. The sets Ai and Bi in (a) correspond to the
sets CAi and CBi , resp.

generated by the algorithm COMBINE with parameters (L, C′′A,j , p′′j , CBj , q′′j ),

k + 1 ≤ j ≤ k + 14, is such that H(P ′′) ≤ 56
27
V (P′′)
l·w + Z.

(c) Defining positions symmetric to pi,j , qi,j , p
′
j , q
′
j , p
′′
j and q′′j , analogous results

hold when the letter A and B are exchanged in the items above.

The algorithm Rk is inspired by the algorithm Ak presented in [6]. The reader
may compare both algorithms to see where they differ; it should be noted that now
there are steps where rotations are performed. This is done because otherwise we may
not obtain valid inequalities with respect to the optimum packing.

Algorithm Rk
Input: List of boxes L.
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Output: Packing P of L into B = (l, w,∞).
1 Rotate all boxes b that are in R4 such that ρ(b) ∈ R2 ∪R3.

/* i.e., Let T ← {b ∈ L ∩R4 : ρ(b) ∈ R2 ∪R3}. L← (L \ T )
⋃
ρ(T ). */

2 Rotate all boxes b of L that are in R2 ∪R3 such that ρ(b) ∈ R1.
3 Let pi,j , qi,j , 1 ≤ i, j ≤ k + 14, and p′j , p

′′
j , q
′
j , q
′′
j , k + 1 ≤ j ≤ k + 14, be as defined

above.
4 Combine boxes of types CA and CB of L as follows (see Figure 3.1(a)).

4.1 i← 1; j ← 1; PAB ← ∅.
4.2 While (i ≤ k and j ≤ k) do

Pi,j ← COMBINE(L, CAi , pi,j , CBj , qi,j) .
PAB ← PAB‖Pi,j .
Update the list L removing the packed boxes.
If all boxes of type CAi have been packed, then increment i; else incre-

ment j.
4.3 If all boxes of type CB[1−k] have been packed

4.3.1 Then
While (j ≤ k + 14 and there is a box of type CA[ 1− k]) do

Let C′A,j and C′′A,j be a partition of CA[1−k], as in Lemma 3.2.

P̃ ′j ← COMBINE(L, C′A,j , p′j , CBj , q′j). Update L removing the
packed boxes.
P̃ ′′j ← COMBINE(L, C′A,j , p′j , CBj , q′j). Update L removing the
packed boxes.
PAB ← PAB‖P̃ ′j‖P̃ ′′j .
if Bj = ∅, then j ← j + 1.

i← k + 1
4.3.2 Else /* All boxes of types CA[1−k] have been packed */

Perform steps symmetric to the ones given in the case 4.3.1.
4.4 While (i ≤ k + 14 and j ≤ k + 14) do

Pi,j ← COMBINE(L, CAi , pi,j , CBj , qi,j). Update L removing the packed
boxes.

PAB ← PAB‖Pi,j .
If all boxes of type CAi have being packed, then increment i; else incre-

ment j.
5 If all boxes of type CB have been packed, then

5.1 Rotate the boxes of L ∩R2 that fit in R3.
5.2 Rotate the boxes of L ∩ (R2 ∪R4) such that if b ∈ L ∩ (R2 ∪R4), then

x(b) ≤ y(b) or ρ(b) /∈ C.
5.3 Subdivide the list L into sublists L1, . . . , L25 as follows (see Figure 3.1(b)).

Li = L
⋂ C[1

2 , 1 ; 1
i+2 ,

1
i+1 ], for i = 1, . . . , 16 L17 = L

⋂ C[1
2 , 1 ; 0, 1

18 ],

L18 = L
⋂ C[1

3 ,
1
2 ; 1

3 ,
1
2 ], L19 = L

⋂ C[1
3 ,

1
2 ; 1

4 ,
1
3 ],

L20 = L
⋂ C[1

3 ,
1
2 ; 0, 1

4 ], L21 = L
⋂ C[1

4 ,
1
3 ; 1

3 ,
1
2 ],

L22 = L
⋂ C[1

4 ,
1
3 ; 0, 1

3 ], L23 = L
⋂ C[0, 1

4 ; 1
3 ,

1
2 ],

L24 = L
⋂ C[0, 1

4 ; 1
4 ,

1
3 ], L25 = L

⋂ C4,
LC = L

⋂ C[1
2 , 1 ; 1

2 ,
19
36 ] L′D = L1

⋂ C[0, 17
36 ; 0, 1],

L′′D = L18

⋂ C[0, 17
36 ; 0, 1] LD = L′D

⋃
L′′D.

5.4 Generate packing PCD as follows.
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(PCD′ , LCD′)← COLUMN(LC , [(0, 0)], L′D, [(0,
19
36 )]).

(PCD′′ , LCD′′)← COLUMN(LC \ LCD′ , [(0, 0)], L′′D, [(0,
19
36 ), ( 1

2 ,
19
36 )]).

PCD ← PCD′‖PCD′′ .
LCD ← LCD′

⋃
LCD′′ . L1 ← L1 \ LCD. L18 ← L18 \ LCD.

5.5 Generate packings P1, . . . ,P25 as follows.
Pi ← NFDHy(Li) for i = 1, . . . , 22.
Pi ← NFDHx(Li) for i = 23, 24.
P25 ← LL(L25, 4).

5.6 Update L removing the packed boxes. Note that L ⊆ R2 ∪R4.
5.7 If LC ⊆ LCD

then /* (Case 1) */

p ←
√

199145−195
570 = 0.440 . . .. /* LC is totally packed (see Figure

3.1(c)) */
else /* (Case 2) LD ⊆ LCD */

p ←
√

23401−71
180 = 0.455 . . .. /* LD is totally packed (see Figure

3.1(d)) */
5.8 LE ← L ∩ C[1

2 , 1− p ; 1
2 , 1]. L′F ← L ∩ C[1

9 , p ; 1
2 , 1].

L′′F ← L ∩ C[ 1
18 ,

1
9 ; 1

2 , 1]. LF ← L′F ∪ L′′F .
5.9 (PEF ′ , LEF ′)← COLUMN(LE , [(0, 0)], L′F , [(1− p, 0)]).

(PEF ′′ , LEF ′′)← COLUMN(LE \ LEF ′ , [(0, 0)], L′′F , [(0, 1− p),
(0, 1− p+ 1

9 ), . . . , (0, 1− p+ (b9pc − 1) 1
9 )]).

PEF ← PEF ′‖PEF ′′ .
LEF ← LEF ′ ∪ LEF ′′ .

5.10 If LE ⊆ LEF /* (Subcase 1) LE is totally packed */
then
PUD ← UDx(L).
POC ← OC((L \ LEF ) ∩R4).
P2e ← NFDHx((L \ LEF ) ∩ C[0, 1

3 ; 0, 1]).
P2d ← NFDHx((L \ LEF ) ∩ C[p, 1

2 ; 0, 1]).
P ′ ← POC‖P2e‖P2d‖PEF .
P ′′ ← {P ∈ {PUD,P ′} : H(P) is minimum }.
Paux ← PAB‖PCD‖P1‖ . . . ‖P25.
Let L′′ and Laux be the lists of boxes packed in P ′′ and Paux, resp.
P ← Paux‖P ′′.

5.11 If LF ⊆ LEF /* (Subcase 2) LF is totally packed */
then
POC ← OC((L \ LEF ) ∩R4).
P2e ← NFDHx((L \ LEF ) ∩ C[0, 1

18 ; 1
2 , 1]).

P2d ← NFDHx((L \ LEF ) ∩ C[p, 1 ; 1
2 , 1]).

P ′ ← POC‖PEF .
Paux ← PAB‖PCD‖P2e‖P2d‖P1‖ . . . ‖P25.
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.
P ← Paux‖P ′.

6 If all boxes of type CA have been packed then generate a packing P of L as in step
5 (in a symmetric way).

7 Return P.
end algorithm.

The next theorem gives an asymptotic performance bound of the algorithm Rk
when k →∞.
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Theorem 3.3. For any instance L of TPPz we have

Rk(L) ≤ αk ·OPT(L) +

(
2k +

597

8

)
Z,

where αk → 579+
√

199145
384 = 2.669 . . . as k →∞.

Proof. We present the proof for the case all boxes of type CB have been packed
(see step 5). The proof of the other case (step 6) is analogous. We consider 4 cases,
according to step 5.7 (LC ⊆ LCD), step 5.10 (LE ⊆ LEF ), and step 5.11 (LF ⊆ LEF ).

As many steps of the algorithm Rk are similar to the ones of the algorithm Ak
for TPP, many of the inequalities obtained in the analysis of Ak are valid in these
cases. We only mention them in the four claims A, B, C, and D below (see [6]).

Case 1.1. (LC ⊆ LCD) and (LE ⊆ LEF ).
Claim A.

H(P ′′) ≤ 1

(1− p) 19
36

V (L′′)
l · w + 4Z and H(Paux) ≤ 1

r1

V (Laux)

l · w + (2k + 68)Z.

Let H1 := H(P ′′)− 53
8 Z and H2 := H(Paux)− (2k + 68)Z.

Using the definition of H1 and H2 in the two inequalities above we obtain

OPT(L) ≥ V (L)

l · w =
V (L′′)
l · w +

V (Laux)

l · w ≥ (1− p)19

36
H1 + r1H2,

that is,

OPT(L) ≥ (1− p)19

36
H1 + r1H2 .(3.1)

Note that from steps 1, 2, 4, 5.1, and 5.2 the list L′′ satisfies the condition of
Lemma 2.11. Hence, we have

H(P ′′) ≤ UDx(L′′) ≤ 5

4
OPT(L′′) +

53

8
Z ≤ 5

4
OPT(L) +

53

8
Z ,

that is,

OPT(L) ≥ 4

5
H1 .(3.2)

Combining inequalities (3.1) and (3.2), we have

OPT(L) ≥ max

{
4

5
H1, (1− p)19

36
H1 + r1H2

}
.

From the definition of H1 and H2, we obtain

H(P) = H(P ′′) +H(Paux) = H1 +H2 +

(
2k +

597

8

)
Z.

Using the last inequality in the above equation, we have

H(P) ≤
( H1 +H2

max{ 4
5H1, (1− p) 19

36H1 + r1H2}
)

OPT(L) +

(
2k +

597

8

)
Z.
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Analyzing the two possibilities for the maximum, we can prove (see [6]) that

α′k(r1) :=
49 + 95p+ 180r1

144r1
≥ H1 +H2

max{ 4
5H1, (1− p) 19

36H1 + r1H2}
.

Thus,

H(P) ≤ α′k(r1) ·OPT(L) +

(
2k +

597

8

)
Z.

Since r1 → 4
9 as k →∞, we can conclude that α′k(r1)→ 579+

√
199145

384 as k →∞.
Case 1.2. (LC ⊆ LCD) and (LF ⊆ LEF ).
Claim B.

H(P ′′) ≤ 72

19

V (P ′)
l · w + 2Z, and H(Paux) ≤ 1

p

V (Laux)

l · w + (2k + 70)Z.

Let H1 := H(P ′)− 2Z and H2 := H(Paux)− (2k + 70)Z.
Then we have

OPT(L) ≥ V (L′)
l · w +

V (Laux)

l · w ≥ 19

72
H1 + pH2.(3.3)

Note that each box in L′ ∩R4 considered in step 5.11 cannot be rotated, or if it
can be rotated, then it fits in R4 again. So we can conclude that

OPT(L) ≥ OPT(L′) ≥ 19

72
H1.(3.4)

Proceeding as in Case 1.1, using inequalities (3.3) and (3.4), we have

H(P) ≤ α′′k ·OPT(L) + (2k + 72)Z,

where α′′k = 53+72p
72p .

Thus, from the analysis of subcases 1.1 and 1.2, we can conclude that

Ak(L) ≤ αk ·OPT(L) +

(
2k +

597

8

)
Z,

where αk → α′k( 4
9 ) = α′′k =

√
199145+579

384 = 2.669 . . . as k →∞.
Case 2.1. (LD ⊆ LCD) and (LE ⊆ LEF ).
Claim C.

H(P ′′) ≤ 1

(1− p) 1
2

V (L′′)
l · w +

53

8
Z and H(Paux) ≤ 1

1
4 + r1

2

V (Laux)

l · w + (2k + 68)Z.

Let H1 := H(P ′′)− 53
8 Z and H2 := H(Paux)− (2k + 68)Z.

Then we have OPT(L) ≥ V (L′′)
l·w + V (Laux)

l·w ≥ 1−p
2 H1 +

(
1
4 + r1

2

)H2.
Using the same idea used in Case 1.1, we have OPT(L) ≥ OPT(L′′) ≥ 4

5H1 and

thus we obtain H(P) ≤ β′k(r1)OPT(L) +
(
2k + 597

8

)
Z, where β′k(r1) = 11+10p+10r1

4+8r1
.

Case 2.2. (LD ⊆ LCD) and (LF ⊆ LEF ).
Claim D.

H(P ′) ≤ 4
V (P ′)
l · w + 2Z, and H(Paux) ≤ 1

p

V (Laux)

l · w + (2k + 70)Z.
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Let H1 := H(P ′)− 2Z and H2 := H(Paux)− (2k + 70)Z.

In this case we have OPT(L) ≥ V (L′)
l·w + V (Laux)

l·w ≥ 1
4H1 +pH2 and OPT(L) ≥ H1.

Thus, H(P) ≤ β′′k ·OPT(L) + (2k + 72)Z, where β′′k = 3+4p
4p .

Furthermore, for the given value of p, as in the previous cases, we can conclude
that

H(P) ≤ βk ·OPT(L) +

(
2k +

597

8

)
Z,

where βk → β′k( 4
9 ) = β′′k =

√
23401+207

136 = 2.64 . . . as k →∞.
The theorem follows from the conclusions obtained in all cases analyzed.
The following result proved in [6] is also valid for this algorithm and can be proved

analogously. It shows that for relatively small value of k (k = 13) the algorithm Rk
has already an asymptotic performance bound that is very close to the value shown
for k →∞.

Corollary 3.4. For any instance L of TPPz and k ≥ 13 we have

Rk(L) ≤ γk ·OPT(L) +

(
2k +

597

8

)
Z,

where γk =
99+1080r

(k)
1 +

√
199145

864r
(k)
1

< 2.67.

Proposition 3.5. The asymptotic performance bound of the algorithm Rk, k ≥
13, is between 2.5 and 2.67.

Proof. The proof follows directly from Corollary 3.4 and Lemma 2.6 (using m =
4).

4. The Algorithm LS: Boxes in L have square bottoms. In this section
and in the following sections we apply the idea used in algorithm Rk to generate
algorithms for particular instances of TPPz. Here we consider the case in which the
list L consists of boxes with square bottoms.

Without loss of generality, we consider that the box B has dimensions (1, w,∞),
w ≥ 1.

Given a list of boxes L = (b1, . . . , bn), consider the list of points given by the set
{(x1, y1), . . . , (xn, yn)}. Note that all points lay down in a line on the xy-plane that
goes through (0, 0) and (1, 1). We call it a box-line (see Figure 4.1). The algorithm
consider two cases, according to the position in the x-axis, where the box-line crosses
the line y = 1

2 (that is, in the position xw =
(

1
2w

)
w).

Algorithm LS.
Input: List of boxes L ⊂ Q[0, 1 ; 0, 1].
Output: Packing P of L into B = (1, w,∞).

1 Take p := 0.4791964 and subdivide the list L into sublists L1, . . . , L7, LA, LB , LC
as follows (see Figures 4.1 and 4.2).

L1 = L
⋂ C[1

2 , 1 ; 1
2 , 1], L2 = L

⋂ C[1
3 ,

1
2 ; 1

2 , 1], L3 = L
⋂ C[0, 1

3 ; 1
2 , 1],

L4 = L
⋂ C[1

3 ,
1
2 ; 1

3 ,
1
2 ], L5 = L

⋂ C[1
4 ,

1
3 ; 1

3 ,
1
2 ], L6 = L

⋂ C[0, 1
4 ; 1

3 ,
1
2 ],

L7 = L
⋂ C[0, 1

3 ; 1
4 ,

1
3 ], L8 = L

⋂ C[0, 1
4 ; 0, 1

4 ], LA = L2

⋂ C[0, 1 ; 0, 5
8 ],

LB = L3

⋂ C[0, 1 ; 0, 3
8 ], LC = L1

⋂ C[0, 1 ; 0, 5
8 ].

2 Let x← 1
2w .

3 if x ≤ 2
5



1022 F. K. MIYAZAWA AND Y. WAKABAYASHI

Fig. 4.1. Partition of L into sublists.

Fig. 4.2. Combination of sublists LA and LB.

then /* (Case 1) this means that there is no box in LC */
P ′1,2,3 ← OC(L1)‖NFDHx(L2)‖NFDHx(L3).
P ′′1,2,3 ← UD(L1 ∪ L2 ∪ L3).

P ′′ ← (P ∈ {P ′1,2,3,P ′′1,2,3} : H(P) is minimum
)
.

Paux ← NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
P ← P ′′‖Paux.
return P.

else /* (Case 2) this means that there is no box in L2 \ LA */
4 (PAB , LAB)← COLUMN(LA, [(0, 0), ( 1

2 , 0)], LB , [(0,
5
8 ), ( 1

2 ,
5
8 )]).

5 L4 ← L4 \ LAB . LB ← LB \ LAB .
6 (Case 2.1) if LA ⊆ LAB /* LA is totally packed. */

(PBC , LBC)← COLUMN(LC , [(0, 0)], LB , [(0,
5
8 ), ( 1

2 ,
5
8 )].

L1 ← L1 \ LBC . L4 ← L4 \ LBC .
(Subcase 2.1.1) LB ⊆ LBC .
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P ′ ← OC(L1)‖PBC .
Paux ← PAB‖NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).

(Subcase 2.1.2) LC ⊆ LBC .
P ′ ← OC(L1)‖PBC .
Paux ← PBC‖NFDHx(L2)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).

P ← P ′‖Paux.
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.

7 (Case 2.2) if LB ⊆ LAB /* LB is totally packed. */
/* Define two new sublists (LD and LE) as follows. */
LD = L2

⋂ C[0, p ; 0, 1] and LE = L1

⋂ C[0, 1− p ; 0, 1].
(PDE , LDE)← COLUMN(LD, [(0, 0)], LE , [(p, 0)]).
L1 ← L1 \ LDE . L2 ← L2 \ LDE .
/* We have two subcases considering the result of this packing. */

(Subcase 2.2.1) if LD ⊆ LDE or x ≥ p, x = 1
2w ∈

(
p, 1

2

]
then

/* Note that when x ≥ p, LD = ∅. */
P ′ ← OC(L1)‖PDE .
Paux ← PAB‖NFDHx(L2)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
Let L′ and Laux be the lists of boxes packed in P ′ and Paux, resp.
P ← P ′‖Paux.

(Subcase 2.2.2) if LE ⊆ LDE then
P ′1,2 ← OC(L1)‖NFDHx(L2)‖PDE .
P ′′1,2 ← UD(L1 ∪ L2 ∪ LDE).

P ′′ ← (P ∈ {P ′1,2,P ′′1,2} : H(P) is minimum
)
.

Paux ← PAB‖NFDHx(L4)‖ . . . ‖NFDHx(L7)‖LL(L8, 4).
Let L′′ and Laux be the lists of boxes packed in P ′′ and Paux, resp.
P ← P ′′‖Paux.

8 Return P.
end algorithm.

Theorem 4.1. For any instance of TPPz consisting of a list L of boxes with
square bottoms, we have

LS(L) ≤ 2.543 ·OPT(L) +
101

8
Z.

Proof. As the proof technique is analogous to the previous one, we only give the
inequalities that are valid in each case. We suggest that the reader follow the analysis
of each case, together with the corresponding case in the description of the algorithm.
Throughout this proof l = 1, as we are considering that B = (1, w,∞).

Case 1. In this case we obtain the following inequalities:

H(P ′′) ≤ 16

5

V (L′′)
l · w +

53

8
Z,

H(P ′′) ≤ 5

4
OPT(L) +

53

8
,

H(Paux) ≤ 2
V (Laux)

l · w + 5Z.

Defining H1 := H(P ′′) − 53
8 Z and H2 := H(Paux) − 4Z, we have OPT(L) ≥

max{ 4
5H1,

5
16H1 + 1

2H2} and therefore, proceeding as before, we obtain

H(P) ≤ α1 ·OPT(L) +
53

8
Z,
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where α1 ≤ H1+H2

max{ 4
5H1,

5
16H1+ 1

2H2} ≤ 2.5.

Note that for the remaing cases, the lists L3 and L2 \ LA are empty and the
box-line crosses the region LC .

Subcase 2.1.1. Note that in this case, LA ∪ LB is totally packed in PAB‖PBC .
Note also that the boxes of LC in PBC are of type R4 and therefore we obtain the
following inequality:

H(P ′) ≤ 4
V (L′)
l · w + Z.

Since

H(Paux) ≤ 2
V (Laux)

l · w + 7Z,

H(P ′) ≤ OPT(L) + Z,

using the above inequalities and defining H1 := H(P ′)−Z and H2 := H(Paux)− 7Z,
we have

H(P) ≤ α2,1,1 ·OPT(L) + 8Z,

where α2,1,1 ≤ H1+H2

max{H1,
1
4H1+ 1

2H2} ≤ 2.5.

Subcase 2.1.2. In this case the boxes of LA ∪LC are totally packed in PAB‖PBC .
Furthermore, we have x = 1

2w and x ∈ ( 2
5 ,

1
2 ] (note that x · w is the position in the

x-axis where the box-line crosses the line y = 1
2 ). In this case we have the following

inequalities with respect to x:

H(P ′) ≤ 32

25x

V (L′)
l · w + Z,

H(Paux) ≤ 1

min{ 2
9x ,

1
2}
V (Laux)

l · w + 8Z,

H(P ′) ≤ OPT(L) + Z,

and therefore,

H(P) ≤ α2,1,2 ·OPT(L) + 9Z ,

where α2,1,2 ≤ H1+H2

max{H1,
25x
32 H1+min{ 2

9x ,
1
2}H2} . Evaluating the value of α2,1,2, when x ≥ 4

9

and when x < 4
9 , we obtain that α2,1,2 ≤ 2.5.

Subcase 2.2.1. In this case LB ∪ LD is totally packed in PAB‖PDE . Recall that
x = 1

2w . We divide the analysis in two cases. We consider first x ∈ (p, 1
2 ]. Here we

have

H(P ′) ≤ 8x
V (L′)
l · w + Z,

H(Paux) ≤ 1

x

V (Laux)

l · w + 7Z,

H(P ′) ≤ OPT(L) + Z,

and therefore,

H(P) ≤ α2,2,1 ·OPT(L) + 8Z ,
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where α2,2,1 ≤ H1+H2

max{H1,
1
8xH1+xH2} ≤

H1+H2

max{H1,
1
8pH1+pH2} ≤ 2.543.

If x ∈ ( 2
5 , p], the analysis is similar and is omitted.

Subcase 2.2.2. Here LB ∪ LE is totally packed in PAB‖PDE . Let x = 1
2w , x ∈

( 2
5 , p]. In this case,

H(P ′′) ≤ 2x

(1− p)2

V (L′)
l · w +

53

8
Z,

H(Paux) ≤ 2
V (Laux)

l · w + 5Z,

H(P ′′) ≤ 7

5
4OPT(L) +

53

8
Z,

and so,

H(P) ≤ α2,2,2 ·OPT(L) +
93

8
Z,

where α2,2,2 ≤ H1+H2

max{ 4
5H1,

(1−p)2

2x H1+ 1
2H2}

≤ H1+H2

max{ 4
5H1,

(1−p)2

2p H1+ 1
2H2}

≤ 2.543.

In fact, the value of p was taken in such a manner that the two subcases above
(2.2.1 and 2.2.2) lead to the same bound.

The theorem follows considering the cases analyzed above.
Proposition 4.2. The asymptotic performance bound of the algorithm LS is

between 2.5 and 2.5425.
Proof. The proof follows directly from Theorem 4.1 and Lemma 2.6 (when we use

m = 4).

5. The Algorithm BS: Box B has a square bottom. We now consider the
special case of TPPz where B has a square bottom. Without loss of generality, we
consider B = (1, 1,∞).

First, we present an algorithm called NFDHxy
p , 0 < p < 1, that is used as a

subroutine. This algorithm packs the boxes of a list L in the following way. Initially,
it sorts L in a nonincreasing order of height, then generates a packing divided into
levels. Each level is divided into two parts; the boxes are packed first in the region
[0, 1) × [0, p) and then in the region [0, 1) × [1 − p, 1). The boxes are packed in the
region [0, 1)× [0, p) using the algorithm NFDHx until a box bi cannot be packed in the
same level; then NFDHxy

p uses the algorithm NFDHy to pack boxes ρ(bi), ρ(bi+1), . . .
in the region [0, 1) × [1 − p, 1) until a box bk cannot be packed in the same level.
At this point, the algorithm NFDHxy

p considers the two parts as only one level and
continues to pack the box bk in a new level. The process continues until all boxes in
L have been packed.

Another variant of the above algorithm is called NFDHyx
p . This algorithm is

similar to the NFDHxy
p algorithm, except that NFDHyx

p first packs boxes b with
x(b) ≤ p, in the y-axis direction, and then packs the next boxes in the x-axis direction.

The following notation is used in the description of the algorithm:

X ′ := {bi = (xi, yi, zi) : yi ≤ 1− xi} .
Algorithm BS.

Input: List of boxes L.
Output: Packing P of L into B = (1, 1,∞).

1 Rotate the boxes of L in such a way that for each box b, x(b) ≤ y(b).
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Take p = 0.43322958 and q = 1− p.
2 Divide L into sublists L′1, L

′
2, L
′
3, LA, LB , LC , L4, . . . , L14 as follows (see Figure 5.1).

L′1 =L
⋂ C[q, 1 ; q, 1], LA=L

⋂ C[ 1
2 , q ; 1

2 , 1], L′2 =L
⋂ C[p, 1

2 ; 1
2 , 1]\X ′,

LB=L
⋂ C[ 1

3 , p ; 1
2 , 1]\X ′, L′3 =L

⋂ C[p, 1
2 ; 1

3 ,
1
2 ], LC =L

⋂ C[ 1
3 , p ; 1

3 ,
1
2 ],

L4 =L
⋂ C[ 1

4 ,
1
3 ; 2

3 , 1], L5 =L
⋂ C[ 1

5 ,
1
4 ; 2

3 , 1], L6 =L
⋂ C[0, 1

5 ; 8
13 , 1],

L7 =L
⋂ C[ 1

3 ,
1
2 ; 1

2 ,
2
3 ]
⋂X ′, L8 =L

⋂ C[ 1
4 ,

1
3 ; 1

2 ,
2
3 ], L9 =L

⋂ C[ 1
5 ,

1
4 ; 1

2 ,
2
3 ],

L10 =L
⋂ C[0, 1

5 ; 1
2 ,

8
13 ], L11 =L

⋂ C[ 1
4 ,

1
3 ; 1

3 ,
1
2 ], L12 =L

⋂ C[0, 1
4 ; 1

3 ,
1
2 ],

L13 =L
⋂ C[0, 1

3 ; 1
4 ,

1
3 ], L14 =L

⋂ C[0, 1
4 ; 0, 1

4 ]
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Fig. 5.1. Partition of list L done by algorithm BS.

3 (PAB , LAB)← COLUMN(LA, [(0, 0)], LB , [(q, 0)]).
4 (PAC , LAC)← COLUMN(LA \ LAB , [(0, 0)], LC , [(q, 0), (q, 1

2 )]).
5 L1 ← (L′1 ∪ LA) \ (LAB ∪ LAC). L2 ← (L′2 ∪ LB) \ LAB . L3 ← (L′3 ∪ LC) \ LAC .
6 Let P7 be a packing of L7 obtained as follows.

6.1 Sort L7 in a nonincreasing order of height.
6.2 Construct a partition of L7 given by L1

7, L
2
7, . . . , L

n7
7 such that L7 = L1

7‖L2
7‖ . . . ‖Ln7

7 ,
|Li7| = 3, i = 1, . . . , n7 − 1,
|Ln7

7 | ≤ 3.

6.3 Generate a packing Pi7 of Li7, i = 1, . . . , n7 as follows.
6.3.1 Choose b ∈ Li7, such that x(b) is minimum.
6.3.2 Pack ρ(b) in the position (0, 1 − x(b)) and the boxes in Li7 \ {b}

in the positions (0, 0) and ( 1
2 , 0).

6.4 P ← P1
7‖ . . . ‖Pn7

7 .
7 P ′ ← OC(L1)‖PAB‖PAC .
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8 Paux ← NFDHx(L2)‖ . . . ‖NFDHx(L6)‖P7‖NFDHxy
2
3

(L8)‖NFDHxy
2
3

(L9)‖
NFDHxy

8
13

(L10)‖NFDHx(L11)‖ . . . ‖NFDHx(L13)‖LL(L14).

9 P ← P ′‖Paux.
10 Return P.
end algorithm.

Theorem 5.1. For any list L for the TPPz, where B has a square bottom,

BS(L) ≤ 2.528 ·OPT(L) + 15Z .

Proof. From steps 3 and 4, we can conclude that either LA is totally packed
or LB ∪ LC is totally packed in PAB‖PBC . So we divide the proof into these two
subcases.

Case 1. LA is totally packed in PAB‖PBC .
Here we have

H(P ′) ≤ 1

q2
V (L′) + 2Z,

H(Paux) ≤ 9

4
V (Laux) + 13Z,

H(P ′) ≤ OPT(L) + 2Z.

As before, we haveH(P) ≤ α1·OPT(L)+15Z, where α1 ≤ H1+H2

max{H1,q2H1+ 4
9H2} ≤ 2.528.

Case 2. (LB ∪ LC) is totally packed in PAB‖PBC .
Here we have

H(P ′) ≤ 4V (L′) + 2Z,

H(Paux) ≤ 1

2pq
V (Laux) + 13Z,

H(P ′) ≤ OPT(L) + 2Z.

Analogously, we have H(P) ≤ α2 ·OPT(L) + 15Z, where α2 ≤ H1+H2

max{H1,
1
4H1+2pqH2} ≤

2.528.
From the two cases above, the theorem follows.

Proposition 5.2. The asymptotic performance bound of the algorithm BS is
between 2.5 and 2.528.

Proof. It follows directly from Theorem 5.1 and Lemma 2.6 (using m = 4).

6. The Algorithm SS: Boxes in L and box B have square bottoms. Now
we consider the special case of TPPz, where all boxes in L and box B have square
bottoms. Without loss of generality, we take B = (1, 1,∞).

In 1990, Li and Cheng [3] presented an algorithm for this problem with asymp-
totic performance bound 2.6875. The algorithm we present here, called SS, has an
asymptotic performance bound of 2.361.

Here we need an algorithm, called GQm, described in [3], to pack boxes in Qm.
The algorithm GQm works in the same way as algorithm LL. It sorts the boxes in

L ⊂ Qm in nonincreasing order of their height, divides L into sublists L1, . . . , Lv, and
uses the same two-dimensional packing algorithm to pack each sublist Li in a level.
The only place where algorithm GQm differs from LL is the bottom area size used to
subdivide L into sublists Li. This is because the two-dimensional packing algorithm



1028 F. K. MIYAZAWA AND Y. WAKABAYASHI

used by algorithm LL can guarantee a better area if all boxes have square bottoms.
In this case the sublists Li satisfy the following inequalities:

S(Li) ≤
[(
m−1
m

)2
+
(

1
m

)2]
lw for i = 1, . . . , v,

S(Li) + S(first(Li+1)) >
[(
m−1
m

)2
+
(

1
m

)2]
lw for i = 1, . . . , v − 1.

The following result is proved in [3].

Lemma 6.1. Let L ⊂ Qm, m ≥ 2. Then, GQm(L) ≤ ( m
m−1 )2 V (L)

lw + Z .
Analogously to Lemma 2.6 with algorithm LL, we can show that the following

result holds for algorithm GQm.
Lemma 6.2. Let A be an algorithm for TPPz to pack a list L ⊂ Q[0, 1 ; 0, 1]

into a box B = (1, 1,∞). If A subdivides the input list L into two sublists L1 ⊂ R4

and L2 ⊂ Qm, m ≥ 2, and applies algorithm GQm to pack L2, then the asymptotic

performance bound of A is at least 4(m−1)2+3m2

4(m−1)2 .

Proof. The proof is similar to the proof of Lemma 2.6, now using the value
(
m−1
m

)2
instead of

(
m−2
m

)
.

Algorithm SS.
Input: List of boxes L ⊂ Q[0, 1 ; 0, 1].
Output: Packing P of L into B = (1, 1,∞).

1 Take p = 0.37123918 and q = 1− p.
Divide L into sublists, L′1, LA, L

′
2, LB , L3, and L4 (see Figure 6.1),

L′1 = L
⋂Q[1

2 , 1 ; 1
2 , 1], LA = L

⋂Q[1
2 , q ; 1

2 , q],

L′2 = L
⋂Q[1

3 ,
1
2 ; 1

3 ,
1
2 ], LB = L

⋂Q[1
3 , p ; 1

3 , p],

L3 = L
⋂Q[1

4 ,
1
3 ; 1

4 ,
1
3 ], L4 = L

⋂Q[0, 1
4 ; 0, 1

4 ].

2 (PAB , LAB)← COLUMN(LA, [(0, 0)], LB , [(0, q), (q, q), (q, 0)]).
3 Li ← L′i \ LAB for i = 1, 2.
4 P1 ← OC(L1)‖PAB .
5 Paux ← NFDHx(L2)‖NFDHx(L3)‖GQ4(L4).
6 P = P1‖Paux.
7 Return P.
end algorithm.

Theorem 6.3. For any list L for TPPz, where all boxes have square bottoms,

SS(L) ≤ 2.361 ·OPTz(L) + 4Z .

Proof. Again we analyze two cases, considering the packing generated in step 2.
Case 1. LA is totally packed in PAB .

H(P1) ≤ 1

q2
V (L′) + Z,

H(Paux) ≤ 9

4
V (Laux) + 3Z,

H(P1) ≤ OPT(L) + Z.

Proceeding as before, we have H(P) ≤ α1 ·OPT(L) + 4Z, where

α1 ≤ H1 +H2

max{H1, q2H1 + 4
9H2}

≤ 2.361.
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Fig. 6.1. Partition of list L done by Algorithm SS.

Case 2. LB is totally packed in PAB .
Here we have

H(P1) ≤ 4V (L′) + Z,

H(Paux) ≤ 1

4p2
V (Laux) + 3Z,

H(P1) ≤ OPT(L) + Z.

Thus, H(P) ≤ α2 ·OPT(L) + 4Z, where α2 ≤ H1+H2

max{H1,
1
4H1+4p2H2} ≤ 2.361.

From the two cases above, the theorem follows.
Proposition 6.4. The asymptotic performance bound of Algorithm SS is between

2.333 and 2.361.
Proof. It follows directly from Theorem 6.3 and Lemma 6.2 (with m = 4).
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