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Knuth (TAOCP, Vol 3) has an exercise, attributed to S.O.Rice:
Show that

Un =
∑
k≥2

(
n

k

)
(−1)k

1

2k−1 − 1

= (−1)n
n!

2πi

∮
C

dz

z(z − 1) . . . (z − n)

1

2z−1 − 1
,

where C is a skinny closed curve encircling the points 2, 3, . . . , n.
Changing C to an arbitrarily large circle centered at the origin,
derive the convergent series

Un =
(Hn−1 − 1)n

log 2
+ further terms.



Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

(harmonic number)

In Computer Science circles, this method is now called Rice’s
method, although the integral representation of the alternating
sum was known to Nörlund.
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Solving an open problem by Knuth about digital search trees,
Flajolet and Sedgewick had to compute

n −
n∑

k=2

(
n

k

)
(−1)kRk−2,

with

Rn = Qn

( 1

Q0
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Qn

)
and

Qn =
(
1− 1

2

)(
1− 1

4

)
. . .

(
1− 1

2n

)
.



Solving an open problem by Knuth about digital search trees,
Flajolet and Sedgewick had to compute

n −
n∑

k=2

(
n

k

)
(−1)kRk−2,

with

Rn = Qn

( 1

Q0
+ · · ·+ 1

Qn

)
and

Qn =
(
1− 1

2

)(
1− 1

4

)
. . .

(
1− 1

2n

)
.



Solving an open problem by Knuth about digital search trees,
Flajolet and Sedgewick had to compute

n −
n∑

k=2

(
n

k

)
(−1)kRk−2,

with

Rn = Qn

( 1

Q0
+ · · ·+ 1

Qn

)
and

Qn =
(
1− 1

2

)(
1− 1

4

)
. . .

(
1− 1

2n

)
.



n∑
k=2

(
n

k

)
(−1)kRk−2

=
1

2πi

∮
n!(−1)n

z(z − 1) . . . (z − n)
R(z − 2)dz

The construction of the meromorphic function R(z) is a bit tricky
here.
But the asymptotic evaluation can now be done by computing
residues.
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Consider
n∑

k=n0

(
n

k

)
(−1)kϕ(k).

Rice’s method leads to an identity in at least the following cases:
ϕ(z) is rational, analytic on [n0,∞).
ϕ(z) is meromorphic, of polynomial growth.
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q-version of Rice’s formula (HP):[
n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
,

with (z ; q)n := (1− z)(1− zq) . . . (1− zqn−1).

n∑
k=1

(−1)k−1q(k
2)

[
n

k

]
q

f (q−k) =
1

2πi

∫
C

(q; q)n
(z ; q)n+1

f (z) dz ,

where C encircles the poles q−1, . . . , q−n and no others.
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For f (z) rational, we get identities:



Van Hamme:

S :=
n∑

k=1

(−1)k−1q(k+1
2 )

1− qk

[
n

k

]
q

=
n∑

k=1

qk

1− qk
.

For that one, f (z) = 1
z−1 .



Uchimura’s generalization for m ∈ N:

S :=
n∑

k=1

(−1)k−1q(k+1
2 )

1− qk+m

[
n

k

]
q

=
n∑

k=1

qk

1− qk

/[
k + m

k

]
q

.

Here, f (z) = 1
z−qm .

S = −Res
z=1

(q; q)n
(z ; q)n+1

1

z − qm
− Res

z=qm

(q; q)n
(z ; q)n+1

1

z − qm

=
1

1− qm
− (q; q)n(q; q)m−1

(q; q)m+n
,

which is better (closed form!) than Uchimura’s formula.



Dilcher’s sum:

∑
1≤k≤n

[
n

k

]
q

(−1)k−1 q(k
2)+mk

(1− qk)m

=
∑

1≤i1≤i2≤···≤im≤n

qi1

1− qi1
. . .

qim

1− qim
.

This time,

f (z) =
1

(z − 1)m
.



As Dilcher noted, the limit for q → 1 is∑
1≤k≤n

(
n

k

)
(−1)k−1 1

km
=

∑
1≤i1≤i2≤···≤im≤n

1

i1 . . . im
.

If n is replaced by infinity, we are in the realm of multiple ζ-values,
and there is a big industry about finding identities for them.
Hernández proved the following identity:∑

1≤k≤n

(
n

k

)
(−1)k−1

∑
1≤i1≤i2≤···≤im=k

1

i1i2 . . . im
=

∑
1≤k≤n

1

km
.

This identity does not really require a proof, since it is just an
inverted form Dilcher’s identity!
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Thus, inverting the q-version of Dilcher’s formula, I got a
q-Hernández formula:

Assume that a0 = b0 = 0, then∑
1≤k≤n

bk =
∑

1≤k≤n

[
n

k

]
q

(−1)kq(k
2)ak ,

∑
1≤k≤n

q−kak =
∑

1≤k≤n

[
n

k

]
q

(−1)kq−kn+(k
2)bk .

I found these inversion formulæ myself, but it is due to Carlitz.
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q-analogue of Hernández’ formula
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n

k
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I was able to prove q-identities of Fu and Lascoux using the q-Rice
formula:

n∑
i=1

[
n

i

]
q

(−1)i−1(x + 1) . . . (x + qi−1)
qmi

(1− qi )m

=
n∑

i=1

(
1− (−x)i

) qi

1− qi

∑
i≤i2≤···≤im≤n

qi2

1− qi2
. . .

qim

1− qim



n∑
i=0

[
n

i

]
q

(−1)i−1(x + 1) . . . (x + qi−1)
qi

1− tqi

= − (q; q)n
(t; q)n+1

n∑
i=0

(t; q)i
(q; q)i

(−xq)i .



Partial fraction decomposition; Wenchang Chu’s method.
Apéry numbers:

A(n) =
n∑

k=0

(
n

k

)2(n + k

k

)2

.

Beukers’ conjecture:∑
m≥1

α(m)qm = q
∏
n≥1

(1− q2n)4(1− q4n)4

A
(p − 1

2

)
≡ α(p) (mod p2),

for an odd prime p.
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Apéry numbers:

A(n) =
n∑

k=0

(
n

k

)2(n + k

k

)2

.

Beukers’ conjecture:∑
m≥1

α(m)qm = q
∏
n≥1

(1− q2n)4(1− q4n)4

A
(p − 1

2

)
≡ α(p) (mod p2),

for an odd prime p.



Partial fraction decomposition; Wenchang Chu’s method.
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Sufficient (according to Ahlgren and Ono):

n∑
k=1

(
n

k

)2(n + k

k

)2{
1 + 2kHn+k + 2kHn−k − 4kHk

}
= 0.



f (x) =
x(1− x)2(2− x)2 . . . (n − x)2

x2(x + 1)2 . . . (x + n)2

Partial fraction decomposition

f (x) =
1

x
+

n∑
k=1

{
Bk

(x + k)2
+

Ck

x + k

}

Ck =

(
n

k

)2(n + k

k

)2{
1 + 2kHn+k + 2kHn−k − 4kHk

}
Now multiply by x and let x →∞; this gives the identity.
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Human proofs of Identities by Osburn and Schneider
(as opposed to Carsten Schneider’s computer proofs)
Consider

(z + 1) . . . (z + n)

z(z − 1) . . . (z − n)
=

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n−k 1

z − k
.

Multiplying this by z , and letting z →∞, by obtain

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n−k = 1.



Consider

(z + 1) . . . (z + n − 1)

z(z − 1) . . . (z − n)

1

z + n

=
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n−k 1

(n + k)2
1

z − k
+

(n − 1)!2

(2n)!

1

z + n
.

The limit form is

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n−k 1

(n + k)2
= −(n − 1)!2

(2n)!
.



(z + 1) . . . (z + n)

(z − 1) . . . (z − n)

1

j(j + z)

=
n∑

k=1

(
n

k

)(
n + k

k

)
(−1)n−k k

j(j + k)

1

z − k

+
(j − 1)!2

(j − n − 1)!(n + j)!

1

j + z
.

The limit form is

n∑
k=1

(
n

k

)(
n + k

k

)
(−1)n−k k

j + k
= − (j − 1)!2

(j − n − 1)!(n + j)!
+

1

j
.



Summing on j ≥ 1 (and shifting the index), we get

n∑
k=1

(
n

k

)(
n + k

k

)
(−1)n−kHk =

∑
j≥0

[
1

j + 1
− j!2

(j − n)!(n + 1 + j)!

]
.

This can be summed (creative telescoping):

n∑
k=1

(
n

k

)(
n + k

k

)
(−1)n−kHk = 2Hn.
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A few more, for example

n∑
k=1

(
n

k

)(
n + k

k

)
(−1)n−kH

(2)
k = 2

n∑
k=1

(−1)k−1

k2
.



Vermaseren (a physisist) writes:

In this section some sums are given that can be worked
out to any level of complexity, but they are not
representing whole classes. Neither is there any proof for
the algorithms. The algorithms presented have just been
checked up to some rather large values of the parameters.

Wenchang Chu’s method works here as well!
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(z + 1) . . . (z + n)

z(z − 1) . . . (z − n)

1

zd
=

n∑
k=1

(
n

k

)(
n + k

k

)
(−1)n−k 1

kd

1

z − k

+
λ

zd+1
+ · · ·+ µ

z
.

Now we multiply this by z , and take the limit z →∞:

0 =
n∑

k=1

(
n

k

)(
n + k

k

)
(−1)n−k 1

kd
+ µ,

with

(−1)nµ = (−1)n[z−1]
(z + 1) . . . (z + n)

z(z − 1) . . . (z − n)

1

zd



(−1)nµ = (−1)n[z−1]
(z + 1) . . . (z + n)

z(z − 1) . . . (z − n)

1

zd

= [zd ] exp

(
log(1 + z) + · · ·+ log

(
1 +

z

n

)
+ log

1

1− z
+ · · ·+ log

1

1− z
n

)
= [zd ] exp

(∑
k≥1

(−1)k−1

k
zkH

(k)
n +

∑
k≥1

1

k
zkH

(k)
n

)

=
∑

1·j1+3·j3+···=d

2j1+j3+···
(
H

(1)
n

)j1(H(3)
n

)j3 . . .

j1!j3! . . . 1j13j3 . . .
.



Theorem
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n

k

)(
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k

)
(−1)k−1 1

kd

=
∑

1·j1+3·j3+···=d
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(
H

(1)
n

)j1(H(3)
n

)j3 . . .

j1!j3! . . . 1j13j3 . . .
.



Theorem
For d ≥ 1,

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n−kH

(d+1)
k

= 2
n∑

m=1

(−1)m−1

m2

∑
l1+2l2+···=d−1

(sm,1)
l1(sm,2)

l2 . . .

l1!l2! . . . 1l12l2 . . .

with
sm,j = (−1)j−1H

(j)
m−1 + H

(j)
m .



For d = 0,

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n−kHk =

n−1∑
m=0

2

m + 1
= 2Hn.



Theorem

n∑
k=0

(
n

k

)(
n + k

m + k

)
(−1)k

1

(m + k)d+1

=
n!(m − 1)!

(n + m)!

∑
l1+2l2+···=d

(
U1

)l1(U2

)l1 . . .

l1l2! . . . 1l12l2 . . .
,

with
Uj = (−1)j−1H

(j)
n−m + H

(j)
n+m − H

(j)
m−1.



An old exercise vom AMM (Melzak):

f (x + y) = y

(
y + n

n

) n∑
k=0

(
n

k

)
(−1)k

f (x − k)

y + k
,

with a polynomial f (x) of degree ≤ n.



D́ıaz-Barrero, Gibergans-Báguena and Popescu:

n∑
k=1

(
n

k

)
(−1)k−1 1(x+k

k

) ∑
1≤i≤j≤k

1

x2 + (i + j)x + ij
=

n

(x + n)3
,

n∑
k=1

(
n

k

)
(−1)k−1complicated(k) =

n

(x + n)4
.



INVERT!



Compute
n∑

k=1

(
n

k

)
(−1)k−1 k

(x + k)d+1

Of course, Wenchang Chu’s rational fraction decomposition works
here again.
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Theorem

n∑
k=1

(
n

k

)
(−1)k−1 k

(x + k)d+1

=
1(x+n
n

) ∑
l1+2l2+3l3+···=d

s l1
n,1s

l2
n,2 . . .

l1!l2! . . . 1l12l2 . . .

with

sn,j =
n∑

k=1

1

(k + x)j
.



Recently, I ran into this:

n∑
k=0

(−1)k
(

n

k

)
1

2k(m + k)
.

(Choi, Zörnig, Rathie)
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Rice would not give an identity, as the integral would not go to
zero. So what can we do?

S(n,m) =
n∑

k=0

(−1)k
(

n

k

)
1

2k(m + k)
.

Using Pfaff’s reflection law (or simply induction!)

S(n,m) =
n!(m − 1)!

2n(n + m)!

n∑
k=0

(
m + n

k

)
.

Both forms appear already in a card guessing game paper
(Knopfmacher, HP).
Alois Panholzer and Markus Kuba have novel ideas about this!
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S(n, n + d) =
n!(n + d − 1)!

2n(2n + d)!

[
22n+d−1 −

n+d−1∑
k=n+1

(
2n + d

k

)]


