Max-2-CSP in expected polynomial time

Ravelomanana Vlady ${ }^{1}$
${ }^{1}$ LIPN - UMR CNRS 7030, University of Paris Nord

Summary

(1) Introduction
(2) MAX-2-CSP
(3) Reductions

4 Expected running time (the analysis)
(5) Conclusion

Introduction

By CSP, we mean Constraint Satisfaction Problems (cf. A. Montanari AofA'08).

- n variables $x_{1}, x_{2}, \cdots x_{n}$ belonging to finite domains, i.e., $x_{i} \in \xi_{j}$.
- A set of constraints (clauses) over these variables: where by constraint we mean relations between the variables defining authorized combinations.
- Decision problem : does it exist a solution (affectation of the variables) satisfying all the constraints?
- Optimization problem : maximize the number of satisfiable clauses by some affectation(s).

Example

$$
\text { Domains: }(x, y) \in\{0,1\}^{2},(z, t) \in\{0,1,2,3\}^{2}
$$

Constraints :

$$
\begin{cases}(x, y) & \in\{(1,0),(0,1)\} \\ x & \neq z \\ y+z & =0 \bmod 2 \\ t & \geq y\end{cases}
$$

Our 2-CSP settings

- All the domains are of size 2 : the variables can take 2 values.
- Each clause (constraint) concerns exactly 2 variables.

Summary

(1) Introduction

(2) MAX-2-CSP
(3) Reductions

4 Expected running time (the analysis)
(5) Conclusion

MAX-2-CSP

Formal description

- An instance is given by (G, S) where $G=(V, E)$ is the underlying graph and S is a score function.
- W. I. o. g. the vertices can take two colors Red or Blue.
- For each edge $e=(x, y)$ and for each vertex v of the graph, we have their resp. associated scores :

$$
s_{e}=s_{x y}:\{R, B\}^{2} \rightarrow \mathbb{R} \quad \text { AND } s_{v}:\{R, B\} \rightarrow \mathbb{R}
$$

Goals :

Decision problem : Find a solution (or a coloring) of the vertices which is a function Φ satisfying all the constraints.
Optimization problem : Find $\max _{\Phi \in\{\text { all colorings }\}} S(\Phi)$:
$\Phi: V \rightarrow\{R, B\}, s(\Phi)=\sum_{v \in V} s_{V}(\Phi(v))+\sum_{x y \in E} s_{x y}(\Phi(x), \Phi(y)) \in \mathbb{R}$.

MAX-2-CSP

Under these assumptions and settings
(1) the problem is sufficiently general : The settings encompass MaxCut, MaxDicut, MaxiS, Max2Sat, ...
(2) Main facts : best known algorithms need c^{\sharp} edges- $\#$ vertices global iterations (with $c>1$) with the worst cases, for instance MAXCUT in $O\left(2^{19 / 100 \sharp e d g e s ~}\right)$ ScOTT - SORKIN 2007
(3) What about average-case analysis?

MAX-2-CSP: model and approach for the average case analysis

The instances are randomly generated using a graph $G(n, M)$ as support. Main steps :

- Use some reductions (same as in Scott - SORKIN).
- Running time of the algorithm :

Check under what conditions this problem has Expected Polynomial Running Time.

Summary

(1) Introduction

(2) MAX-2-CSP
(3) Reductions

4 Expected running time (the analysis)
(5) Conclusion

MAX-2-CSP: the reduction of vertices of degree 1 (Type I)

Let y be a vertex of degree 1 (with x as unique neighbor). The initial problem is reduced from $G=(V, E)$ to $V^{\prime}=V \backslash\{y\}$ and $E^{\prime}=E \backslash\{(x, y)\}$. The new score function S^{\prime} is given by the restriction of s to V^{\prime} and E^{\prime} except that for $\left(c_{1}, c_{2}\right) \in\{R, B\}^{2}$ we have

$$
s^{\prime}{ }_{x}\left(c_{1}\right)=s_{x}\left(c_{1}\right)+\max _{c_{2}}\left\{s_{x y}\left(c_{1}, c_{2}\right)+s_{y}\left(c_{2}\right)\right\}
$$

Termed in other words,

$$
\begin{aligned}
& s^{\prime}{ }_{x}(R)=s_{x}(R)+\max \left(s_{x y}(R, R)+s_{y}(R)+s_{x y}(R, B)+s_{y}(B)\right) \\
& s_{x}^{\prime}(B)=s_{x}(B)+\max \left(s_{x y}(B, B)+s_{y}(B)+s_{x y}(B, R)+s_{y}(R)\right) .
\end{aligned}
$$

Optimal Coloration over $S^{\prime} \rightarrow$ Optimal Coloration over S in time : $T_{S^{\prime}}=T_{S}+O(1)$

MAX-2-CSP: the reduction of vertices of degree 2 (Type II)

Let y be a vertex with neighbors x and z. We reduce the graph by deleting y and replacing it by an edge $x z$. The new problem is then over $V^{\prime}=V \backslash\{y\}$ and $E^{\prime}=(E \backslash\{(x, y),(y, z)\}) \cup\{(x, z)\}$, and the new score function S^{\prime} is the restriction of S over V^{\prime} and E^{\prime} except that for $\left(c_{1}, c_{2}, c_{3}\right) \in\{R, B\}^{3}$ we have

$$
s_{x z}^{\prime}\left(c_{1}, c_{2}\right)=\max _{c_{3}}\left\{s_{x y}\left(c_{1}, c_{3}\right)+s_{y z}\left(c_{3}, c_{2}\right)+s_{y}\left(c_{3}\right)\right\}
$$

Idem ... Optimal Coloration over $S^{\prime} \rightarrow$ Optimal Coloration
over S
in time : $T_{S^{\prime}}=T_{S}+O(1)$

MAX-2-CSP: the reduction of vertices of degree ≥ 3 (Type III)

Let y be a vertex of degree $\operatorname{deg}(y)>2$. We define two reductions corresponding to the two assignements of the color of y : color $y=$ Red or color $y=$ Blue.

Then we define TWO new problems accordingly. Suppose that y is colored Red. For every neighbor x of y, a new score function is defined:

$$
\begin{aligned}
s_{x}^{R}(R) & =s_{x}(R)+s_{x y}(R, R)+s_{y}(R), \\
s_{x}^{R}(B) & =s_{x}(B)+s_{x y}(B, R)+s_{y}(R) .
\end{aligned}
$$

The Algorithm :

Do all the reductions of the vertices of degree 1 and 2; Then for each vertex v of degree ≥ 3, solve recursively the TWO instances : ' v in Blue' and ' v in Red'.

Summary

(1) Introduction

(2) MAX-2-CSP
(3) Reductions
(4) Expected running time (the analysis)

(5) Conclusion

MAX-2-CSP: expected running time computation (main steps)

- The expected running time of the algorithm is related to

$$
\sum_{R=0}^{M} 2^{R} p_{R}(n, M)=\text { function of } n
$$

where

$$
\begin{gathered}
p_{R}(n, M) \stackrel{\text { def }}{=} \text { proba that } G(n, M) \text { produces a graph } \\
\text { with EXACTLY } R \text { reductions of type III. }
\end{gathered}
$$

- $p_{R}(n, M)$ is close to ($T \equiv$ CAYLEY, cf. B. SALVY AofA'08)
$\frac{n!}{2 \pi i\left(\begin{array}{c}n \\ 2 \\ M\end{array}\right)} \oint \underbrace{\frac{c_{R}}{(1-T)^{3 R}}}_{\sim \text { giant component }} \underbrace{\frac{\left(T-T^{2} / 2\right)^{n-M+R}}{(n-M+R)!}}_{\text {unrooted trees }} \underbrace{\frac{e^{-T-T^{2} / 2}}{(1-T)^{1 / 2}} \frac{d z}{z^{n+1}}}_{\text {unicycles }}$

MAX-2-CSP: average case analysis (results)

After calculus implying Enumeration (cf. J. Gao AofA'08) Analytic Combinatorics (cf. M. Drmota and B. Salvy AofA'08), we get

Th.

- If $M=n / 2+O(1) \log n^{1 / 3} n^{2 / 3}$ MAX-2-CSP generated with $G(n, M)$ can be solved in EXPECTED POLYNOMIAL TIME.
- If $M=n / 2+\omega(n) \log n^{1 / 3} n^{2 / 3}$, there are $\exp \left(\Omega\left(\omega(n)^{3} \log n\right)\right)$ global iterations! AVERAGE EXPONENTIAL TIME.
- The order $O\left(\log n^{1 / 3}\right)$ is optimal for all algorithms recquiring (on worst cases) $c^{\sharp e d g e s-\sharp v e r t i c e s ~}$ with $c>1$.

Summary

(1) Introduction

(2) MAX-2-CSP
(3) Reductions

4 Expected running time (the analysis)
(5) Conclusion

Conclusion

- This work answers a problem left open by Scott and Sorkin (2004).
- Similar results hold if the variables (vertices) can take any finite number of values (Red, Blue, Green, Yellow, etc ...).
- The algorithm works fine (polynomial time) until around the famous "critical $n / 2$ egdes" for any MAX-2-CSP and for MAX-2-SAT but is WEAK for this latter (recall that the threshold for 2 -SAT is n).
What about these issueS (algorithm + analysis)?
- Are dense instances of these MAX-2-CSP-like problems really hard even on Average?

* THANK YOU *

