
Fast Forward Property

and

Decompositions of Graph of Functions

Tsung-Hsi Tsai

Academia Sinica

AofA2008, at Maresias, Brazil

April 18, 2008

1

Fast forward property

Definition Let V = {0, 1, ..., N − 1}. A function

f : V → V is fast forward if for each m ∈ N and each

x ∈ V the computational complexity of evaluating the

mth iterate of f at x,

fm(x), (e.g. f 2(x) = f (f(x))),

is small (polynomial in log N).

2

Fast forward property

Definition Let V = {0, 1, ..., N − 1}. A function

f : V → V is fast forward if for each m ∈ N and each

x ∈ V the computational complexity of evaluating the

mth iterate of f at x,

fm(x), (e.g. f 2(x) = f (f(x))),

is small (polynomial in log N).

Example The cyclic permutation (0, 1, 2, ..., N − 1) is

fast forward since fm(x) = x + m mod N .

2-a

Applications

Evaluation of iteration of functions is useful in

cryptographic applications.

3

Applications

Evaluation of iteration of functions is useful in

cryptographic applications.

Example

Rho methods for factorization (Pollard, 1975).

There compute fm(x) repeatedly for the function

f(x) = x2 − 1 mod N .

3-a

The context

The scale of N is usually very large in cryptographic

applications.

Here we consider the case that N is not very large.

4

The context

The scale of N is usually very large in cryptographic

applications.

Here we consider the case that N is not very large.

Why?

In the computation of the iteration fm(x), we need to

use O(N) information which is generated in

preprocess and stored in memory.

4-a

Preliminary

(Recall definitions and results in Tsaban 2003, 2007)

5

Fast forward permutation

Definition The fast forward permutation coded by

(m0,m1, ...,mℓ−1) is

π =
(0, ..., s0 − 1)
︸ ︷︷ ︸

m0

(s0, ..., s1 − 1)
︸ ︷︷ ︸

m1

· · ·
(sℓ−2, ..., N − 1)
︸ ︷︷ ︸

mℓ−1

,

where si = m0 + · · · + mi for 0 ≤ i ≤ ℓ − 2.

6

Fast forward permutation

Definition The fast forward permutation coded by

(m0,m1, ...,mℓ−1) is

π =
(0, ..., s0 − 1)
︸ ︷︷ ︸

m0

(s0, ..., s1 − 1)
︸ ︷︷ ︸

m1

· · ·
(sℓ−2, ..., N − 1)
︸ ︷︷ ︸

mℓ−1

,

where si = m0 + · · · + mi for 0 ≤ i ≤ ℓ − 2.

Computation of the iteration

πm(x) = si(x) +
(
x − si(x) + m mod

(
si(x)+1 − si(x)

))
,

where si(x) ≤ x < si(x)+1 and the assignments x → i(x)

and i → si are preprocessed as lookup tables.

6-a

Arbitrary permutation

For any permutation

f =
(b0, b1, ..., bs0−1)
︸ ︷︷ ︸

m0

(bs0 , ..., bs1−1)
︸ ︷︷ ︸

m1

· · ·
(bsℓ−2

, ..., bN−1)
︸ ︷︷ ︸

mℓ−1

,

define σ(x) = bx for x ∈ V . Then

f = σ ◦ π ◦ σ−1 and fm = σ ◦ πm ◦ σ−1.

7

Arbitrary permutation

For any permutation

f =
(b0, b1, ..., bs0−1)
︸ ︷︷ ︸

m0

(bs0 , ..., bs1−1)
︸ ︷︷ ︸

m1

· · ·
(bsℓ−2

, ..., bN−1)
︸ ︷︷ ︸

mℓ−1

,

define σ(x) = bx for x ∈ V . Then

f = σ ◦ π ◦ σ−1 and fm = σ ◦ πm ◦ σ−1.

Thus, f is fast forward if lookup tables for σ, σ−1, i(x)

and si are stored in memory.

7-a

Fast forward function

Definition The fast forward function coded by

(m0,m1, ...,mℓ−1) and an auxiliary sequence

(p0, ..., pℓ−1), 0 ≤ pi < si, is

θ(x) =







pi if x = si − 1,

π(x) otherwise,

where π is the fast forward permutation codes by

(m0,m1, ...,mℓ−1).

8

Fast forward function

Definition The fast forward function coded by

(m0,m1, ...,mℓ−1) and an auxiliary sequence

(p0, ..., pℓ−1), 0 ≤ pi < si, is

θ(x) =







pi if x = si − 1,

π(x) otherwise,

where π is the fast forward permutation codes by

(m0,m1, ...,mℓ−1).

Note that a cycle of π, (si−1, ..., si − 1), is connected

to a previous cycle by the mapping θ(si − 1) = pi if

pi < si−1. We call this a descent.

8-a

Evaluating θm(x)

Case 1. if m is small (si(x) ≤ x + m < si(x)+1), then

θm(x) = x + m.

9

Evaluating θm(x)

Case 1. if m is small (si(x) ≤ x + m < si(x)+1), then

θm(x) = x + m.

Case 2. if x + m ≥ si(x)+1 and pi(x)+1 ≥ si(x). Then

θm(x) = pi(x)+1+
(
(x + m − si(x)+1) mod (si(x)+1 − pi(x)+1)

)
.

9-a

Evaluating θm(x)

Case 1. if m is small (si(x) ≤ x + m < si(x)+1), then

θm(x) = x + m.

Case 2. if x + m ≥ si(x)+1 and pi(x)+1 ≥ si(x). Then

θm(x) = pi(x)+1+
(
(x + m − si(x)+1) mod (si(x)+1 − pi(x)+1)

)
.

Case 3. if x + m ≥ si(x)+1 and pi(x)+1 < si(x). Then

θm(x) is computed recursively by

θm(x) = θx+m−si(x)+1(pi(x)+1)

(here θ0 = I). (case of descent)

9-b

The complexity

Theorem (Tsaban, 2007)

The complexity of evaluating θm(x) is measured by

the number of descents (recursions) on the tour

x, θ(x), θ2(x), θ3(x),

Notation of the number of descents: Dθ(x).

10

Example for number of descents

Dθ(x) = 0 for x = 0, ..., 8;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

11

Example for number of descents

Dθ(x) = 0 for x = 0, ..., 8; Dθ(x) = 1 for x = 9, ..., 15;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

2

3

4

5

6

7

8

11-a

Example for number of descents

Dθ(x) = 0 for x = 0, ..., 8; Dθ(x) = 1 for x = 9, ..., 15;

Dθ(x) = 2 for x = 16, 17.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

11-b

Arbitrary function

If there is a fast forward function θ such that

f = σ ◦ θ ◦ σ−1,

then

fm = σ ◦ θm ◦ σ−1

and the complexity of evaluating fm(x) is

O(Dθ(x) + 1).

12

Arbitrary function

If there is a fast forward function θ such that

f = σ ◦ θ ◦ σ−1,

then

fm = σ ◦ θm ◦ σ−1

and the complexity of evaluating fm(x) is

O(Dθ(x) + 1).

How to find such a θ?

12-a

An approach proposed by Tsaban

Orbit decomposition

Definition The orbit of an element x in U ⊂ V is the

simple tour {x, f(x), f 2(x), ..., fk(x)} such that

fk+1(x) = f i(x) for some 0 ≤ i ≤ k or fk+1(x) /∈ U .

13

An approach proposed by Tsaban

Orbit decomposition

Definition The orbit of an element x in U ⊂ V is the

simple tour {x, f(x), f 2(x), ..., fk(x)} such that

fk+1(x) = f i(x) for some 0 ≤ i ≤ k or fk+1(x) /∈ U .

Definition An orbit decomposition of f is

C0, C1, ..., Cℓ−1 defined as follows: C0 is an orbit in V

and Ci is an orbit in V − C0 ∪ · · · ∪ Ci−1 for i > 0.

13-a

Given an arbitrary function f , and

(b0, b1, ..., bs0−1)
︸ ︷︷ ︸

C0

(bs0, ..., bs1−1)
︸ ︷︷ ︸

C1

· · ·
(bsℓ−2

, ..., bN−1)
︸ ︷︷ ︸

Cℓ−1

is an orbit decomposition of f .

14

Given an arbitrary function f , and

(b0, b1, ..., bs0−1)
︸ ︷︷ ︸

C0

(bs0, ..., bs1−1)
︸ ︷︷ ︸

C1

· · ·
(bsℓ−2

, ..., bN−1)
︸ ︷︷ ︸

Cℓ−1

is an orbit decomposition of f . Then

f = σ ◦ θ ◦ σ−1,

where σ(x) = bx and θ is the fast forward function

coded by (|C0| , |C1| , ..., |Cℓ−1|) and the auxiliary

sequence (p0, ..., pℓ−1) such that f (bsi−1) = bpi
.

14-a

Example Let f be the function:

9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 	

15

Example Let f be the function:

9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 	

An orbit decomposition of f can be

(9, 8, 7, 6, 5, 4, 3, 2, 1, 0), Dθ(9) = 0,

15-a

Example Let f be the function:

9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 	

An orbit decomposition of f can be

(9, 8, 7, 6, 5, 4, 3, 2, 1, 0), Dθ(9) = 0,

or (4, 3, 2, 1, 0)(9, 8, 7, 6, 5), Dθ(9) = 1,

15-b

Example Let f be the function:

9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 	

An orbit decomposition of f can be

(9, 8, 7, 6, 5, 4, 3, 2, 1, 0), Dθ(9) = 0,

or (4, 3, 2, 1, 0)(9, 8, 7, 6, 5), Dθ(9) = 1,

or (1, 0)(4, 3, 2)(6, 5)(9, 8, 7), Dθ(9) = 3,

15-c

Example Let f be the function:

9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 	

An orbit decomposition of f can be

(9, 8, 7, 6, 5, 4, 3, 2, 1, 0), Dθ(9) = 0,

or (4, 3, 2, 1, 0)(9, 8, 7, 6, 5), Dθ(9) = 1,

or (1, 0)(4, 3, 2)(6, 5)(9, 8, 7), Dθ(9) = 3,

... or even the worst

(0)(1)(2)(3)(4)(5)(6)(7)(8)(9), Dθ(9) = 9.

15-d

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1

poor

16

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 0

poor

16-a

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 01

poor

16-b

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 012

poor

16-c

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 0123

poor

16-d

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 01234

poor

16-e

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 012345

poor

16-f

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 0123456

poor

16-g

Example Two different orbit decompositions:

(here the numbers indicate the numbers of descents)

good

0 1 1 1 1 1 1 1 01234567

poor

16-h

Greedy orbit decomposition

Definition (Tsaban, 2007)

The greedy orbit decomposition of f is C0, C1, ..., Cℓ−1

defined as follows:

17

Greedy orbit decomposition

Definition (Tsaban, 2007)

The greedy orbit decomposition of f is C0, C1, ..., Cℓ−1

defined as follows:

C0 is the maximal length orbit in V

17-a

Greedy orbit decomposition

Definition (Tsaban, 2007)

The greedy orbit decomposition of f is C0, C1, ..., Cℓ−1

defined as follows:

C0 is the maximal length orbit in V and

Ci is the maximal length orbit in V − C0 ∪ · · · ∪ Ci−1

for i > 0.

17-b

The worst case

The maximal number of descents for greedy orbit

decomposition is about
√

2N .

√
2N

√
2N

18

The average case

The experiment in Tsaban 2007 indicates that the

expected number of descents for the greedy orbit

decomposition is about

log2 N

5

for random functions and random points.

19

Problems in Tsaban 2007

1. “Does there exist an efficient algorithm to find an

orbit decomposition for which the maximal number of

descents is as small as it can be?”

20

Problems in Tsaban 2007

1. “Does there exist an efficient algorithm to find an

orbit decomposition for which the maximal number of

descents is as small as it can be?” That is to find a θ

which minimizes

max
x∈V

Dθ(x).

20-a

Problems in Tsaban 2007

1. “Does there exist an efficient algorithm to find an

orbit decomposition for which the maximal number of

descents is as small as it can be?” That is to find a θ

which minimizes

max
x∈V

Dθ(x).

2. “Finding an approach which reduces the average

number of descents seems to be of great practical

interest.”

20-b

Problems in Tsaban 2007

1. “Does there exist an efficient algorithm to find an

orbit decomposition for which the maximal number of

descents is as small as it can be?” That is to find a θ

which minimizes

max
x∈V

Dθ(x).

2. “Finding an approach which reduces the average

number of descents seems to be of great practical

interest.” That is to find a θ which minimizes
∑

x∈V

Dθ(x).

20-c

New Results

21

Orbit: graphical point of view

The graph of a function is a disjoint union of

components of graph with one cycle.

22

Orbit: graphical point of view

The graph of a function is a disjoint union of

components of graph with one cycle.

The orbit is a line ending at the root

(we can consider a cycle as a root).

22-a

Orbit: graphical point of view

The graph of a function is a disjoint union of

components of graph with one cycle.

The orbit is a line ending at the root

(we can consider a cycle as a root).

The first orbit in an original component ends on the

circle. When we erase an orbit from a component,

the remainder is a disjoint union of components of

rooted tree.

22-b

Typical graph of function

a giant component

rendered by Quisquater and Delescaille 1988.

23

Descent: graphical point of view

Erase an orbit from each component each time.

The number of descents of x is the time right before

x being erased.

24

Descent: graphical point of view

Erase an orbit from each component each time.

The number of descents of x is the time right before

x being erased.

The number of descents only depends on the

decomposition of a graph (independent of the order

of components).

24-a

Example for numbers of descents

red: 0

11

12

13

14

15 7

8

9

10

18

24

17

20 21
19

25

23

16

6

5

4

3

2

1

22

25

Example for numbers of descents

red: 0 green: 1

11

12

13

14

15 7

8

9

10

18

24

17

20 21
19

25

23

16

6

5

4

3

2

1

22

11

12

13

14

15 7

8

9

10

25-a

Example for numbers of descents

red: 0 green: 1 brown: 2

11

12

13

14

15 7

8

9

10

18

24

17

20 21
19

25

23

16

6

5

4

3

2

1

22

11

12

13

14

15 7

8

9

10

25

23

16

6

5

4

3

2

1

25-b

Example for numbers of descents

red: 0 green: 1 brown: 2 purple: 3

11

12

13

14

15 7

8

9

10

18

24

17

20 21
19

25

23

16

6

5

4

3

2

1

22

11

12

13

14

15 7

8

9

10

25

23

16

6

5

4

3

2

1

18

24

17

20 21
19

25-c

Now, the problem is to find

a decomposition of a tree that

minimizes the number of descents.

26

Bottom-up construction

Lemma 1 Let T be a rooted tree:

r

T1 T2
... Tk

Give each Ti a decomposition. Let Dold(x) be the

number of descents of x.

27

Bottom-up construction

Lemma 1 Let T be a rooted tree:

r

T1 T2
... Tk

Give each Ti a decomposition. Let Dold(x) be the

number of descents of x.

Now, extend the decomposition to T : r and the root

of Ta in a same orbit. Then Dnew(r) = 0 and

Dnew(x) =







Dold(x), if x ∈ Ta,

Dold(x) + 1, otherwise.

27-a

Which one is the best connection?

r

T1 T2
... Tk

Choose the subtree which has the largest number of

descents.

28

Which one is the best connection?

r

T1 T2
... Tk

Choose the subtree which has the largest number of

descents. If there are more than one subtree with the

same largest number of descents, then choose anyone

of them. By Lemma 1, the maximal number of

descents increases 1 in this case.

28-a

Which one is the best connection?

r

T1 T2
... Tk

Choose the subtree which has the largest number of

descents. If there are more than one subtree with the

same largest number of descents, then choose anyone

of them. By Lemma 1, the maximal number of

descents increases 1 in this case.

The function characterized by above rule has been

studied in other areas.

28-b

The Horton-Strahler number

It’s originally used to classify river system. Later also

appeared in computer science as register function.

29

The Horton-Strahler number

It’s originally used to classify river system. Later also

appeared in computer science as register function.

It was defined on binary trees. Now, we extend the

definition to rooted trees with branching factor ≥ 1:

S(r) =







0 if r has no child,

M(r) if only one child with S(u) = M(r),

M(r) + 1 otherwise,

where M(r) = max{S(u) : u is a child of r}.

29-a

Example of the Horton-Strahler number

2

2

1

1

0 0

0

0

1

0 0

0

0

0

1

1

0 1

0 0

0

0

0

30

The least maximal number of descents

Find a decomposition with minimal maxx∈V Dθ(x).

31

The least maximal number of descents

Find a decomposition with minimal maxx∈V Dθ(x).

Theorem 1

The optimal orbit decomposition is constructed

componentwise by the orbits, a path top-down from

the root pass nodes with the largest Horton-Strahler

number locally.

31-a

The least maximal number of descents

Find a decomposition with minimal maxx∈V Dθ(x).

Theorem 1

The optimal orbit decomposition is constructed

componentwise by the orbits, a path top-down from

the root pass nodes with the largest Horton-Strahler

number locally.

Moreover, the least maximal number of descents is

equal to the largest Horton-Strahler number in the

tree.

31-b

Horton-Strahler number for binary tree

Let T be a binary tree with N nodes. Let SN be the

Horton-Strahler number of the root of T .

32

Horton-Strahler number for binary tree

Let T be a binary tree with N nodes. Let SN be the

Horton-Strahler number of the root of T .

Flajolet et al. (1979), Kemp (1979) and Meir et al.

(1980) independently proved that

ESN = log4 N + O(1).

32-a

Horton-Strahler number for binary tree

Let T be a binary tree with N nodes. Let SN be the

Horton-Strahler number of the root of T .

Flajolet et al. (1979), Kemp (1979) and Meir et al.

(1980) independently proved that

ESN = log4 N + O(1).

Later, Prodinger (1987) and Devroye et al. (1995)

derived more results.

32-b

Horton-Strahler number for binary tree

Let T be a binary tree with N nodes. Let SN be the

Horton-Strahler number of the root of T .

Flajolet et al. (1979), Kemp (1979) and Meir et al.

(1980) independently proved that

ESN = log4 N + O(1).

Later, Prodinger (1987) and Devroye et al. (1995)

derived more results.

Recently, Auber et al. (2004) studied a different

extension.

32-c

The worst case

– the tree with the largest least maximal number of

descents

33

The worst case

– the tree with the largest least maximal number of

descents

The complete binary tree is the worst case.

33-a

The worst case

– the tree with the largest least maximal number of

descents

The complete binary tree is the worst case.

Let d be the number of levels. Then the maximal

number of descents is d − 1 and the total number of

nodes is 2d − 1 = N .

Thus, generally, the least maximal number of

descents is bounded by log2(N + 1) − 1.

33-b

To minimize average number of descents

– find a decomposition with minimal
∑

x∈V Dθ(x).

34

To minimize average number of descents

– find a decomposition with minimal
∑

x∈V Dθ(x).

Which one is the best child to be connected with?

34-a

To minimize average number of descents

– find a decomposition with minimal
∑

x∈V Dθ(x).

Which one is the best child to be connected with?

The one with the most offsprings!

34-b

To minimize average number of descents

– find a decomposition with minimal
∑

x∈V Dθ(x).

Which one is the best child to be connected with?

The one with the most offsprings!

Orbit decomposition:

Compute for each node the number of subtree size.

For each component, starting from the root we

choose the path of the orbit through the nodes with

the largest number of subtree size.

34-c

Example The number is the size of the subtree

rooted at the node.

20

10

5

3

1 1

1

4

1 1 1

9

1 6

1 4

1 1 1

1

35

Compare to greedy orbit decomposition

The main difference is the rule to connect the nodes

and their children:

r

T1 T2
... Tk

36

Compare to greedy orbit decomposition

The main difference is the rule to connect the nodes

and their children:

r

T1 T2
... Tk

greedy the tallest subtree (with most levels)

36-a

Compare to greedy orbit decomposition

The main difference is the rule to connect the nodes

and their children:

r

T1 T2
... Tk

greedy the tallest subtree (with most levels)

least max the subtree with largest H-S number

36-b

Compare to greedy orbit decomposition

The main difference is the rule to connect the nodes

and their children:

r

T1 T2
... Tk

greedy the tallest subtree (with most levels)

least max the subtree with largest H-S number

least avg the heaviest subtree (with most nodes)

36-c

Theorem 2

Let T be a rooted tree with N nodes:

r

T1 T2
... Tk

Let mi be the total number of descents in Ti and ni

be the total number of nodes in Ti.

37

Theorem 2

Let T be a rooted tree with N nodes:

r

T1 T2
... Tk

Let mi be the total number of descents in Ti and ni

be the total number of nodes in Ti.

Then the best choice is the Ti with the maximal ni

and the total number of descents of T is

k∑

i=1

mi + (N − 1 − max{n1, ..., nk}) .

37-a

The worst case

The worst case is also complete binary tree.

38

The worst case

The worst case is also complete binary tree.

0

0

0

0 1

1

1 2

1

1

1 2

2

2 3

Here the number indicates the number of descents.

38-a

Average number of descents of complete binary tree

Let ck be the total number of descents at level k.

Then c1 = 0 and ck = 2ck−1 + 2k−2 for k ≥ 2. (Why?)

x

x x + 1

39

Average number of descents of complete binary tree

Let ck be the total number of descents at level k.

Then c1 = 0 and ck = 2ck−1 + 2k−2 for k ≥ 2. (Why?)

x

x x + 1

Thus ck = (k − 1)2k−2 and the average number

descents in this case is
∑d

k=1(k − 1)2k−2

∑d

k=1 2k−1
=

d

2
− 1 +

d

2d − 1
,

where d is the number of levels.

39-a

Conclusion

1. For any function f on {0, 1, ..., N − 1}, the

iteration fm(x) for each m and x can be

computed in time O(log N) by using preprocessed

information. The preprocess need linear space

and linear time.

40

Conclusion

1. For any function f on {0, 1, ..., N − 1}, the

iteration fm(x) for each m and x can be

computed in time O(log N) by using preprocessed

information. The preprocess need linear space

and linear time.

2. Open problems: analysis of the Horton-Strahler

number and the average number of descents for

random functions.

40-a

Conclusion

1. For any function f on {0, 1, ..., N − 1}, the

iteration fm(x) for each m and x can be

computed in time O(log N) by using preprocessed

information. The preprocess need linear space

and linear time.

2. Open problems: analysis of the Horton-Strahler

number and the average number of descents for

random functions.

3. Application? Maybe use in the construction of

pseudo-random functions.

40-b

Conclusion

1. For any function f on {0, 1, ..., N − 1}, the

iteration fm(x) for each m and x can be

computed in time O(log N) by using preprocessed

information. The preprocess need linear space

and linear time.

2. Open problems: analysis of the Horton-Strahler

number and the average number of descents for

random functions.

3. Application? Maybe use in the construction of

pseudo-random functions.

4. Another interpretation of our work. (next page)

40-c

Another interpretation of our work

Transportation system

good design

0 1 1 1 1 1 1 1

poor design

01234567

Consider orbit as bus line and descent as transfer.

Our work is to design a bus system that minimizes

the number of transfers.

41

Thank You!

42

