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A discrete parking problem: Parking scheme

The parking scheme:

Consider one-way street

m parking lots are in a row

n drivers wish to park in these lots

Each driver has preferred parking lot to which he drives

If parking lot is empty ⇒ he parks there

If not, he drives on and parks in the next free parking lot
if there is one

If all remaining parking lots are occupied
⇒ leaves without parking
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A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3, 8, 6, 7, 4, 5

1 2 3 4 5 6 7 8

⇒ 2 cars are unsuccessful
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A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence a1, . . . , an ∈ {1, . . . ,m}n
⇒ k unsuccessful cars (max(n −m, 0) ≤ k ≤ n − 1)

Formal description of k = k(m; a1, . . . , an):

bi := #` : a` ≥ i

⇒ k = max
1≤i≤m+1

{bi + i} −m − 1

k independent of specific order of cars arriving
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A discrete parking problem: Parking functions

Parking functions: special instance k = 0
⇒ all cars can be parked

Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

m places at a round table
(∼= memory addresses)

n guests arriving sequentially at
certain places (∼= data elements)

each guest goes clockwise to
first empty place
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A discrete parking problem: Parking functions

Topic of active research in combinatorics
⇒ connections to many other objects:

labelled trees, major functions, acyclic functions, Prüfer code,
non-crossing partitions, hyperplane arrangements, priority
queues, Tutte polynomial of graphs, linear probing hashing
algorithm, invesions in trees

Generalizations:

multiparking functions, G -parking functions, bucket parking
functions

Authors working on parking functions, amongst others:
M. Atkinson, D. Foata, J. Francon, I. Gessel, M. Golin, D. Knuth,
G. Kreweras, C. Mallows, J. Pitman, A. Postnikov, J. Riordan,
B. Sagan, M. Schützenberger, L. Shapiro, R. Stanley, C. Yan, . . .

8 / 37



A discrete parking problem Results Analysis Outlook

A discrete parking problem: Parking functions

Topic of active research in combinatorics
⇒ connections to many other objects:

labelled trees, major functions, acyclic functions, Prüfer code,
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A discrete parking problem: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]

g(m, n): number of parking functions
for m parking lots and n cars

g(m, n) = (m − n + 1)(m + 1)n−1

Questions for general parking sequences:
“Combinatorial question”:

What is the number g(m, n, k) of parking sequences
a1, . . . , an ∈ {1, . . . ,m}n such that exactly k drivers are
unsuccessful?

Exact formulæ for g(m, n, k) ?

9 / 37



A discrete parking problem Results Analysis Outlook

A discrete parking problem: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]

g(m, n): number of parking functions
for m parking lots and n cars

g(m, n) = (m − n + 1)(m + 1)n−1

Questions for general parking sequences:
“Combinatorial question”:

What is the number g(m, n, k) of parking sequences
a1, . . . , an ∈ {1, . . . ,m}n such that exactly k drivers are
unsuccessful?

Exact formulæ for g(m, n, k) ?

9 / 37



A discrete parking problem Results Analysis Outlook

A discrete parking problem: Enumeration results

“Probabilistic question”:

What is the probability that for a randomly chosen
parking sequence a1, . . . , an ∈ {1, . . . ,m}n exactly k
drivers are unsuccessful ?

r.v. Xm,n: counts number of unsuccessful cars for a randomly
chosen parking sequence

Probability distribution of Xm,n ?

Limiting distribution results (depending on growth of m, n) ?

10 / 37
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A discrete parking problem: Enumeration results

Known results for Xm,n:

Gonnet and Munro [1984]:

Xm,n studied in analysis of algorithm “linear probing sort”

Exact and asymptotic results for expectation E(Xm,n):

E(Xm,n) =
1

2

n∑
`=2

n`

m`
, n ≤ m

E(Xm,m) =

√
πm

8
+

2

3
+O

(
m−

1
2
)

Analysis uses “Poisson model”

Transfer of results to “exact filling model”
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Results
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Results: Exact enumeration formulæ

Exact enumeration results:
Cameron, Johannsen, Prellberg and Schweitzer [2007];
Panholzer [2007]

Number g(m, n, k) of parking sequences for m parking lots and n
drivers such that exactly k drivers are unsuccessful (n ≤ m + k):

g(m, n, k) = (m − n + k)
n−k∑
`=0

(
n

`

)
(m − n + k + `)`−1(n − k − `)n−`

− (m − n + k + 1)
n−k−1∑

`=0

(
n

`

)
(m − n + k + 1 + `)`−1(n − k − 1− `)n−`

13 / 37
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Results: Exact enumeration formulaæ

Alternative expression: useful for k small

g(m, n, k) = (m − n + k + 1)(m + k + 1)n−1

− (m − n + k + 1)
k−1X
`=0

(−1)`

 
n

` + 1

!
(m + k − `)n−`−2(k − `)`+1

− (m − n + k)
k−1X
`=0

(−1)`

 
n

`

!
(m + k − `)n−`−1(k − `)`

Examples for small numbers k of unsuccessful cars:

g(m, n, 0) = (m − n + 1)(m + 1)n−1

g(m, n, 1) = (m − n + 2)(m + 2)n−1 + (n2 − n −m2 − 2m − 1)(m + 1)n−2

g(m, n, 2) = (m − n + 3)(m + 3)n−1

+ (2n2 −mn −m2 − 4n − 4m − 4)(m + 2)n−2

+
1

2
n(−n2 −mn + 2m2 + 2n − 5m + 1)(m + 1)n−3

14 / 37
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Results: Limiting distributions

Exact probability distribution of Xm,n:

P{Xm,n = k} = g(m,n,k)
mn

Limiting distribution results for Xm,n: Panholzer [2007]

Depending on growth of m, n ⇒ nine different phases

m (parking lots) ≥ n (cars)

n� m

n ∼ ρm, 0 < ρ < 1
√

m� ∆ := m − n� m

∆ ∼ ρ
√

m, ρ > 0

∆�
√

m

m (parking lots) < n (cars)

∆ := n −m�
√

n

∆ ∼ ρ
√

n, ρ > 0
√

n� ∆� n

n ∼ ρm, ρ > 1

m� n

15 / 37



A discrete parking problem Results Analysis Outlook

Results: Limiting distributions

Exact probability distribution of Xm,n:

P{Xm,n = k} = g(m,n,k)
mn

Limiting distribution results for Xm,n: Panholzer [2007]

Depending on growth of m, n ⇒ nine different phases

m (parking lots) ≥ n (cars)

n� m

n ∼ ρm, 0 < ρ < 1
√

m� ∆ := m − n� m

∆ ∼ ρ
√

m, ρ > 0

∆�
√

m

m (parking lots) < n (cars)

∆ := n −m�
√

n

∆ ∼ ρ
√

n, ρ > 0
√

n� ∆� n

n ∼ ρm, ρ > 1

m� n

15 / 37



A discrete parking problem Results Analysis Outlook

Results: Limiting distributions

Weak convergence of Xm,n (m parking lots, n cars):

n� m : Xm,n
(d)−−→ X

P{X = 0} = 1

degenerate limit law
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Results: Limiting distributions

Weak convergence of Xm,n (m parking lots, n cars):

n ∼ ρm, 0 < ρ < 1 : Xm,n
(d)−−→ Xρ

P{Xρ ≤ k} = (1− ρ)
k∑

`=0

(−1)k−` (` + 1)k−`

(k − `)!
ρk−`e(`+1)ρ

discrete limit law
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Results: Limiting distributions

Weak convergence of Xm,n (m parking lots, n cars):

√
m� ∆ := m − n� m : ∆

mXm,n
(d)−−→ X

(d)
= EXP(2)

survival function: P{X ≥ x} = e−2x , x ≥ 0

asymptotically exponential distributed
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Analysis: Exact enumeration results

Exact enumeration results

Quantity of interest:

g(m, n, k): number of sequences ∈ {1, . . . ,m}n, such that
exactly k cars are unsuccessful

Recursive description of g(m, n, k):

Auxiliary quantities:

f (n) = (n + 1)n−1: number of parking functions ∈ {1, . . . , n}n

s(m, k): number of sequences ∈ {1, . . . ,m}m+k , such that all
parking lots are occupied ⇔ exactly k cars are unsuccessful
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Analysis: Exact enumeration results

Case n < m + k: decomposition after first empty lot j :

j1 m

g(m, n, k) =
m∑

j=1

(
n

j − 1

)
f (j − 1)g(m − j , n − j + 1, k)

Case n = m + k: all parking lots are occupied:

1 m

g(m, n, k) = s(m, k)
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Analysis: Exact enumeration results

Introducing suitable generating functions:

G (z , u, v) :=
∑
m≥0

∑
n≥0

∑
k≥0

g(m, n, k)
zn

n!
umvk

S(u, v) :=
∑
m≥0

∑
k≥0

s(m, k)
umvk

(m + k)!

T (z) :=
∑
n≥1

nn−1 zn

n!
=

∑
n≥1

f (n − 1)
zn

(n − 1)!

T (z): satisfies functional equation T (z) = zeT (z)

Equation for generating functions:

G (z , u, v) =
S(zu, zv)

1− T (zu)
z
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Analysis: Exact enumeration results

Evaluating at v = 1:

1

1− uez
=

∑
m≥0

∑
n≥0

mn zn

n!
um = G (z , u, 1) =

S(zu, z)

1− T (zu)
z

⇒ S(zu, z) =
1− T (zu)

z

1− uez

Substituting z ← zv , u ← u
v :

S(zu, zv) = S(zv · u
v

, zv) =
1− T (zu)

zv

1− u
v ezv

Exact expression for generating function:

G (z , u, v) =
1− T (zu)

zv(
1− T (zu)

z

)
·
(
1− u

v ezv
)
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Analysis: Exact enumeration results

Extracting coefficients ⇒ exact formula:

g(m, n, k) = (m − n + k)
n−k∑
`=0

(
n

`

)
(m − n + k + `)`−1(n − k − `)n−`

− (m − n + k + 1)
n−k−1∑

`=0

(
n

`

)
(m − n + k + 1 + `)`−1(n − k − 1− `)n−`

Exact distribution of Xm,n:

P{Xm,n = k} =
g(m, n, k)

mn
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Analysis: Exact enumeration results

Abel’s generalization of the binomial theorem:

(x + y)n =
n∑

`=0

x(x − `z)`−1(y + `z)n−`

⇒ alternative expression for g(m, n, k):

g(m, n, k) = (m − n + k + 1)(m + k + 1)n−1

− (m − n + k + 1)
k−1X
`=0

(−1)`

 
n

` + 1

!
(m + k − `)n−`−2(k − `)`+1

− (m − n + k)
k−1X
`=0

(−1)`

 
n

`

!
(m + k − `)n−`−1(k − `)`

24 / 37



A discrete parking problem Results Analysis Outlook

Analysis: Limiting distribution results (I)

Limiting distribution results for Xm,n (I)

Special instance: m (parking lots) = n (cars)

complex-analytic techniques

Generating function of diagonal:

F (u, v) =
∑
m≥0

∑
k≥0

mmP{Xm,m = k}u
m

m!
vk

Computed via contour integral:

F (u, v) =
1

2πi

∮
G (t, u

t , v)

t
dt =

1

2πi

∮ (
t − T (u)

v

)
dt(

t − T (u)
)
·
(
t − u

v etv
)
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Analysis: Limiting distribution results (I)

Explicit formula:

simple pole at t = T (u)

computing residue

F (u, v) =
(v − 1)T (u)

vT (u)− ueT (u)v

Method of moments:

E(X r
m,m) =

m!

mm
[um]

∂r

∂v r
F (u, v)

∣∣∣∣
v=1

Studying derivatives of F (u, v) evaluated at v = 1:

local expansion around dominant singularity u = 1
e

Singularity analysis, Flajolet and Odlyzko [1990]
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Analysis: Limiting distribution results (I)

r-th moments converge to moments of Rayleigh r.v.:

E
((Xm,m√

m

)r
)
→ 2−

r
2 Γ

( r

2
+ 1

)

Theorem of Fréchet and Shohat:

Xm,m√
m

(d)−−→ RAYLEIGH(2)
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Analysis: Limiting distribution results (II)

Limiting distribution results for Xm,n (II)

Instance: m (parking lots) > n (cars)

Extension of previous approach

Generating function for ∆ := m − n:

F∆(u, v) =
∑
m≥∆

∑
k≥0

mm−∆P{Xm,m−∆ = k} umvk

(m −∆)!

Computed via contour integral:

F∆(u, v) =
1

2πi

∮
G (t, u

t , v)t∆

t
dt =

1

2πi

∮ (
t − T (u)

v

)
t∆dt(

t − T (u)
)
·
(
t − u

v etv
)
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Analysis: Limiting distribution results (II)

Explicit formula:

F∆(u, v) =
(v − 1)

(
T (u)

)∆+1

vT (u)− ueT (u)v

Exact formula for r-th factorial moments:

Lagrange inversion formula

E
((

Xm,m−∆

)r
)

=
r∑

q=1

γr ,q

m−∆∑
`=r+q

(
`− r − 1

q − 1

)
(m −∆)`

m`

γr ,q: certain constants

sums appearing related to Ramanujan’s Q-function
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Analysis: Limiting distribution results (II)

Asymptotic evaluation:

dissecting summation interval

Stirling’s formula

tail exchange

Euler’s summation formula
⇒ as. evaluation of sums via integrals

Method of moments:
suitably scaled r -th moments of Xm,m−∆ converge to moments of

Rayleigh r.v.

linear-exponential r.v.

exponential r.v.
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Analysis: Limiting distribution results (III)

Limiting distribution results for Xm,n (III)

Instance: m (parking lots) < n (cars)

consider Xm,n + m − n: number of empty parking lots

Asymptotic evaluation of exact formula for survival function

Exact formula of survival function for ∆ := n −m:

P
{
Xn−∆,n−∆ ≥ k

}
=

n−∆−k∑
`=0

k

` + k

(
n

`

)
(` + k)`(n −∆− k − `)n−`

(n −∆)n
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Analysis: Limiting distribution results (III)

Asymptotic evaluation:

dissecting summation interval

Stirling’s formula

tail exchange

inequalities, uniform estimates

Euler’s summation formula
⇒ as. evaluation of sums via integrals
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Analysis: Limiting distribution results (III)

Example: ∆ ∼ ρ
√

n, 0 < ρ <∞, k ∼ x
√

n, 0 < x <∞

Pointwise convergence for all 0 < x <∞:

P
{
Xn−∆,n −∆ ≥ k

}
→

∫ 1

0

xe
ρ2

2

√
2πt

3
2
√

1− t
e
− x2

2t
− (x+ρ)2

2(1−t) dt

Evaluation of the integral:∫ 1

0

xe
ρ2

2

√
2πt

3
2
√

1− t
e
− x2

2t
− (x+ρ)2

2(1−t) dt = e−2x(x+ρ)

Characterization of the limiting distribution:

P
{Xn−∆,n −∆√

n
≥ x

}
→ e−2x(x+ρ)
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Outlook

Possible further research directions

Refined analysis:

Local limit laws

case n > m: convergence of moments

Extensions to related problems:

Analysis of “number of insertion steps”

Bucket parking functions

Multiparking functions
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A discrete parking problem Results Analysis Outlook

Bucket parking scheme

Bucket parking scheme

Blake and Konheim [1976]:

Each parking lots can hold up to b cars
Related to analysis of bucket hashing algorithms

b
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Generating functions approach works:

G (z , u, v) =

1

1− u
vb ezv

(1− b
zv T (zu1/b)) · (1− b

zv T (ωzu1/b)) · · · (1− b
zv T (ωb−1zu1/b))

(1− b
z T (zu1/b)) · (1− b

z T (ωzu1/b)) · · · (1− b
z T (ωb−1zu1/b))
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