A new approach to Poisson approximation and de-Poissonization

Hsien-Kuei Hwang Vytas Zacharovas

Institute of Statistical Science
Academia Sinica
Taiwan
2008

Outline

Combinatorial scheme

Poisson approximation
Improvements of Prokhorov's results

Depoissonization

Definition of combinatorial scheme

Let $\left\{X_{n}\right\}_{n \geq n_{0}}$ be a sequence of random variables. For a wide class of combinatorial problems the probability generating function

$$
P_{n}(w)=\sum_{m=0}^{\infty} \mathbb{P}\left(X_{n}=m\right) w^{n}
$$

satisfies asymptotically

$$
P_{n}(z)=e^{\lambda(z-1)} z^{h}\left(g(z)+\varepsilon_{n}(z)\right) \quad(n \rightarrow \infty)
$$

where h is a fixed non-negative integer,
$-\lambda=\lambda(n) \rightarrow \infty$ with $n ;$
$-g$ is independent of n and is analytic for $|z| \leq \eta$, where $\eta>1 ; g(1)=1$ and $g(0) \neq 0$;
$-\varepsilon_{n}(z)$ satisfies

$$
\varepsilon_{n}(z)=o(1)
$$

uniformly for $|z| \leq \eta$.

Cauchy formula

$$
\begin{align*}
\mathbb{P}\left(X_{n}=m\right)=\frac{1}{2 \pi i} \int_{|z|=r} e^{\lambda(z-1)}(& \left.g(z)+\varepsilon_{n}(z)\right) \frac{d z}{z^{n+1}} \\
& \approx e^{-\lambda} \frac{\lambda^{m}}{m!} \sum_{j=0}^{k} a_{j} C_{j}(\lambda, m) \tag{1}
\end{align*}
$$

if $g(z) \approx a_{0}+a_{1}(z-1)+a_{2}(z-1)^{2}+\cdots+(z-1)^{k}$

Charlier polynomials

The Charlier polynomials $C_{k}(\lambda, m)$ are defined by formula

$$
\begin{equation*}
\frac{\lambda^{m}}{m!} C_{k}(\lambda, m)=\left[z^{m}\right](z-1)^{k} e^{\lambda z} \tag{2}
\end{equation*}
$$

or, equivalently

$$
\sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!} C_{k}(\lambda, m) z^{m}=(z-1)^{k} e^{\lambda z}
$$

Orthogonality relations

Jordan in 1926 proved that Charlier polynomials are orthogonal with respect to Poisson measure $e^{-\lambda} \frac{\lambda^{m}}{m!}$, that is

$$
\sum_{m=0}^{\infty} C_{k}(\lambda, m) C_{l}(\lambda, m) e^{-\lambda} \frac{\lambda^{m}}{m!}=\delta_{k, l} \frac{k!}{\lambda^{k}}
$$

Which means that if a sequence of complex numbers P_{0}, P_{1}, \ldots satisfies condition

$$
\sum_{j=0}^{\infty} \frac{\left|P_{j}\right|^{2}}{e^{-\lambda \frac{\lambda^{j}}{j!}}}<\infty
$$

then we can expand

$$
P_{m}=e^{-\lambda} \frac{\lambda^{m}}{m!} \sum_{j=0}^{\infty} a_{j} C_{j}(\lambda, m)
$$

Suppose we have a generating function

$$
P(z)=\sum_{n=0}^{\infty} P_{n} z^{n}
$$

then

$$
P_{m}=e^{-\lambda} \frac{\lambda^{m}}{m!} \sum_{j=0}^{\infty} a_{j} C_{j}(\lambda, m)
$$

is equivalent to

$$
\sum_{n=0}^{\infty} P_{n} z^{n}=e^{\lambda(z-1)} \sum_{j=0}^{\infty} a_{j}(z-1)^{j}
$$

$$
P(z)=e^{\lambda(z-1)} f(z)
$$

$e^{\lambda(z-1)}$ is a generating function of Poisson distribution.
Therefore if

$$
P(z) \approx e^{\lambda(z-1)} f(1)
$$

we can expect that

$$
P_{m} \approx f(1) e^{-\lambda} \frac{\lambda^{m}}{m!}
$$

Parseval identity for Charlier polynomials

$$
\sum_{m=0}^{\infty} P_{m} z^{m}=e^{\lambda(z-1)} f(z)=e^{\lambda(z-1)} \sum_{n=0}^{\infty} a_{n}(z-1)^{n}
$$

Theorem
Suppose $f(z)$ is analytic in the whole complex plain and $|f(z)| \ll e^{H|z-1|^{2}}$ as $|z| \rightarrow \infty$, then for any $\lambda>2 H$ we have

$$
\sum_{n=0}^{\infty}\left|\frac{P_{n}}{e^{-\lambda \frac{\lambda^{n}}{n!}}}\right|^{2} e^{-\lambda} \frac{\lambda^{n}}{n!}=\sum_{n=0}^{\infty} \frac{n!}{\lambda^{n}}\left|a_{n}\right|^{2}
$$

Application of the Parseval identity

$$
P(z)=e^{\lambda(z-1)} g(z)
$$

Theorem
Suppose $g(z)$ is analytic in the whole complex plane and

$$
\begin{equation*}
|g(z)| \leqslant A e^{H|z-1|^{2}} \tag{3}
\end{equation*}
$$

for all $z \in \mathbb{C}$ with some positive constants A and H. Then uniformly for all $N, n \geqslant 0$ and $\lambda \geqslant(2+\epsilon) H$ with $\epsilon>0$ we have

$$
\left|P_{n}-e^{-\lambda} \frac{\lambda^{n}}{n!}\left(\sum_{j=0}^{N} a_{j} C_{j}(\lambda, n)\right)\right| \leqslant A \frac{((2+\epsilon) H)^{(N+1) / 2}}{\lambda^{(N+2) / 2}}
$$

Theorem
Under the conditions of the previous theorem

$$
\sum_{n=0}^{\infty}\left|P_{n}-e^{-\lambda} \frac{\lambda^{n}}{n!} \sum_{j=0}^{N} a_{j} C_{j}(\lambda, n)\right| \leqslant A \frac{((2+\epsilon) H)^{(N+1) / 2}}{\lambda^{(N+1) / 2}}
$$

for all $n, N \geqslant 0$.

Parseval identity for Charlier polynomials. Integral form.

Theorem

Suppose $f(z)$ is analytic in the whole complex plain and $|f(z)| \ll e^{H|z-1|^{2}}$ as $|z| \rightarrow \infty$, then for any $\lambda>2 H$ we have

$$
\sum_{n=0}^{\infty}\left|\frac{P_{n}}{e^{-\lambda \frac{\lambda}{n}} n}\right|^{2} e^{-\lambda} \frac{\lambda^{n}}{n!}=\int_{0}^{\infty} l(\sqrt{r / \lambda}) e^{-r} d r,
$$

where

$$
I(r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(1+r e^{i t}\right)\right|^{2} d t
$$

Consequences of the Parseval identity

 Suppose$$
\begin{gathered}
P(z)=\sum_{n=0}^{\infty} P_{n} z^{n} . \\
I(P, \lambda ; r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P\left(1+r e^{i t}\right) e^{-\lambda r e^{i t}}\right|^{2} d t .
\end{gathered}
$$

Theorem

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|P_{n}\right| \leqslant\left(\int_{0}^{\infty} I(P, \lambda ; \sqrt{r / \lambda}) e^{-r} d r\right)^{1 / 2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{n}\right| \leqslant \frac{1}{\sqrt{\lambda}}\left(\int_{0}^{\infty} I(P, \lambda ; \sqrt{r / \lambda}) r e^{-r} d r\right)^{1 / 2} \sqrt{Z(n)} \tag{5}
\end{equation*}
$$

for all $n \geqslant 0$ and

$$
Z(n) \leqslant e^{-\frac{(m-\lambda)^{2}}{2(m+\lambda)}}
$$

Further inequalities

Theorem
If we additionally assume that $P(1)=0$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|P_{0}+P_{1}+\cdots+P_{n}\right| \leqslant \sqrt{\lambda}\left(\int_{0}^{\infty} I(P, \lambda ; \sqrt{r / \lambda}) r^{-1} e^{-r} d r\right)^{1 / 2} \tag{6}
\end{equation*}
$$

and

$$
\left|P_{0}+P_{1}+\cdots+P_{n}\right| \leqslant\left(\int_{0}^{\infty} I(P, \lambda ; \sqrt{r / \lambda}) e^{-r} d r\right)^{1 / 2} \sqrt{Z(n)}(7)
$$

for all $n \geqslant 0$.

Generalized binomial distribution

Suppose

$$
\begin{equation*}
S_{n}=I_{1}+I_{2}+\cdots+I_{n}, \tag{8}
\end{equation*}
$$

where the X_{j} 's are independent Bernoulli random variables with

$$
\mathbb{P}\left(l_{j}=1\right)=1-\mathbb{P}\left(I_{j}=0\right)=p_{j} .
$$

Then

We will use notation

$$
\lambda=p_{1}+p_{2}+\cdots+p_{n}
$$

Generalized binomial distribution

Suppose

$$
\begin{equation*}
S_{n}=I_{1}+I_{2}+\cdots+I_{n}, \tag{8}
\end{equation*}
$$

where the X_{j} 's are independent Bernoulli random variables with

$$
\mathbb{P}\left(l_{j}=1\right)=1-\mathbb{P}\left(l_{j}=0\right)=p_{j}
$$

Then

$$
\sum_{0 \leq m \leq n} \mathbb{P}\left(S_{n}=m\right) z^{m}=\prod_{1 \leq j \leq n}\left(1+p_{j}(z-1)\right)=e^{\lambda(z-1)} g(z)
$$

We will use notation

$$
\lambda=p_{1}+p_{2}+\cdots+p_{n} .
$$

Example of application to Poisson approximation

$$
\theta:=\frac{p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2}}{p_{1}+p_{2}+\cdots+p_{n}}, \quad \text { and } \quad \lambda:=p_{1}+p_{2}+\cdots+p_{n}
$$

Theorem
Suppose $\theta<1$ then the following inequalities hold

$$
\sum_{m=0}^{\infty}\left|\frac{\mathbb{P}\left(S_{n}=m\right)}{e^{-\lambda} \frac{\lambda^{m}}{m!}}-1\right|^{2} e^{-\lambda} \frac{\lambda^{m}}{m!} \leqslant \frac{e}{2} \frac{\theta^{2}}{(1-\theta)^{3}}
$$

Since $\sqrt{e} / 2^{3 / 2}=0.582 \ldots$ the bound of the above theorem
could be sharper than that of Barbour-Hall inequality if $\theta \leqslant 0.3$ and λ is large enough.

Example of application to Poisson approximation

$$
\theta:=\frac{p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2}}{p_{1}+p_{2}+\cdots+p_{n}}, \quad \text { and } \quad \lambda:=p_{1}+p_{2}+\cdots+p_{n}
$$

Theorem
Suppose $\theta<1$ then the following inequalities hold

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left|\frac{\mathbb{P}\left(S_{n}=m\right)}{e^{-\lambda} \frac{\lambda^{m}}{m!}}-1\right|^{2} e^{-\lambda} \frac{\lambda^{m}}{m!} \leqslant \frac{e}{2} \frac{\theta^{2}}{(1-\theta)^{3}}, \\
\frac{1}{2} \sum_{m=0}^{\infty}\left|\mathbb{P}\left(S_{n}=m\right)-e^{-\lambda} \frac{\lambda^{m}}{m!}\right| \leqslant \frac{\sqrt{e}}{2^{3 / 2}} \frac{\theta}{(1-\theta)^{3 / 2}}
\end{gathered}
$$

Example of application to Poisson approximation

$$
\theta:=\frac{p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2}}{p_{1}+p_{2}+\cdots+p_{n}}, \quad \text { and } \quad \lambda:=p_{1}+p_{2}+\cdots+p_{n}
$$

Theorem

Suppose $\theta<1$ then the following inequalities hold

$$
\begin{gathered}
\sum_{m=0}^{\infty}\left|\frac{\mathbb{P}\left(S_{n}=m\right)}{e^{-\lambda} \frac{\lambda^{m}}{m!}}-1\right|^{2} e^{-\lambda} \frac{\lambda^{m}}{m!} \leqslant \frac{e}{2} \frac{\theta^{2}}{(1-\theta)^{3}} \\
\frac{1}{2} \sum_{m=0}^{\infty}\left|\mathbb{P}\left(S_{n}=m\right)-e^{-\lambda} \frac{\lambda^{m}}{m!}\right| \leqslant \frac{\sqrt{e}}{2^{3 / 2}} \frac{\theta}{(1-\theta)^{3 / 2}}
\end{gathered}
$$

Since $\sqrt{e} / 2^{3 / 2}=0.582 \ldots$ the bound of the above theorem could be sharper than that of Barbour-Hall inequality if $\theta \leqslant 0.3$ and λ is large enough.

Kolmogorov distance

$$
\theta:=\frac{p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2}}{p_{1}+p_{2}+\cdots+p_{n}}, \quad \text { and } \quad \lambda:=p_{1}+p_{2}+\cdots+p_{n}
$$

Theorem
Whenever $\theta<1$ we have

$$
\left|\mathbb{P}\left(S_{n} \leqslant j\right)-\sum_{m \leqslant j} e^{-\lambda} \frac{\lambda^{m}}{m!}\right| \leqslant \frac{\sqrt{e}}{2^{1 / 2}} \frac{\theta}{(1-\theta)^{3 / 2}} \sqrt{Z(j)},
$$

where

$$
Z(n)=\min \left\{\sum_{j \leqslant n} e^{-\lambda} \frac{\lambda^{m}}{m!}, \sum_{j>n} e^{-\lambda} \frac{\lambda^{m}}{m!}\right\} \leqslant e^{-\frac{(m-\lambda)^{2}}{2(m+\lambda)}}
$$

Compound poisson distribution

$$
\lambda_{3}:=p_{1}^{3}+p_{2}^{3}+\cdots+p_{n}^{3}
$$

Theorem
Suppose $\theta<1 / 3$ then

$$
\begin{aligned}
& \sum_{m=0}^{\infty}\left|\mathbb{P}\left(S_{n}=m\right)-\left[z^{m}\right]\left[e^{\lambda(z-1)-\frac{\lambda_{2}}{2}(z-1)^{2}}\right]\right| \leqslant \frac{\lambda_{3}}{\lambda^{3 / 2}} \sqrt{\frac{2 e}{3}} \frac{1}{(1-3 \theta)^{2}}, \\
& \left|\mathbb{P}\left(S_{n}=m\right)-\left[z^{m}\right]\left[e^{\lambda(z-1)-\frac{\lambda_{2}}{2}(z-1)^{2}}\right]\right| \leqslant \frac{\lambda_{3}}{\lambda^{2}} \sqrt{\frac{8 e}{3}} \frac{\sqrt{Z(m)}}{(1-3 \theta)^{5 / 2}} .
\end{aligned}
$$

Generalized binomial distribution in combinatorics

Can be used if the discrete random variable X_{n} is Bernoulli decomposable

$$
x_{n}=I_{1}+I_{2}+\cdots+I_{n}
$$

This happens if a probability generating function $F_{n}(z)$ of a discrete random variable X_{n} is a polynomial whose root are real and negative
Example

- Hypergeometric distribution.
- Number of cycles in a random permutation

Generalized binomial distribution in combinatorics

Can be used if the discrete random variable X_{n} is Bernoulli decomposable

$$
x_{n}=I_{1}+I_{2}+\cdots+I_{n}
$$

This happens if a probability generating function $F_{n}(z)$ of a discrete random variable X_{n} is a polynomial whose root are real and negative
Example

- Hypergeometric distribution.
- Number of cycles in a random permutation

Generalized binomial distribution in combinatorics

Can be used if the discrete random variable X_{n} is Bernoulli decomposable

$$
x_{n}=I_{1}+I_{2}+\cdots+I_{n}
$$

This happens if a probability generating function $F_{n}(z)$ of a discrete random variable X_{n} is a polynomial whose root are real and negative
Example

- Hypergeometric distribution.
- Number of cycles in a random permutation

Advantages and disadvantages of this approach

Advantages

- Quick proofs.
- Very accurate explicit constants.
- Non-uniform estimates for distribution functions.

Disadvantage

- The generating function $P(z)$ should be defined on all complex pane and satisfy condition

$$
P(1+z) \ll e^{\lambda\left|z^{\prime}\right|^{2}}
$$

for some λ.

Advantages and disadvantages of this approach

Advantages

- Quick proofs.
- Very accurate explicit constants.
- Non-uniform estimates for distribution functions.

Disadvantage

- The generating function $P(z)$ should be defined on all complex pane and satisfy condition

$$
P(1+z) \ll e^{\lambda|z|^{2}}
$$

for some λ.

Advantages and disadvantages of this approach

Advantages

- Quick proofs.
- Very accurate explicit constants.
- Non-uniform estimates for distribution functions.

Disadvantage
 - The generating function $P(z)$ should be defined on all complex pane and satisfy condition

for some λ.

Advantages and disadvantages of this approach

Advantages

- Quick proofs.
- Very accurate explicit constants.
- Non-uniform estimates for distribution functions.

Disadvantage

- The generating function $P(z)$ should be defined on all complex pane and satisfy condition

$$
P(1+z) \ll e^{\lambda|z|^{2}}
$$

for some λ.

Outline

Combinatorial scheme

Poisson approximation
Improvements of Prokhorov's results

Depoissonization

Prokhorov's theorem

Suppose $\mathcal{B}(n, p)$ - Bernoulli distribution. If $n p q \rightarrow \infty$ then

$$
\mathcal{B}(n, p) \rightarrow \mathcal{N}(\sqrt{p q n}, p n)
$$

If $n p$ is not very large then

$$
\mathcal{B}(n, p) \rightarrow \mathcal{P}(p n)
$$

Prokhorov in 1953 proved

$$
\begin{aligned}
& \frac{1}{2} \sum_{j \geq 0}\left|\binom{n}{j} p^{j}(1-p)^{n-j}-e^{-n p} \frac{(n p)^{j}}{j!}\right| \\
&=\frac{p}{\sqrt{2 \pi e}}\left(1+O\left(\min \left(1, p+(n p)^{-1 / 2}\right)\right)\right)
\end{aligned}
$$

Further refinements of Prokhorov's result

Later Le Cam in 1960 proved that if probabilities p_{j} satisfy condition $\max _{1 \leqslant j \leqslant n} p_{j} \leqslant 1 / 4$ we have

$$
d_{T V}\left(S_{n}, \mathcal{P}(\lambda)\right)=\frac{1}{2} \sum_{j \geq 0}\left|P\left(S_{n}=j\right)-e^{-\lambda} \frac{\lambda^{j}}{j!}\right| \leqslant 8 \frac{\lambda_{2}}{\lambda}
$$

Kerstan in 1964 later sharpened the constant in Le Cam's inequalities proving that whenever $\max _{1 \leqslant j \leqslant n} p_{j} \leqslant 1 / 4$ we have

$$
d_{T V}\left(S_{n}, \mathcal{P}(\lambda)\right) \leqslant 1.05 \frac{\lambda_{2}}{\lambda}
$$

Barbour-Hall inequality

Finally Barbour and Hall 1984 applying Stein-Chen's method established their famous inequality

$$
\frac{1}{2} \sum_{j \geq 0}\left|P\left(S_{n}=j\right)-e^{-\lambda} \frac{\lambda^{j}}{j!}\right| \leqslant\left(1-e^{-\lambda}\right) \theta
$$

where as before

$$
\theta=\frac{\lambda_{2}}{\lambda}
$$

Let us denote

$$
d_{T V}^{(\alpha)}\left(\mathcal{L}\left(S_{n}\right), P o\left(\lambda_{1}\right)\right)=\frac{1}{2} \sum_{m=0}^{\infty}\left|P\left(S_{n}=m\right)-e^{-\lambda} \frac{\lambda^{m}}{m!}\right|^{\alpha}
$$

Theorem
Suppose $\theta:=\frac{\lambda_{2}}{\lambda_{1}}=O(1)$ and $\lambda_{1} \rightarrow \infty$ then
$d_{T V}^{(\alpha)}\left(\mathcal{L}\left(S_{n}\right), P o\left(\lambda_{1}\right)\right)=\frac{\theta^{\alpha} \lambda_{1}^{\frac{1-\alpha}{2}}}{2^{\alpha+1}(2 \pi)^{\alpha / 2}}\left(J^{(\alpha)}(\theta)+O\left(\frac{1}{\lambda_{1}^{(\alpha+1) / 2}}+\frac{1}{\lambda_{1}}\right)\right)$
where $J^{(\alpha)}(\theta)$ is the is an explicitly defined function.

Depoissonization

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

If $G(z)$ is analytic in circle $|z-n|<n+\epsilon$ where $\epsilon>0$ then

$$
g_{n}=\sum_{j=0}^{\infty} \frac{G^{(j)}(n)}{j!} n^{j} C_{j}(n, n)
$$

How close is $G(n)$ to g_{n} ?

Inequality estimating closeness of de-Poissonization

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

Theorem

$$
\left|g_{n}-\sum_{j=0}^{k} \frac{G^{(j)}(n)}{j!} n^{j} C_{j}(n, n)\right| \leqslant c(n)\left(\sum_{j=k+1}^{\infty} \frac{\left|G^{(j)}(n)\right|^{2}(j+1)}{j!} n^{j}\right)^{1 / 2}
$$

Example

Suppose g_{n} is the mean value of number of steps in exhaustive search algorithm that is needed to find a maximum
independent set in a random graph

Inequality estimating closeness of de-Poissonization

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

Theorem

$$
\left|g_{n}-\sum_{j=0}^{k} \frac{G^{(j)}(n)}{j!} n^{j} C_{j}(n, n)\right| \leqslant c(n)\left(\sum_{j=k+1}^{\infty} \frac{\left|G^{(j)}(n)\right|^{2}(j+1)}{j!} n^{j}\right)^{1 / 2}
$$

Example

Suppose g_{n} is the mean value of number of steps in exhaustive search algorithm that is needed to find a maximum independent set in a random graph

$$
G^{\prime}(z)=G(p z)+e^{-z} \text { with } p<1
$$

Integral form of depoissonization inequality

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

Theorem

$$
\left|g_{n}-G(n)\right| \leqslant c(n)\left(\int_{0}^{\infty} r e^{-r} \int_{-\pi}^{\pi}\left|G\left(n+e^{i t} \sqrt{r n}\right)-G(n)\right|^{2} d t d r\right)^{1 / 2}
$$

here

Integral form of depoissonization inequality

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

Theorem

$$
\left|g_{n}-G(n)\right| \leqslant c(n)\left(\int_{0}^{\infty} r e^{-r} \int_{-\pi}^{\pi}\left|G\left(n+e^{i t} \sqrt{r n}\right)-G(n)\right|^{2} d t d r\right)^{1 / 2}
$$

here

$$
c(n):=\frac{n!}{\left(\frac{n}{e}\right)^{n} \sqrt{4 \pi n}} \rightarrow \frac{1}{\sqrt{2}}, \quad \text { as } \quad n \rightarrow \infty
$$

Comparison with the results of Jacket and Spankowsky

This form of the depoissonization inequality is consistent with a general theorem of Jacket and Spankowsky of 1998.
Theorem (basic depoissonization lemma)
If for $|\arg z| \leqslant \theta>0$

$$
|G(z)| \ll|z|^{\beta}
$$

and for $|\arg z|>\theta$

$$
\left|G(z) e^{z}\right| \ll \exp (\alpha|z|)
$$

then

$$
g_{n}=G(n)+O\left(n^{\beta-1 / 2}\right)
$$

Generalization of the de-Poissonization inequality

$$
G(z)=e^{-z} \sum_{m=0}^{\infty} \frac{g_{m}}{m!} z^{m}
$$

Theorem

$$
\begin{aligned}
&\left|g_{n}-\sum_{j=0}^{k} \frac{G^{(j)}(n)}{j!} n^{j} C_{j}(n, n)\right| \\
& \leqslant c(n)\left(\int_{0}^{\infty} r e^{-r} \int_{-\pi}^{\pi}\left|G\left(n+e^{i t} \sqrt{r n}\right)-\sum_{j=0}^{k} \frac{G^{(j)}(n)}{j!}\left(e^{i t} \sqrt{r n}\right)^{j}\right|^{2} d t d r\right)
\end{aligned}
$$

Generalizations

Suppose

$$
F(z)=\sum_{x=0}^{n} f_{x} z^{x}=(p+z q)^{n} g(z)
$$

where $p+q=1$ and $0<p<1$.
Similar approach can be used applying Parseval identity for Kravchuk polynomials.

- analyzing the distribution of the digit sum function
- approximation of generalized binomial distribution by simple binomial distribution

Generalizations

Suppose

$$
F(z)=\sum_{x=0}^{n} f_{x} z^{x}=(p+z q)^{n} g(z)
$$

where $p+q=1$ and $0<p<1$.
Similar approach can be used applying Parseval identity for Kravchuk polynomials.
This can be useful for

- analyzing the distribution of the digit sum function
- approximation of generalized binomial distribution by simple binomial distribution

Generalizations

Suppose

$$
F(z)=\sum_{x=0}^{n} f_{x} z^{x}=(p+z q)^{n} g(z)
$$

where $p+q=1$ and $0<p<1$.
Similar approach can be used applying Parseval identity for Kravchuk polynomials.
This can be useful for

- analyzing the distribution of the digit sum function
- approximation of generalized binomial distribution by simple binomial distribution

For Further Reading I

Q Barbour, A. D., Holst, L., and Janson, S.
Poisson Approximation.
Oxford Science Publications, Clarendon Press, Oxford, 1992.

圊 Hwang, H.-K.
Asymptotics of Poisson approximation to random discrete distributions: an analytic approach Advances in Applied Probability, (31):448-491, 1999.
圊 P. Jacquet, W. Szpankowski
Fundamental study analytical depoissonization and its applications
Theoretical Computer Science, 201:1-62, 1998.

