On a discrete parking problem

Alois Panholzer

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
Alois.Panholzer@tuwien.ac.at

International Conference on the Analysis of Algorithms,
17.4.2008

1/37



Outline of the talk

o A discrete parking problem

© Results

© Analysis

@ Outlook

2/37



A discrete parking problem

A discrete parking problem

3/37



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

4/37



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

@ Consider one-way street

4/37



A discrete parking problem

A discrete parking problem:

The parking scheme:

@ Consider one-way street

@ m parking lots are in a row

Parking scheme

4/317



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

@ Consider one-way street
@ m parking lots are in a row

@ n drivers wish to park in these lots

4/317



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

o Consider one-way street
@ m parking lots are in a row
@ n drivers wish to park in these lots

@ Each driver has preferred parking lot to which he drives

4/317



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

@ Consider one-way street
@ m parking lots are in a row

@ n drivers wish to park in these lots

@ Each driver has preferred parking lot to which he drives
°

If parking lot is empty = he parks there

4/37



A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

@ Consider one-way street
m parking lots are in a row

n drivers wish to park in these lots

°
°
@ Each driver has preferred parking lot to which he drives
@ If parking lot is empty = he parks there

°
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if there is one
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A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

Consider one-way street

m parking lots are in a row

n drivers wish to park in these lots

Each driver has preferred parking lot to which he drives
If parking lot is empty = he parks there

If not, he drives on and parks in the next free parking lot
if there is one

o If all remaining parking lots are occupied
= leaves without parking

4/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

—

TII?IIIIII

1 2 4 5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

=
_III?IIIIII

1 2 4 5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

_III?III?III

1 2 4 5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

&
_III?III?III

1 2 4 5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

=
_III?III?III

1 2 4 5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

& | |
6

5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

6o
& | |
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

& ||
6

5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

=
|| ||
6

5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

6o
& ||
6

5 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

6o
||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

o
||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

— S
T e[|
3 4

1 2

||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

—

L I?I?I

1 2

||| )|
5 6 7 8

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

=
T e e e 5 |
3 4 5 6 7 8

1 2

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

— -
1 o | ||| @
3 4 5 6 7 8

1 2

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

— -
1 o | ||| @
3 4 5 6 7 8

1 2

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

— -
1 o | ||| @
3 4 5 6 7 8

1 2

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

— -
1 o | ||| @
3 4 5 6 7 8

1 2

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3,6, 3,8,6,7,4,5

=
T e e e 5 |
3 4 5 6 7 8

1 2

79

5/37



A discrete parking problem

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: 3, 6, 3,8, 6,7, 4,5

=
T e e e 5 |
3 4 5 6 7 8

1 2

79

= 2 cars are unsuccessful

5/37



A discrete parking problem

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence ay,...,a, € {1,...,m}"
= k unsuccessful cars (max(n —m,0) < k <n-—1)

6/37



A discrete parking problem

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence ay,...,a, € {1,...,m}"
= k unsuccessful cars (max(n —m,0) < k <n-—1)

Formal description of k = k(m; a1,...,an):
b,' = #f tag > i
= k= max {bj+i}—m-1
1<i<m+1

6/37



A discrete parking problem

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence ay,...,a, € {1,...,m}"
= k unsuccessful cars (max(n —m,0) < k <n-—1)

Formal description of k = k(m; a1,...,an):
b,' = #f tag > i
= k= max {bj+i}—m-1
1<i<m+1

k independent of specific order of cars arriving
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Topic of active research in combinatorics
=> connections to many other objects:

@ labelled trees, major functions, acyclic functions, Priifer code,
non-crossing partitions, hyperplane arrangements, priority
queues, Tutte polynomial of graphs, linear probing hashing
algorithm, invesions in trees

Generalizations:
@ multiparking functions, G-parking functions, bucket parking

functions

Authors working on parking functions, amongst others:

M. Atkinson, D. Foata, J. Francon, |. Gessel, M. Golin, D. Knuth,
G. Kreweras, C. Mallows, J. Pitman, A. Postnikov, J. Riordan,

B. Sagan, M. Schiitzenberger, L. Shapiro, R. Stanley, C. Yan, ...
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A discrete parking problem: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966)]

g(m, n): number of parking functions
for m parking lots and n cars

(m.n) = (m— -+ D{m-+ 1)

Questions for general parking sequences:
“Combinatorial question”:

What is the number g(m, n, k) of parking sequences
ai,...,an € {1,...,m}" such that exactly k drivers are
unsuccessful?

@ Exact formulae for g(m, n, k) ?
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A discrete parking problem: Enumeration results

“Probabilistic question”:

What is the probability that for a randomly chosen
parking sequence ai,...,an € {1,...,m}" exactly k
drivers are unsuccessful ?

r.v. Xm,n: counts number of unsuccessful cars for a randomly
chosen parking sequence

@ Probability distribution of Xy, 5 7

@ Limiting distribution results (depending on growth of m, n) ?
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A discrete parking problem: Enumeration results

Known results for X, ,:

Gonnet and Munro [1984]:

@ X, studied in analysis of algorithm “linear probing sort”

Exact and asymptotic results for expectation E(X, ,):

n

(=2

n

‘

1
IE()<m,n) - E Z Wy n=

[TTm

<m

§+O(m—§

')

@ Analysis uses "“Poisson model”

@ Transfer of results to “exact filling model”
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Results
Results: Exact enumeration formulae

Exact enumeration results:
Cameron, Johannsen, Prellberg and Schweitzer [2007];
Panholzer [2007]

Number g(m, n, k) of parking sequences for m parking lots and n
drivers such that exactly k drivers are unsuccessful (n < m+ k):

n

k
(monm k) =(m—n+k)S (") (m—n+k+0)(n—k— )"
& - (@)

Il
<)

n

—k—1
—(m-n+k+1) Y (Z)(m—n—i—k—i—l—l—@el(n—k—l—E)"Z
=

o
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Results
Results: Exact enumeration formulaz

Alternative expression: useful for k small

g(mnk)=(m—n+k+1)(m+k+1)""
k-1

—(m=n+k+1)) (-1)° (41 1) (m+k—0)""2(k — )"

£=0

—(m—n+k) ;(—1)5 (Z) (m+k— 0"k — o)
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g(mnk)=(m—n+k+1)(m+k+1)""
k-1

—(m=n+k+1)) (-1)° (41 1) (m+k—0)""2(k — )"

£=0

—(m—n+k) ;(—1)5 (Z) (m+k— 0"k — o)

Examples for small numbers k of unsuccessful cars:

(m
+(2n* —mn—m® —4n — 4m — 4)(m+2)""
+

% (—n* —mn+2m*4+2n—5m+1)(m+1)""*

g(m,n,0)=(m—n+1)(m+1)""
gmn1l)=(m—-—n+2)(m+2)" '+ (" —n—m* —2m—1)(m+1)""?
g(m,n,2)=(m—n+3)(m+3)""
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Results

Results: Limiting distributions

Exact probability distribution of X, ,:

P{ X = k} = M

Limiting distribution results for X, ,: Panholzer [2007]

Depending on growth of m, n = nine different phases

m (parking lots) > n (cars) (parking lots) < n (cars)
en<m e Ai=n—m</n
en~pm, 0<p<l e A~pyn, p>0
o /m<KA:=m—n<m o V/nKA<n
e A~pym, p>0 en~pm, p>1
e Ak \/m °

m<<n
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k

k—¢
P{X, < k} = (1 p) ;H)k—f%pk—eewnp

o~

discrete limit law
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Results: Limiting distributions

Weak convergence of X, , (m parking lots, n cars):

9, x 9D Exp(2)

Vm<KA:=m—n<m: %men

survival function: P{X > x} = e 2, x>0

asymptotically exponential distributed
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Results

Results: Limiting distributions

Weak convergence of X, , (m parking lots, n cars):

n<m: Xm7,,—|—m—nﬂ>X

P{X =0}=1

degenerate limit law

e e | | | e | M | 5 | | | 5 | 5 S5 |

S0 0 N D
N D D D
0 ReD D D

16 /37



Analysis

17/37



Analysis

Analysis: Outline

QOutline of proof

Exact enumeration results:
@ Recursive description of parameter

@ Generating functions approach

18/37



Analysis

Analysis: Outline

QOutline of proof

Exact enumeration results:
@ Recursive description of parameter

@ Generating functions approach

Limiting distribution results:
@ Asymptotic evaluation of distribution function

@ Asymptotic evaluation of positive integer moments
(Method of moments)
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Exact enumeration results

Quantity of interest:

@ g(m,n, k): number of sequences € {1,...,m}", such that
exactly k cars are unsuccessful
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Analysis
Analysis: Exact enumeration results

Exact enumeration results

Quantity of interest:

@ g(m,n, k): number of sequences € {1,...,m}", such that
exactly k cars are unsuccessful

Recursive description of g(m, n, k):

Auxiliary quantities:
@ f(n) = (n+1)""1: number of parking functions € {1,...,n}"

@ s(m, k): number of sequences € {1,..., m}™k such that all
parking lots are occupied < exactly k cars are unsuccessful
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Analysis
Analysis: Exact enumeration results

Case n < m + k: decomposition after first empty lot j:

el o o vl o] ewevien|
' J Mt 2 K
g(m,n,k)_z(jfl>f0_1)g(m—j,n—j+1,k)

Jj=1
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Analysis
Analysis: Exact enumeration results

Case n < m + k: decomposition after first empty lot j:

Tleslemlssieven] |oslow (o ||| 6| P
1

| HE2 X
g(m,n,k)_;(jfl>f(j_1)g(m—j,n—j+1,k)

Case n = m + k: all parking lots are occupied:

%6?%;\ﬁ-\é‘ﬁ?ﬂ\ﬁ\ﬁ\ﬁ\ﬁ\ﬁ\@%\ﬁ\ﬁ‘ﬁ‘@?‘%‘ 299
1 m

LR R

g(m,n, k) = s(m, k)
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Analysis
Analysis: Exact enumeration results

Introducing suitable generating functionS'

e G(z,u,v) ZZngnk)

m>0 n>0 k>0
uv)—ZZs(mk —i—k)'
m>0 k>0
° z)—Zn" 12 Zf(n—l
n>1 ! n>1 )

T(z): satisfies functional equation T(z) =ze'(®
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Analysis: Exact enumeration results

Introducing suitable generating functionS'

e G(z,u,v) ZZngnk)

m>0n>0 k>0
uv)—ZZs(mk —i—k)'
m>0 k>0
° z)—Zn" 12 Zf(n—l
n>1 ' n>1 )

T(z): satisfies functional equation T(z) =ze'(®

Equation for generating functions:

S(zu, zv)
T (zu)

z

G(z,u,v) =

21/37



Analysis
Analysis: Exact enumeration results

Evaluating at v = 1:

1 z" S(zu, z)

Z — mnium — G(Z7 U,].) == ﬁ

1—ue mz>0 Zn>0 n! 1— %
_ T (zu)

= S(ZU,Z) = 1_7[’];1
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Analysis
Analysis: Exact enumeration results

Evaluating at v = 1:

I nZ" m ~ S(zu,z)
1—ueZ_ZZm FU —G(Z,U,l)—w

m>0 n>0 ’ 1 z
_ T(zw)
=S5 = —Z
(zu, 2) T

Substituting z < zv, u « :
1— T (zu)

zv

S(zu,zv) = S(zv - g,zv) = 1_7%62‘/

22/37



Analysis
Analysis: Exact enumeration results

Evaluating at v = 1:

1 nZ" S(zu, z)
e = 2 2 =G ) = T
m>0 n>0 - z
_ T(zw)
= S(ZU,Z) = 1_7[’];1

Substituting z < zv, u « :

u 1— T(zu)
Slauzv) = S(av- . 2) = T

Exact expression for generating function:

1— T (zu)

G ) 9 = =
(Z u V) (1_ T(zu)) . (1_ %ez‘/)

z
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Analysis: Exact enumeration results

Extracting coefficients = exact formula:

n—k n
g(m,yn k) =(m—n+ k) <>(mn+k+£)€1(nk€)"z

n—k—1
—(m=n+k+1) <Z>(mn+k+1+€)“(nk1£)"‘
=

o
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Analysis
Analysis: Exact enumeration results

Extracting coefficients = exact formula:

n—k n
g(m,yn k) =(m—n+ k) <€>(mn+k+6)el(nk€)"z

n

—k—1
—(m=n+k+1) <Z>(mn+k+1+€)“(nk1£)"‘
=

o

Exact distribution of X, ,:

k
P (X = k) = E0K)

mn
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Analysis
Analysis: Exact enumeration results

Abel’s generalization of the binomial theorem:

n

(x+y)" = ZX(X —0z2) Ny 4 £2)" "

=0

= alternative expression for g(m, n, k):

g(mn k)=(m—n+k+1)(m+k+1)""
k=1

—(m—n+k+1)) (-1) (zi 1) (m+k—0)""2(k — )"

£=0

_ —n+k§ ()(erkf)"Zl(ké)e
£=0
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Analysis: Limiting distribution results (1)

Limiting distribution results for X, , (1)

Special instance: m (parking lots) = n (cars)

@ complex-analytic techniques
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Limiting distribution results for X, , (1)

Special instance: m (parking lots) = n (cars)

@ complex-analytic techniques

Generating function of diagonal:

F(u,v) = Z Z m"P{ Xy m = k}%n;vk

m>0 k>0

Computed via contour integral:

_ 16t 1 (¢ 52t
Fon) = 5 § == 0§ oy 7o)
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Analysis

Analysis: Limiting distribution results (1)

Explicit formula:
@ simple pole at t = T(u)

@ computing residue

F(u,v) =

(v-1)T(v)

vT (u) — ueT (v
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Analysis: Limiting distribution results (1)

Explicit formula:
@ simple pole at t = T(u)

@ computing residue

(v—-1)T(uv)
Flu,v) = vT (u) — ueT (v

Method of moments:

. m 0
E(Xmm) = 51"l 5%

r

F(u,v)
v=1
Studying derivatives of F(u,v) evaluated at v = 1:
@ local expansion around dominant singularity u = %

e

@ Singularity analysis, Flajolet and Odlyzko [1990]
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Analysis: Limiting distribution results (1)

r-th moments converge to moments of Rayleigh r.v.:

)’) 25 r(g +1)
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Analysis

Analysis: Limiting distribution results (1)

r-th moments converge to moments of Rayleigh r.v.:

E(( N )’) 03 r(g +1)

Theorem of Fréchet and Shohat:

Xm,m (d)
Jm —> RAYLEIGH(2)
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Analysis: Limiting distribution results (11)

Limiting distribution results for X, , (11)

Instance: m (parking lots) > n (cars)

@ Extension of previous approach
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Limiting distribution results for X, , (11)

Instance: m (parking lots) > n (cars)

@ Extension of previous approach

Generating function for A := m — n:

Fa(u,v) = > > m™ AP{Xp m-n = k}L

vk
(m—A)!
m>A k>0

Computed via contour integral:

TGN e W S e D
FA(U7V)27”'% t dt27‘l’i%(t—7—(u))'(t_setv)
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Analysis: Limiting distribution results (11)

Explicit formula:

(v —1)(T(u))"

Falu,v) = vT (u) — ueT(w)v
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Analysis

Analysis: Limiting distribution results (11)

Explicit formula:

(v—1)(T(w)""
vT (u) — ueT(w)v

Fa(u,v) =

Exact formula for r-th factorial moments:

@ Lagrange inversion formula

m—A

(0mn-)) =0 3 (1111 O

l=r+q

@ 7, 4: certain constants

@ sums appearing related to Ramanujan’s Q-function
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Analysis

Analysis: Limiting distribution results (11)

Asymptotic evaluation:
@ dissecting summation interval
@ Stirling's formula
@ tail exchange

@ Euler's summation formula
= as. evaluation of sums via integrals
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Analysis: Limiting distribution results (11)

Asymptotic evaluation:
@ dissecting summation interval
@ Stirling's formula
@ tail exchange

@ Euler's summation formula
= as. evaluation of sums via integrals

Method of moments:
suitably scaled r-th moments of X, ,_a converge to moments of

@ Rayleigh r.v.
@ linear-exponential r.v.

@ exponential r.v.
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Analysis: Limiting distribution results (111)

Limiting distribution results for X, , (Ill)

Instance: m (parking lots) < n (cars)
@ consider X, , + m — n: number of empty parking lots

@ Asymptotic evaluation of exact formula for survival function
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Analysis: Limiting distribution results (111)

Limiting distribution results for X, , (Ill)

Instance: m (parking lots) < n (cars)
@ consider X, , + m — n: number of empty parking lots

@ Asymptotic evaluation of exact formula for survival function

Exact formula of survival function for A :=n — m:

n—A—k
K n (£+k)€(n_A—k—£)"%
P{Xo-an—0 >k} = ; 0+ k (ﬁ) (n—A4)

31/37



Analysis

Analysis: Limiting distribution results (111)

Asymptotic evaluation:

dissecting summation interval
@ Stirling's formula

@ tail exchange

@ inequalities, uniform estimates
°

Euler's summation formula
= as. evaluation of sums via integrals
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Analysis

Analysis: Limiting distribution results (111)

Example: A ~ py/n, 0<p<oo, k~xyn 0<x<o0

Pointwise convergence for all 0 < x < oc:

2

xez X2 (x+p)?

1
]P{Xn—Am —A> k} —>/ e 2t 21-0 dt
0

ortiI—t
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Analysis: Limiting distribution results (111)
Example: A ~ py/n, 0< p < oo,

Pointwise convergence for all 0 < x < oc:

k ~xy/n, 0<x< oo

2

! xepz _ X2 (x+p)?
]P{X,-,_Am - A Z k} — / ——>—¢€ 2t 2(1-t) oft
0 V2mt2y/1—t

Evaluation of the integral:

N

1 £ 2 (xap)?
0 V2mt2y/1—1t
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Analysis

Analysis: Limiting distribution results (111)
Example: A ~ py/n, 0<p<oo, k~xyn 0<x<o0

Pointwise convergence for all 0 < x < oc:

2

1 £ 2 2

xe 2 _ x5 (xt+p)

]P{X,-,_Am - A Z k} — / ——>—¢€ 2t 2(1-t) oft
0 V2mt2y/1—1t
Evaluation of the integral:
2
1 £ 2 (x
/ %eiz (Tp)t) dt = e~ 2x(x+p)
0 V2mt2y/1—1t

Characterization of the limiting distribution:

]p{Xn—%—A > X} _, o=2x(x+p)
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Outlook

Possible further research directions
Refined analysis:

@ Local limit laws

@ case n > m: convergence of moments
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Outlook

Outlook

Possible further research directions

Refined analysis:
@ Local limit laws

@ case n > m: convergence of moments

Extensions to related problems:
@ Analysis of “number of insertion steps”
@ Bucket parking functions

@ Multiparking functions
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Outlook
Bucket parking scheme

Bucket parking scheme

Blake and Konheim [1976]:

@ Each parking lots can hold up to b cars
@ Related to analysis of bucket hashing algorithms

& o Ll
bl |65\ ||
& & & & & o | &
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Generating functions approach works:

G(z,u,v) =
1 (1 -2 ( 1/b)) (1 b T(wzul/b)) (1 _ Z%T(wb_lzul/b))
1-— ﬁezv (]_ — (2u1/b)) (1- b T(wzul/b)) (11— gT(walzul/b))
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