$\frac{\square}{\text { W I E N }}$

On a discrete parking problem

Alois Panholzer

> Institute of Discrete Mathematics and Geometry Vienna University of Technology
> Alois.Panholzer@tuwien.ac.at

International Conference on the Analysis of Algorithms, 17.4.2008

Outline of the talk

(1) A discrete parking problem
(2) Results
(3) Analysis
(4) Outlook

A discrete parking problem

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to nark in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has nreferred narking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied \Rightarrow leaves without parking

A discrete parking problem: Parking scheme

The parking scheme:

- Consider one-way street
- m parking lots are in a row
- n drivers wish to park in these lots
- Each driver has preferred parking lot to which he drives
- If parking lot is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking lot if there is one
- If all remaining parking lots are occupied
\Rightarrow leaves without parking

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

A discrete parking problem: Example

Example: 8 parking lots, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

$\Rightarrow 2$ cars are unsuccessful

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Formal description of $k=k\left(m ; a_{1}, \ldots, a_{n}\right)$:

k independent of specific order of cars arriving

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Formal description of $k=k\left(m ; a_{1}, \ldots, a_{n}\right)$:

$$
\begin{gathered}
b_{i}:=\# \ell: a_{\ell} \geq i \\
\Rightarrow k=\max _{1 \leq i \leq m+1}\left\{b_{i}+i\right\}-m-1
\end{gathered}
$$

k independent of specific order of cars arriving

A discrete parking problem: Unsuccessful cars

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Formal description of $k=k\left(m ; a_{1}, \ldots, a_{n}\right)$:

$$
\begin{gathered}
b_{i}:=\# \ell: a_{\ell} \geq i \\
\Rightarrow k=\max _{1 \leq i \leq m+1}\left\{b_{i}+i\right\}-m-1
\end{gathered}
$$

k independent of specific order of cars arriving

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Parking functions: special instance $k=0$
\Rightarrow all cars can be parked

Introduced by Konheim and Weiss [1966]: in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

A discrete parking problem: Parking functions

Topic of active research in combinatorics
\Rightarrow connections to many other objects:

- labelled trees, major functions, acyclic functions, Prüfer code, non-crossing partitions, hyperplane arrangements, priority queues, Tutte polynomial of graphs, linear probing hashing algorithm, invesions in trees

Generalizations:

- multiparking functions, G-parking functions, bucket parking functions

A discrete parking problem: Parking functions

Topic of active research in combinatorics
\Rightarrow connections to many other objects:

- labelled trees, major functions, acyclic functions, Prüfer code, non-crossing partitions, hyperplane arrangements, priority queues, Tutte polynomial of graphs, linear probing hashing algorithm, invesions in trees

Generalizations:

- multiparking functions, G-parking functions, bucket parking functions

A discrete parking problem: Parking functions

Topic of active research in combinatorics
\Rightarrow connections to many other objects:

- labelled trees, major functions, acyclic functions, Prüfer code, non-crossing partitions, hyperplane arrangements, priority queues, Tutte polynomial of graphs, linear probing hashing algorithm, invesions in trees

Generalizations:

- multiparking functions, G-parking functions, bucket parking functions

Authors working on parking functions, amongst others:
M. Atkinson, D. Foata, J. Francon, I. Gessel, M. Golin, D. Knuth,
G. Kreweras, C. Mallows, J. Pitman, A. Postnikov, J. Riordan,
B. Sagan, M. Schützenberger, L. Shapiro, R. Stanley, C. Yan, ...

A discrete parking problem: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]
$g(m, n)$: number of parking functions for m parking lots and n cars

$$
g(m, n)=(m-n+1)(m+1)^{n-1}
$$

Questions for general parking sequences:
"Combinatorial question":
Mhat is the number $s(m, n, k)$ of parking sequences
$a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are
unsuccessful?

- Exact formulæ for $g(m, n, k)$?

A discrete parking problem: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]
$g(m, n)$: number of parking functions
for m parking lots and n cars

$$
g(m, n)=(m-n+1)(m+1)^{n-1}
$$

Questions for general parking sequences:
"Combinatorial question":
What is the number $g(m, n, k)$ of parking sequences
$a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are unsuccessful?

- Exact formulæ for $g(m, n, k)$?

A discrete parking problem: Enumeration results

"Probabilistic question":
What is the probability that for a randomly chosen parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ exactly k drivers are unsuccessful ?
r.v. $X_{m, n}$: counts number of unsuccessful cars for a randomly chosen parking sequence

- Probability distribution of $X_{m, n}$?
- Limiting distribution results (depending on growth of m, n) ?

A discrete parking problem: Enumeration results

Known results for $X_{m, n}$:
Gonnet and Munro [1984]:

- $X_{m, n}$ studied in analysis of algorithm "linear probing sort"

Exact and asymptotic results for expectation $\mathbb{E}\left(X_{m, n}\right)$:

- Analysis uses "Poisson model"
- Transfer of results to "exact filling model"

A discrete parking problem: Enumeration results

Known results for $X_{m, n}$:
Gonnet and Munro [1984]:

- $X_{m, n}$ studied in analysis of algorithm "linear probing sort"

Exact and asymptotic results for expectation $\mathbb{E}\left(X_{m, n}\right)$:

$$
\begin{aligned}
\mathbb{E}\left(X_{m, n}\right) & =\frac{1}{2} \sum_{\ell=2}^{n} \frac{n^{\bar{\ell}}}{m^{\ell}}, \quad n \leq m \\
\mathbb{E}\left(X_{m, m}\right) & =\sqrt{\frac{\pi m}{8}}+\frac{2}{3}+\mathcal{O}\left(m^{-\frac{1}{2}}\right)
\end{aligned}
$$

- Analysis uses "Poisson model"
- Transfer of results to "exact filling model"

Results

Results: Exact enumeration formulæ

Exact enumeration results:

Cameron, Johannsen, Prellberg and Schweitzer [2007];
Panholzer [2007]

Number $g(m, n, k)$ of parking sequences for m parking lots and n drivers such that exactly k drivers are unsuccessful $(n \leq m+k)$:

$$
\begin{aligned}
& g(m, n, k)=(m-n+k) \sum_{\ell=0}^{n-k}\binom{n}{\ell}(m-n+k+\ell)^{\ell-1}(n-k-\ell)^{n-\ell} \\
& -(m-n+k+1) \sum_{\ell=0}^{n-k-1}\binom{n}{\ell}(m-n+k+1+\ell)^{\ell-1}(n-k-1-\ell)^{n-\ell}
\end{aligned}
$$

Results: Exact enumeration formulaæ

Alternative expression: useful for k small

$$
\begin{aligned}
& g(m, n, k)=(m-n+k+1)(m+k+1)^{n-1} \\
& \quad-(m-n+k+1) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell+1}(m+k-\ell)^{n-\ell-2}(k-\ell)^{\ell+1} \\
& \quad-(m-n+k) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell}(m+k-\ell)^{n-\ell-1}(k-\ell)^{\ell}
\end{aligned}
$$

Results: Exact enumeration formulaæ

Alternative expression: useful for k small

$$
\begin{aligned}
& g(m, n, k)=(m-n+k+1)(m+k+1)^{n-1} \\
& \quad-(m-n+k+1) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell+1}(m+k-\ell)^{n-\ell-2}(k-\ell)^{\ell+1} \\
& \quad-(m-n+k) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell}(m+k-\ell)^{n-\ell-1}(k-\ell)^{\ell}
\end{aligned}
$$

Examples for small numbers k of unsuccessful cars:

$$
\begin{aligned}
g(m, n, 0)= & (m-n+1)(m+1)^{n-1} \\
g(m, n, 1)= & (m-n+2)(m+2)^{n-1}+\left(n^{2}-n-m^{2}-2 m-1\right)(m+1)^{n-2} \\
g(m, n, 2)= & (m-n+3)(m+3)^{n-1} \\
& +\left(2 n^{2}-m n-m^{2}-4 n-4 m-4\right)(m+2)^{n-2} \\
& +\frac{1}{2} n\left(-n^{2}-m n+2 m^{2}+2 n-5 m+1\right)(m+1)^{n-3}
\end{aligned}
$$

Results: Limiting distributions

Exact probability distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Limiting distribution results for

Depending on growth of $m, n \Rightarrow$ nine different phases

Results: Limiting distributions

Exact probability distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Limiting distribution results for $X_{m, n}$: Panholzer [2007]

Depending on growth of $m, n \Rightarrow$ nine different phases
m (parking lots) $\geq n$ (cars)

- $n \ll m$
m (parking lots) $<n$ (cars)
- $\Delta:=n-m \ll \sqrt{n}$
- $n \sim \rho m, 0<\rho<1$
- $\Delta \sim \rho \sqrt{n}, \quad \rho>0$
- $\sqrt{m} \ll \Delta:=m-n \ll m$
- $\sqrt{n} \ll \Delta \ll n$
- $\Delta \sim \rho \sqrt{m}, \quad \rho>0$
- $n \sim \rho m, \quad \rho>1$
- $\Delta \ll \sqrt{m}$
- $m \ll n$

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$n \ll m: \quad X_{m, n} \xrightarrow{(d)} X$

$$
\mathbb{P}\{X=0\}=1
$$

degenerate limit law

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$n \sim \rho m, \quad 0<\rho<1: \quad X_{m, n} \xrightarrow{(d)} X_{\rho}$

$$
\mathbb{P}\left\{X_{\rho} \leq k\right\}=(1-\rho) \sum_{\ell=0}^{k}(-1)^{k-\ell} \frac{(\ell+1)^{k-\ell}}{(k-\ell)!} \rho^{k-\ell} e^{(\ell+1) \rho}
$$

discrete limit law

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$\sqrt{m} \ll \Delta:=m-n \ll m: \quad \frac{\Delta}{m} X_{m, n} \xrightarrow{(d)} X \stackrel{(d)}{=} \operatorname{EXP}(2)$

$$
\text { survival function: } \mathbb{P}\{X \geq x\}=e^{-2 x}, \quad x \geq 0
$$

asymptotically exponential distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$\Delta:=m-n \sim \rho \sqrt{m}, \quad \rho>0: \quad \frac{1}{\sqrt{m}} X_{m, n} \xrightarrow{(d)} X_{r h o} \stackrel{(d)}{=} \operatorname{LINEXP}(2, \rho)$

$$
\text { survival function: } \mathbb{P}\left\{X_{\rho} \geq x\right\}=e^{-2 x(x+\rho)}, \quad x \geq 0
$$

asymptotically linear-exponential distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$0 \leq \Delta:=m-n \ll \sqrt{m}: \quad \frac{1}{\sqrt{m}} X_{m, n} \xrightarrow{(d)} X \stackrel{(d)}{=}$ RAYLEIGH(2)
survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x^{2}}, \quad x \geq 0$
asymptotically Rayleigh distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):

$$
0 \leq \Delta:=n-m \ll \sqrt{n}: \quad \frac{x_{m, n}+m-n}{\sqrt{n}} \xrightarrow{(d)} X \stackrel{(d)}{=} \text { RAYLEIGH(2) }
$$

survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x^{2}}, \quad x \geq 0$

asymptotically Rayleigh distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$\Delta:=n-m \sim \rho \sqrt{n}, \quad \rho>0: \quad \frac{X_{m, n}+m-n}{\sqrt{n}} \xrightarrow{(d)} X_{\rho} \stackrel{(d)}{=} \operatorname{LINEXP}(2, \rho)$
survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x(x+\rho)}, \quad x \geq 0$
asymptotically linear-exponential distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$\sqrt{n} \ll \Delta:=n-m \ll n: \quad \frac{\Delta}{n}\left(X_{m, n}+m-n\right) \xrightarrow{(d)} X \stackrel{(d)}{=} \operatorname{EXP}(2)$

$$
\text { survival function: } \mathbb{P}\{X \geq x\}=e^{-2 x}, \quad x \geq 0
$$

asymptotically exponential distributed

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$n \sim \rho m, \quad \rho>1: \quad X_{m, n}+m-n \xrightarrow{(d)} X_{\rho}$

$$
\mathbb{P}\left\{X_{\rho} \geq k\right\}=k e^{-\rho k} \sum_{\ell=0}^{\infty} \frac{(\ell+k)^{\ell-1}}{\ell!}\left(\rho e^{-\rho}\right)^{\ell}, k \geq 1
$$

discrete limit law

Results: Limiting distributions

Weak convergence of $X_{m, n}$ (m parking lots, n cars):
$n \ll m: \quad X_{m, n}+m-n \xrightarrow{(d)} X$

$$
\mathbb{P}\{X=0\}=1
$$

degenerate limit law

\longrightarrow用家|

Analysis

Analysis: Outline

Outline of proof

Exact enumeration results:

- Recursive description of parameter
- Generating functions approach

Limiting distribution results:
 - Asymptotic evaluation of distribution function
 - Asymptotic evaluation of positive integer moments (Method of moments)

Analysis: Outline

Outline of proof

Exact enumeration results:

- Recursive description of parameter
- Generating functions approach

Limiting distribution results:

- Asymptotic evaluation of distribution function
- Asymptotic evaluation of positive integer moments (Method of moments)

Analysis: Exact enumeration results

Exact enumeration results

Quantity of interest:

- $g(m, n, k)$: number of sequences $\in\{1, \ldots, m\}^{n}$, such that exactly k cars are unsuccessful

Recursive description of $g(m, n, k)$:

Auxiliary quantities:

- $s(m, k)$: number of sequences $\in\{1, \ldots, m\}^{m+k}$, such that all parking lots are occupied \Leftrightarrow exactly k cars are unsuccessful

Analysis: Exact enumeration results

Exact enumeration results

Quantity of interest:

- $g(m, n, k)$: number of sequences $\in\{1, \ldots, m\}^{n}$, such that exactly k cars are unsuccessful

Recursive description of $g(m, n, k)$:
Auxiliary quantities:

- $f(n)=(n+1)^{n-1}$: number of parking functions $\in\{1, \ldots, n\}^{n}$
- $s(m, k)$: number of sequences $\in\{1, \ldots, m\}^{m+k}$, such that all parking lots are occupied \Leftrightarrow exactly k cars are unsuccessful

Analysis: Exact enumeration results

Case $n<m+k$: decomposition after first empty lot j :

Analysis: Exact enumeration results

Case $n<m+k$: decomposition after first empty lot j :

Case $n=m+k$: all parking lots are occupied:

Analysis: Exact enumeration results

Introducing suitable generating functions:

- $G(z, u, v):=\sum_{m \geq 0} \sum_{n \geq 0} \sum_{k \geq 0} g(m, n, k) \frac{z^{n}}{n!} u^{m} v^{k}$
- $S(u, v):=\sum_{m \geq 0} \sum_{k \geq 0} s(m, k) \frac{u^{m} v^{k}}{(m+k)!}$
- $T(z):=\sum_{n \geq 1} n^{n-1} \frac{z^{n}}{n!}=\sum_{n \geq 1} f(n-1) \frac{z^{n}}{(n-1)!}$
$T(z)$: satisfies functional equation $T(z)=z e^{T(z)}$

Equation for generating functions:

Analysis: Exact enumeration results

Introducing suitable generating functions:

- $G(z, u, v):=\sum_{m \geq 0} \sum_{n \geq 0} \sum_{k \geq 0} g(m, n, k) \frac{z^{n}}{n!} u^{m} v^{k}$
- $S(u, v):=\sum_{m \geq 0} \sum_{k \geq 0} s(m, k) \frac{u^{m} v^{k}}{(m+k)!}$
- $T(z):=\sum_{n \geq 1} n^{n-1} \frac{z^{n}}{n!}=\sum_{n \geq 1} f(n-1) \frac{z^{n}}{(n-1)!}$
$T(z)$: satisfies functional equation $T(z)=z e^{T(z)}$
Equation for generating functions:

$$
G(z, u, v)=\frac{S(z u, z v)}{1-\frac{T(z u)}{z}}
$$

Analysis: Exact enumeration results

Evaluating at $v=1$:

$$
\begin{gathered}
\frac{1}{1-u e^{z}}=\sum_{m \geq 0} \sum_{n \geq 0} m^{n} \frac{z^{n}}{n!} u^{m}=G(z, u, 1)=\frac{S(z u, z)}{1-\frac{T(z u)}{z}} \\
\Rightarrow S(z u, z)=\frac{1-\frac{T(z u)}{z}}{1-u e^{z}}
\end{gathered}
$$

Exact expression for generating function:

Analysis: Exact enumeration results

Evaluating at $v=1$:

$$
\begin{gathered}
\frac{1}{1-u e^{z}}=\sum_{m \geq 0} \sum_{n \geq 0} m^{n} \frac{z^{n}}{n!} u^{m}=G(z, u, 1)=\frac{S(z u, z)}{1-\frac{T(z u)}{z}} \\
\Rightarrow S(z u, z)=\frac{1-\frac{T(z u)}{z}}{1-u e^{z}}
\end{gathered}
$$

Substituting $z \leftarrow z v, u \leftarrow \frac{u}{v}$:

$$
S(z u, z v)=S\left(z v \cdot \frac{u}{v}, z v\right)=\frac{1-\frac{T(z u)}{z v}}{1-\frac{u}{v} e^{z v}}
$$

Exact expression for generating function:

Analysis: Exact enumeration results

Evaluating at $v=1$:

$$
\begin{gathered}
\frac{1}{1-u e^{z}}=\sum_{m \geq 0} \sum_{n \geq 0} m^{n} \frac{z^{n}}{n!} u^{m}=G(z, u, 1)=\frac{S(z u, z)}{1-\frac{T(z u)}{z}} \\
\Rightarrow S(z u, z)=\frac{1-\frac{T(z u)}{z}}{1-u e^{z}}
\end{gathered}
$$

Substituting $z \leftarrow z v, u \leftarrow \frac{u}{v}$:

$$
S(z u, z v)=S\left(z v \cdot \frac{u}{v}, z v\right)=\frac{1-\frac{T(z u)}{z v}}{1-\frac{u}{v} e^{z v}}
$$

Exact expression for generating function:

$$
G(z, u, v)=\frac{1-\frac{T(z u)}{z v}}{\left(1-\frac{T(z u)}{z}\right) \cdot\left(1-\frac{u}{v} e^{z v}\right)}
$$

Analysis: Exact enumeration results

Extracting coefficients \Rightarrow exact formula:

$$
\begin{aligned}
& g(m, n, k)=(m-n+k) \sum_{\ell=0}^{n-k}\binom{n}{\ell}(m-n+k+\ell)^{\ell-1}(n-k-\ell)^{n-\ell} \\
& -(m-n+k+1) \sum_{\ell=0}^{n-k-1}\binom{n}{\ell}(m-n+k+1+\ell)^{\ell-1}(n-k-1-\ell)^{n-\ell}
\end{aligned}
$$

Exact distribution of $X_{m, n}$:

Analysis: Exact enumeration results

Extracting coefficients \Rightarrow exact formula:

$$
\begin{aligned}
& g(m, n, k)=(m-n+k) \sum_{\ell=0}^{n-k}\binom{n}{\ell}(m-n+k+\ell)^{\ell-1}(n-k-\ell)^{n-\ell} \\
& -(m-n+k+1) \sum_{\ell=0}^{n-k-1}\binom{n}{\ell}(m-n+k+1+\ell)^{\ell-1}(n-k-1-\ell)^{n-\ell}
\end{aligned}
$$

Exact distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Analysis: Exact enumeration results

Abel's generalization of the binomial theorem:

$$
(x+y)^{n}=\sum_{\ell=0}^{n} x(x-\ell z)^{\ell-1}(y+\ell z)^{n-\ell}
$$

\Rightarrow alternative expression for $g(m, n, k)$:

$$
\begin{aligned}
& g(m, n, k)=(m-n+k+1)(m+k+1)^{n-1} \\
& \quad-(m-n+k+1) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell+1}(m+k-\ell)^{n-\ell-2}(k-\ell)^{\ell+1} \\
& \quad-(m-n+k) \sum_{\ell=0}^{k-1}(-1)^{\ell}\binom{n}{\ell}(m+k-\ell)^{n-\ell-1}(k-\ell)^{\ell}
\end{aligned}
$$

Analysis: Limiting distribution results (I)

Limiting distribution results for $X_{m, n}$ (1)
Special instance: m (parking lots) $=n$ (cars)

- complex-analytic techniques

Generating function of diagonal:

Computed via contour integral:

Analysis: Limiting distribution results (I)

Limiting distribution results for $X_{m, n}$ (I)
Special instance: m (parking lots) $=n$ (cars)

- complex-analytic techniques

Generating function of diagonal:

$$
F(u, v)=\sum_{m \geq 0} \sum_{k \geq 0} m^{m} \mathbb{P}\left\{X_{m, m}=k\right\} \frac{u^{m}}{m!} v^{k}
$$

Computed via contour integral:

Analysis: Limiting distribution results (I)

Limiting distribution results for $X_{m, n}$ (I)
Special instance: m (parking lots) $=n$ (cars)

- complex-analytic techniques

Generating function of diagonal:

$$
F(u, v)=\sum_{m \geq 0} \sum_{k \geq 0} m^{m} \mathbb{P}\left\{X_{m, m}=k\right\} \frac{u^{m}}{m!} v^{k}
$$

Computed via contour integral:

$$
F(u, v)=\frac{1}{2 \pi i} \oint \frac{G\left(t, \frac{u}{t}, v\right)}{t} d t=\frac{1}{2 \pi i} \oint \frac{\left(t-\frac{T(u)}{v}\right) d t}{(t-T(u)) \cdot\left(t-\frac{u}{v} e^{t v}\right)}
$$

Analysis: Limiting distribution results (I)

Explicit formula:

- simple pole at $t=T(u)$
- computing residue

$$
F(u, v)=\frac{(v-1) T(u)}{v T(u)-u e^{T(u) v}}
$$

Method of moments:

Studying derivatives of $F(u, v)$ evaluated at $v=1$:

- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]

Analysis: Limiting distribution results (I)

Explicit formula:

- simple pole at $t=T(u)$
- computing residue

$$
F(u, v)=\frac{(v-1) T(u)}{v T(u)-u e^{T(u) v}}
$$

Method of moments:

$$
\mathbb{E}\left(X_{m, m}^{r}\right)=\left.\frac{m!}{m^{m}}\left[u^{m}\right] \frac{\partial^{r}}{\partial v^{r}} F(u, v)\right|_{v=1}
$$

Studying derivatives of $F(u, v)$ evaluated at $v=1$:

- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]

Analysis: Limiting distribution results (I)

Explicit formula:

- simple pole at $t=T(u)$
- computing residue

$$
F(u, v)=\frac{(v-1) T(u)}{v T(u)-u e^{T(u) v}}
$$

Method of moments:

$$
\mathbb{E}\left(X_{m}^{r}, m\right)=\left.\frac{m!}{m^{m}}\left[u^{m}\right] \frac{\partial^{r}}{\partial v^{r}} F(u, v)\right|_{v=1}
$$

Studying derivatives of $F(u, v)$ evaluated at $v=1$:

- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]

Analysis: Limiting distribution results (I)

r-th moments converge to moments of Rayleigh r.v.:

$$
\mathbb{E}\left(\left(\frac{X_{m, m}}{\sqrt{m}}\right)^{r}\right) \rightarrow 2^{-\frac{r}{2}} \Gamma\left(\frac{r}{2}+1\right)
$$

Theorem of Fréchet and Shohat:

Analysis: Limiting distribution results (I)

r-th moments converge to moments of Rayleigh r.v.:

$$
\mathbb{E}\left(\left(\frac{X_{m, m}}{\sqrt{m}}\right)^{r}\right) \rightarrow 2^{-\frac{r}{2}} \Gamma\left(\frac{r}{2}+1\right)
$$

Theorem of Fréchet and Shohat:

$$
\frac{X_{m, m}}{\sqrt{m}} \xrightarrow{(d)} \text { RAYLEIGH(2) }
$$

Analysis: Limiting distribution results (II)

Limiting distribution results for $X_{m, n}$ (II)
Instance: m (parking lots) $>n$ (cars)

- Extension of previous approach

Generating function for $\Delta:=m-n$:

Computed via contour integral:

Analysis: Limiting distribution results (II)

Limiting distribution results for $X_{m, n}$
Instance: m (parking lots) $>n$ (cars)

- Extension of previous approach

Generating function for $\Delta:=m-n$:

$$
F_{\Delta}(u, v)=\sum_{m \geq \Delta} \sum_{k \geq 0} m^{m-\Delta} \mathbb{P}\left\{X_{m, m-\Delta}=k\right\} \frac{u^{m} v^{k}}{(m-\Delta)!}
$$

Computed via contour integral:

Analysis: Limiting distribution results (II)

Limiting distribution results for $X_{m, n}$
Instance: m (parking lots) $>n$ (cars)

- Extension of previous approach

Generating function for $\Delta:=m-n$:

$$
F_{\Delta}(u, v)=\sum_{m \geq \Delta} \sum_{k \geq 0} m^{m-\Delta} \mathbb{P}\left\{X_{m, m-\Delta}=k\right\} \frac{u^{m} v^{k}}{(m-\Delta)!}
$$

Computed via contour integral:
$F_{\Delta}(u, v)=\frac{1}{2 \pi i} \oint \frac{G\left(t, \frac{u}{t}, v\right) t^{\Delta}}{t} d t=\frac{1}{2 \pi i} \oint \frac{\left(t-\frac{T(u)}{v}\right) t^{\Delta} d t}{(t-T(u)) \cdot\left(t-\frac{u}{v} e^{t v}\right)}$

Analysis: Limiting distribution results (II)

Explicit formula:

$$
F_{\Delta}(u, v)=\frac{(v-1)(T(u))^{\Delta+1}}{v T(u)-u e^{T(u) v}}
$$

Exact formula for r-th factorial moments:

- Lagrange inversion formula

- $\gamma_{r, q}$: certain constants
- sums appearing related to Ramanujan's Q-function

Analysis: Limiting distribution results (II)

Explicit formula:

$$
F_{\Delta}(u, v)=\frac{(v-1)(T(u))^{\Delta+1}}{v T(u)-u e^{T(u) v}}
$$

Exact formula for r-th factorial moments:

- Lagrange inversion formula

$$
\mathbb{E}\left(\left(X_{m, m-\Delta}\right)^{\underline{r}}\right)=\sum_{q=1}^{r} \gamma_{r, q} \sum_{\ell=r+q}^{m-\Delta}\binom{\ell-r-1}{q-1} \frac{(m-\Delta)^{\ell}}{m^{\ell}}
$$

- $\gamma_{r, q}$: certain constants
- sums appearing related to Ramanujan's Q-function

Analysis: Limiting distribution results (II)

Asymptotic evaluation:

- dissecting summation interval
- Stirling's formula
- tail exchange
- Euler's summation formula
\Rightarrow as. evaluation of sums via integrals

Method of moments:
suitably scaled r-th moments of $X_{m, m-\Delta}$ converge to moments of

- Rayleigh r.v.
- linear-exponential r.v.
- exponential r.v

Analysis: Limiting distribution results (II)

Asymptotic evaluation:

- dissecting summation interval
- Stirling's formula
- tail exchange
- Euler's summation formula \Rightarrow as. evaluation of sums via integrals

Method of moments:
suitably scaled r-th moments of $X_{m, m-\Delta}$ converge to moments of

- Rayleigh r.v.
- linear-exponential r.v.
- exponential r.v.

Analysis: Limiting distribution results (III)

Limiting distribution results for $X_{m, n}$ (III)

Instance: m (parking lots) $<n$ (cars)

- consider $X_{m, n}+m-n$: number of empty parking lots
- Asymptotic evaluation of exact formula for survival function

Exact formula of survival function for $\Delta:=n-m$:

Analysis: Limiting distribution results (III)

Limiting distribution results for $X_{m, n}$ (III)

Instance: m (parking lots) $<n$ (cars)

- consider $X_{m, n}+m-n$: number of empty parking lots
- Asymptotic evaluation of exact formula for survival function

Exact formula of survival function for $\Delta:=n-m$:

$$
\mathbb{P}\left\{X_{n-\Delta, n}-\Delta \geq k\right\}=\sum_{\ell=0}^{n-\Delta-k} \frac{k}{\ell+k}\binom{n}{\ell} \frac{(\ell+k)^{\ell}(n-\Delta-k-\ell)^{n-\ell}}{(n-\Delta)^{n}}
$$

Analysis: Limiting distribution results (III)

Asymptotic evaluation:

- dissecting summation interval
- Stirling's formula
- tail exchange
- inequalities, uniform estimates
- Euler's summation formula
\Rightarrow as. evaluation of sums via integrals

Analysis: Limiting distribution results (III)

Example: $\Delta \sim \rho \sqrt{n}, \quad 0<\rho<\infty, \quad k \sim x \sqrt{n}, 0<x<\infty$
Pointwise convergence for all $0<x<\infty$:

$$
\mathbb{P}\left\{X_{n-\Delta, n}-\Delta \geq k\right\} \rightarrow \int_{0}^{1} \frac{x e^{\frac{\rho^{2}}{2}}}{\sqrt{2 \pi} t^{\frac{3}{2}} \sqrt{1-t}} e^{-\frac{x^{2}}{2 t}-\frac{(x+\rho)^{2}}{2(1-t)}} d t
$$

Evaluation of the integral:

Characterization of the limiting distribution:

Analysis: Limiting distribution results (III)

Example: $\Delta \sim \rho \sqrt{n}, \quad 0<\rho<\infty, \quad k \sim x \sqrt{n}, \quad 0<x<\infty$
Pointwise convergence for all $0<x<\infty$:

$$
\mathbb{P}\left\{X_{n-\Delta, n}-\Delta \geq k\right\} \rightarrow \int_{0}^{1} \frac{x e^{\frac{\rho^{2}}{2}}}{\sqrt{2 \pi} t^{\frac{3}{2}} \sqrt{1-t}} e^{-\frac{x^{2}}{2 t}-\frac{(x+\rho)^{2}}{2(1-t)}} d t
$$

Evaluation of the integral:

$$
\int_{0}^{1} \frac{x e^{\frac{\rho^{2}}{2}}}{\sqrt{2 \pi} t^{\frac{3}{2}} \sqrt{1-t}} e^{-\frac{x^{2}}{2 t}-\frac{(x+\rho)^{2}}{2(1-t)}} d t=e^{-2 x(x+\rho)}
$$

Characterization of the limiting distribution:

Analysis: Limiting distribution results (III)

Example: $\Delta \sim \rho \sqrt{n}, \quad 0<\rho<\infty, \quad k \sim x \sqrt{n}, 0<x<\infty$
Pointwise convergence for all $0<x<\infty$:

$$
\mathbb{P}\left\{X_{n-\Delta, n}-\Delta \geq k\right\} \rightarrow \int_{0}^{1} \frac{x e^{\frac{\rho^{2}}{2}}}{\sqrt{2 \pi} t^{\frac{3}{2}} \sqrt{1-t}} e^{-\frac{x^{2}}{2 t}-\frac{(x+\rho)^{2}}{2(1-t)}} d t
$$

Evaluation of the integral:

$$
\int_{0}^{1} \frac{x e^{\frac{\rho^{2}}{2}}}{\sqrt{2 \pi} t^{\frac{3}{2}} \sqrt{1-t}} e^{-\frac{x^{2}}{2 t}-\frac{(x+\rho)^{2}}{2(1-t)}} d t=e^{-2 x(x+\rho)}
$$

Characterization of the limiting distribution:

$$
\mathbb{P}\left\{\frac{X_{n-\Delta, n}-\Delta}{\sqrt{n}} \geq x\right\} \rightarrow e^{-2 x(x+\rho)}
$$

Outlook

Outlook

Possible further research directions

Refined analysis:

- Local limit laws
- case $n>m$: convergence of moments

Extensions to related problems:

- Analysis of "number of insertion steps"
- Bucket parking functions
- Multiparking functions

Outlook

Possible further research directions

Refined analysis:

- Local limit laws
- case $n>m$: convergence of moments

Extensions to related problems:

- Analysis of "number of insertion steps"
- Bucket parking functions
- Multiparking functions

Bucket parking scheme

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking lots can hold up to b cars
- Related to analysis of bucket hashing algorithms

Generating functions approach works:

$$
\begin{aligned}
& G(z, u, v)= \\
& \frac{1}{1-\frac{u}{v^{b}} e^{z v}} \frac{\left(1-\frac{b}{z v} T\left(z u^{1 / b}\right)\right) \cdot\left(1-\frac{b}{z v} T\left(\omega z u^{1 / b}\right)\right) \cdots\left(1-\frac{b}{z v} T\left(\omega^{b-1} z u^{1 / b}\right)\right)}{\left(1-\frac{b}{z} T\left(z u^{1 / b}\right)\right) \cdot\left(1-\frac{b}{z} T\left(\omega z u^{1 / b}\right)\right) \cdots\left(1-\frac{b}{z} T\left(\omega^{b-1} z u^{1 / b}\right)\right)}
\end{aligned}
$$

