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Definition of combinatorial scheme
Let {Xn}n≥n0 be a sequence of random variables. For a wide
class of combinatorial problems the probability generating
function

Pn(w) =
∞∑

m=0

P(Xn = m)wn

satisfies asymptotically

Pn(z) = eλ(z−1)zh (g(z) + εn(z)) (n→∞),

where h is a fixed non-negative integer,
– λ = λ(n)→∞ with n;
– g is independent of n and is analytic for |z| ≤ η,

where η > 1; g(1) = 1 and g(0) 6= 0;
– εn(z) satisfies

εn(z) = o(1),

uniformly for |z| ≤ η.



Cauchy formula

P(Xn = m) =
1

2πi

∫
|z|=r

eλ(z−1) (g(z) + εn(z))
dz

zn+1

≈ e−λ
λm

m!

k∑
j=0

ajCj(λ,m) (1)

if g(z) ≈ a0 + a1(z − 1) + a2(z − 1)2 + · · ·+ (z − 1)k



Charlier polynomials

The Charlier polynomials Ck (λ,m) are defined by formula

λm

m!
Ck (λ,m) = [zm](z − 1)keλz , (2)

or, equivalently

∞∑
m=0

λm

m!
Ck (λ,m)zm = (z − 1)keλz .



Orthogonality relations

Jordan in 1926 proved that Charlier polynomials are orthogonal
with respect to Poisson measure e−λ λ

m

m! , that is

∞∑
m=0

Ck (λ,m)Cl(λ,m)e−λ
λm

m!
= δk ,l

k !

λk ,

Which means that if a sequence of complex numbers P0,P1, . . .
satisfies condition

∞∑
j=0

|Pj |2

e−λ λj

j!

<∞

then we can expand

Pm = e−λ
λm

m!

∞∑
j=0

ajCj(λ,m).



Suppose we have a generating function

P(z) =
∞∑

n=0

Pnzn

then

Pm = e−λ
λm

m!

∞∑
j=0

ajCj(λ,m).

is equivalent to

∞∑
n=0

Pnzn = eλ(z−1)
∞∑

j=0

aj(z − 1)j



P(z) = eλ(z−1)f (z).

eλ(z−1) is a generating function of Poisson distribution.
Therefore if

P(z) ≈ eλ(z−1)f (1)

we can expect that

Pm ≈ f (1)e−λ
λm

m!
.



Parseval identity for Charlier polynomials

∞∑
m=0

Pmzm = eλ(z−1)f (z) = eλ(z−1)
∞∑

n=0

an(z − 1)n

Theorem
Suppose f (z) is analytic in the whole complex plain and
|f (z)| � eH|z−1|2 as |z| → ∞, then for any λ > 2H we have

∞∑
n=0

∣∣∣∣∣ Pn

e−λ λn

n!

∣∣∣∣∣
2

e−λ
λn

n!
=
∞∑

n=0

n!

λn |an|2



Application of the Parseval identity

P(z) = eλ(z−1)g(z)

Theorem
Suppose g(z) is analytic in the whole complex plane and

|g(z)| 6 AeH|z−1|2 , (3)

for all z ∈ C with some positive constants A and H. Then
uniformly for all N,n > 0 and λ > (2 + ε)H with ε > 0 we have∣∣∣∣∣∣Pn − e−λ

λn

n!

 N∑
j=0

ajCj(λ,n)

∣∣∣∣∣∣ 6 A

(
(2 + ε)H

)(N+1)/2

λ(N+2)/2



Theorem
Under the conditions of the previous theorem

∞∑
n=0

∣∣∣∣∣∣Pn − e−λ
λn

n!

N∑
j=0

ajCj(λ,n)

∣∣∣∣∣∣ 6 A

(
(2 + ε)H

)(N+1)/2

λ(N+1)/2

for all n,N > 0.



Parseval identity for Charlier polynomials. Integral
form.

Theorem
Suppose f (z) is analytic in the whole complex plain and
|f (z)| � eH|z−1|2 as |z| → ∞, then for any λ > 2H we have

∞∑
n=0

∣∣∣∣∣ Pn

e−λ λn

n!

∣∣∣∣∣
2

e−λ
λn

n!
=

∫ ∞
0

I(
√

r/λ)e−r dr ,

where
I(r) =

1
2π

∫ π

−π
|f (1 + reit)|2 dt .



Consequences of the Parseval identity
Suppose

P(z) =
∞∑

n=0

Pnzn.

I(P, λ; r) =
1

2π

∫ π

−π
|P(1 + reit)e−λreit |2 dt .

Theorem

∞∑
n=0

|Pn| 6
(∫ ∞

0
I(P, λ;

√
r/λ)e−r dr

)1/2

(4)

and

|Pn| 6
1√
λ

(∫ ∞
0

I(P, λ;
√

r/λ)re−r dr
)1/2√

Z (n), (5)

for all n > 0 and

Z (n) 6 e−
(m−λ)2

2(m+λ)



Further inequalities

Theorem
If we additionally assume that P(1) = 0, then

∞∑
n=0

|P0 +P1 + · · ·+Pn| 6
√
λ

(∫ ∞
0

I(P, λ;
√

r/λ)r−1e−r dr
)1/2

,

(6)
and

|P0 +P1 + · · ·+Pn| 6
(∫ ∞

0
I(P, λ;

√
r/λ)e−r dr

)1/2√
Z (n) (7)

for all n > 0.



Generalized binomial distribution

Suppose
Sn = I1 + I2 + · · ·+ In, (8)

where the Xj ’s are independent Bernoulli random variables with

P(Ij = 1) = 1− P(Ij = 0) = pj .

Then∑
0≤m≤n

P(Sn = m)zm =
∏

1≤j≤n

(1 + pj(z − 1)) = eλ(z−1)g(z).

We will use notation

λ = p1 + p2 + · · ·+ pn.
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Example of application to Poisson approximation

θ :=
p2

1 + p2
2 + · · ·+ p2

n

p1 + p2 + · · ·+ pn
, and λ := p1 + p2 + · · ·+ pn

Theorem
Suppose θ < 1 then the following inequalities hold

∞∑
m=0

∣∣∣∣∣P(Sn = m)

e−λ λm

m!

− 1

∣∣∣∣∣
2

e−λ
λm

m!
6

e
2

θ2

(1− θ)3 ,

1
2

∞∑
m=0

∣∣∣∣P(Sn = m)− e−λ
λm

m!

∣∣∣∣ 6 √
e

23/2
θ

(1− θ)3/2

Since
√

e/23/2 = 0.582 . . . the bound of the above theorem
could be sharper than that of Barbour-Hall inequality if θ 6 0.3
and λ is large enough.
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Kolmogorov distance

θ :=
p2

1 + p2
2 + · · ·+ p2

n

p1 + p2 + · · ·+ pn
, and λ := p1 + p2 + · · ·+ pn

Theorem
Whenever θ < 1 we have∣∣∣∣∣∣P(Sn 6 j)−

∑
m6j

e−λ
λm

m!

∣∣∣∣∣∣ 6
√

e
21/2

θ

(1− θ)3/2

√
Z (j),

where

Z (n) = min

∑
j6n

e−λ
λm

m!
,
∑
j>n

e−λ
λm

m!

 6 e−
(m−λ)2

2(m+λ)



Compound poisson distribution

λ3 := p3
1 + p3

2 + · · ·+ p3
n

Theorem
Suppose θ < 1/3 then

∞∑
m=0

∣∣∣P(Sn = m)− [zm]
[
eλ(z−1)−λ2

2 (z−1)2
]∣∣∣ 6 λ3

λ3/2

√
2e
3

1
(1− 3θ)2 ,

∣∣∣P(Sn = m)− [zm]
[
eλ(z−1)−λ2

2 (z−1)2
]∣∣∣ 6 λ3

λ2

√
8e
3

√
Z (m)

(1− 3θ)5/2 .



Generalized binomial distribution in combinatorics

Can be used if the discrete random variable Xn is Bernoulli
decomposable

Xn = I1 + I2 + · · ·+ In

This happens if a probability generating function Fn(z) of a
discrete random variable Xn is a polynomial whose root are real
and negative

Example

I Hypergeometric distribution.
I Number of cycles in a random permutation
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Advantages and disadvantages of this approach

Advantages
I Quick proofs.
I Very accurate explicit constants.
I Non-uniform estimates for distribution functions.

Disadvantage
I The generating function P(z) should be defined on all

complex pane and satisfy condition

P(1 + z)� eλ|z|
2

for some λ.
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Prokhorov’s theorem

Suppose B(n,p)– Bernoulli distribution. If npq →∞ then

B(n,p)→ N (
√

pqn,pn)

If np is not very large then

B(n,p)→ P(pn)

Prokhorov in 1953 proved

1
2

∑
j≥0

∣∣∣∣(n
j

)
pj(1− p)n−j − e−np (np)j

j!

∣∣∣∣
=

p√
2πe

(
1 + O

(
min(1,p + (np)−1/2)

))



Further refinements of Prokhorov’s result

Later Le Cam in 1960 proved that if probabilities pj satisfy
condition max16j6n pj 6 1/4 we have

dTV (Sn,P(λ)) =
1
2

∑
j≥0

∣∣∣∣P(Sn = j)− e−λ
λj

j!

∣∣∣∣ 6 8
λ2

λ
.

Kerstan in 1964 later sharpened the constant in Le Cam’s
inequalities proving that whenever max16j6n pj 6 1/4 we have

dTV (Sn,P(λ)) 6 1.05
λ2

λ



Barbour-Hall inequality

Finally Barbour and Hall 1984 applying Stein-Chen’s method
established their famous inequality

1
2

∑
j≥0

∣∣∣∣P(Sn = j)− e−λ
λj

j!

∣∣∣∣ 6 (1− e−λ)θ,

where as before
θ =

λ2

λ



Let us denote

d (α)
TV (L(Sn),Po(λ1)) =

1
2

∞∑
m=0

∣∣∣∣P(Sn = m)− e−λ
λm

m!

∣∣∣∣α .
Theorem
Suppose θ := λ2

λ1
= o(1) and λ1 →∞ then

d (α)
TV (L(Sn),Po(λ1)) =

θαλ
1−α

2
1

2α+1(2π)α/2

(
J(α)(θ) + O

(
1

λ
(α+1)/2
1

+
1
λ1

))
,

where J(α)(θ) is the is an explicitly defined function.



Depoissonization

G(z) = e−z
∞∑

m=0

gm

m!
zm

If G(z) is analytic in circle |z − n| < n + ε where ε > 0 then

gn =
∞∑

j=0

G(j)(n)

j!
njCj(n,n)

How close is G(n) to gn?



Inequality estimating closeness of de-Poissonization

G(z) = e−z
∞∑

m=0

gm

m!
zm

Theorem

∣∣∣∣∣∣gn −
k∑

j=0

G(j)(n)

j!
njCj(n,n)

∣∣∣∣∣∣ 6 c(n)

 ∞∑
j=k+1

|G(j)(n)|2(j + 1)

j!
nj

1/2

Example
Suppose gn is the mean value of number of steps in exhaustive
search algorithm that is needed to find a maximum
independent set in a random graph

G′(z) = G(pz) + e−z with p < 1
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Integral form of depoissonization inequality

G(z) = e−z
∞∑

m=0

gm

m!
zm

Theorem

|gn−G(n)| 6 c(n)

(∫ ∞
0

re−r
∫ π

−π
|G(n + eit√rn)−G(n)|2 dt dr

)1/2

here
c(n) :=

n!(n
e

)n√4πn
→ 1√

2
, as n→∞
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e
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Comparison with the results of Jacket and
Spankowsky

This form of the depoissonization inequality is consistent with a
general theorem of Jacket and Spankowsky of 1998.

Theorem (basic depoissonization lemma)
If for |arg z| 6 θ > 0

|G(z)| � |z|β

and for |arg z| > θ

|G(z)ez | � exp(α|z|)

then
gn = G(n) + O(nβ−1/2)



Generalization of the de-Poissonization inequality

G(z) = e−z
∞∑

m=0

gm

m!
zm

Theorem

∣∣∣∣∣∣gn −
k∑

j=0

G(j)(n)

j!
njCj(n,n)

∣∣∣∣∣∣
6 c(n)

∫ ∞
0

re−r
∫ π

−π

∣∣∣∣∣∣G(n + eit√rn)−
k∑

j=0

G(j)(n)

j!
(
eit√rn

)j

∣∣∣∣∣∣
2

dt dr


1/2

(9)



Generalizations

Suppose

F (z) =
n∑

x=0

fxzx = (p + zq)ng(z)

where p + q = 1 and 0 < p < 1.
Similar approach can be used applying Parseval identity for
Kravchuk polynomials.
This can be useful for

I analyzing the distribution of the digit sum function
I approximation of generalized binomial distribution by

simple binomial distribution
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