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Graphical models

x1

x2 x3 x4

x5

x6

x7x8x9

x10

x11

x12

G = (V ,E ), V = [n], x = (x1, . . . , xn), xi ∈ X

µ(x) =
1

Z

∏
(ij)∈G

ψij(xi , xj) .
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This talk

1. G has bounded degree (on average).

2. G has girth `(n)→∞ (apart from o(n) vertices).

3. G is random.
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Example 1: q-coloring

G = (V ,E ) graph.

x = (x1, x2, . . . , xn), xi ∈ {1, . . . , q} variables
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Uniform measure over proper colorings

µ(x) =
1

Z

∏
(i ,j)∈E

ψ(xi , xj) , ψ(x , y) = I(x 6= y) .
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Example 2: k-satisfiability

n variables: x = (x1, x2, . . . , xn), xi ∈ {0, 1}

m k-clauses

(x1 ∨ x5 ∨ x7) ∧ (x5 ∨ x8 ∨ x9) ∧ · · · ∧ (x66 ∨ x21 ∨ x32)
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Uniform measure over solutions

x3

x1

x6

x4

x2

x5

x7

x

x

x

8

9

10

← variables xi ∈ {0, 1}

← clauses, e.g. (x5 ∨ x7 ∨ x9 ∨ x10)

F = · · · ∧ (xi1(a) ∨ x i2(a) ∨ · · · ∨ xik (a))︸ ︷︷ ︸
a-th clause

∧ · · ·

µ(x) =
1

Z

M∏
a=1

ψa(xi1(a), . . . , xik (a))
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Many other examples

Communications/signal processing (technologically relevant)

. . .

Probability, physics, computer science, information theory,. . .
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Is this motivating enough? (a personal view)

Emerging conceptual unity:

Approximation of sparse graph models by trees.

. . .

[cf. Aldous’ local weak convergence]
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Uniform decorrelation
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Random k-satisfiability

Each clause is uniformly random among the 2k
(n
k

)
possible ones.

n→∞, m = αn
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Number of ‘good’ truth assignments

Zn(β) =
∑
x

exp
{
− 2β #[clauses violated by x ]

}

Theorem (Montanari, Shah, 2007)

If α < αu(k) = (2 log k)k−1 [1 + ok(1)] then

1

n
log Zn(β)

a.s.−→ φ(α, β) ,

where . . .
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. . . where. . .

φ(α, β) = −kαE log[1 + tanh h tanh u] + αE log

8<:1−
1

2k
(1− e−β )

kY
i=1

(1− tanh hi )

9=; +

+E log

8><>:
`+Y
i=1

(1 + tanh u+
i )

`−Y
i=1

(1− tanh u−i ) +

`+Y
i=1

(1− tanh u+
i )

`−Y
i=1

(1 + tanh u−i )

9>=>; ,

and h, u are the unique solution of

h
d
=

l+∑
a=1

ua −
l−∑

b=1

u′b , u
d
= fβ(h1, . . . , hk−1) .

[Conjectured by Monasson, Zecchina 1999]
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Proof: 1st preliminary remark

Sufficient to prove

1

n
E log Zn(β) −→ φ(α, β) ,
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Proof: 2nd preliminary remark

The tree ensemble T(`), T(∞)

Poisson(kα/2) Poisson(kα/2)
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Proof strategy

1. Check it for β = 0: φ(α, 0) = log 2 = n−1E log Zn(0).

2. Write d
dβ log Zn(β) in terms of local expectations. ????
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Local expectations ????

x3

x1

x6

x4

x2

x5

x7

x

x

x

8

9

10

← variables xi ∈ {0, 1}

← clauses, e.g. (x5 ∨ x7 ∨ x9 ∨ x10)

µ(x) =
1

Zn(β)

m∏
a=1

ψβ,a(xi1(a), . . . , xik (a))

ψβ,a( · · · ) =

{
1 if clause a is satisfied
e−2β otherwise
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d

dβ
log Zn(β) = −2

M∑
a=1

µ(clause a is not satisfied)

Andrea Montanari Graphical models, from graphs to trees (and back)



Proof strategy

1. Check it for β = 0: φ(α, 0) = log 2 = n−1E log Zn(0).

2. Express d
dβ log Zn(β) in terms of local expectations.

3. Prove that local expectations on G converge to expectations
on T(∞).

4. Show dφ(α,β)
dβ is equal to the same expectations on T(∞).
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Convergence to tree values

z1 z2 z3

`T(`)

r

T(∞) infinite k-SAT tree
T(`) first ` generations
µ`,z( · ) Boltzmann measure on T(`) boundary condition z

µ`,z
r ( · ) root variable marginal
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Uniform decorrelation (Gibbs measure uniqueness)

E
{

max
z(1),z(2)

||µt,z(1)
r ( · )− µt,z(2)

r ( · )||TV

}
→ 0 .

‘Easy’ sufficient condition

True only at very small α
(αu(k) ' (2 log k)/k, conjecture up to ' 2k log 2)
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Non-Uniform decorrelation
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Ferromagnetic Ising model
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Ferromagnetic Ising model

Gn = (Vn ≡ [n],En)

xi ∈ {+1,−1}

µ(x) =
1

Zn(β,B)
exp

β ∑
(ij)∈En

xixj + B
∑

i

xi



[Johnston, Plechác 1998, Leone et al 2004]
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Free energy density

Theorem (Dembo, Montanari 2008)

If Gn converges locally to T(P), then

1

n
log Zn(β,B)

a.s−→ φ(P, β,B) .

where. . .
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φ(P , β, B)

For B ≥ 0, let θ ≡ tanhβ, h(0) > 0, and

h(`+1) d
= tanh

{
B +

K−1∑
i=1

atanh(θ h
(`)
i )

}
,

Then h(`) d→ h∗ and

φ(P, β,B) ≡ log cosh B +
P

2
log coshβ − P

2
E log(1 + θh∗1h

∗
2)+

+E log

{
(1 + tanh B)

L∏
i=1

(1 + θh∗i ) + (1− tanh B)
L∏

i=1

(1− θh∗i )

}
.
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T(P , `)

Pk

ρk
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‘Converges locally’

P ≡ {Pk}k≥0 Degree distribution

T(P, `) `-generations Galton-Watson tree

Bi (`) Ball of radius ` around uniformly random node

Definition

Gn converges locally to T(P) if uniform bound on the edge number
distribution and, for any `,

Bi (`) converges in distribution to T(P, `).
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Why non-uniform control? Phase transition. . .

For β > βc ≡ atanh(1/ρ)

lim
B→0+

lim
n→∞

Ei 〈xi 〉 = − lim
B→0−

lim
n→∞

Ei 〈xi 〉 > 0
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. . . and its tree counterpart

z1 z2 z3

`T(`)

r

z = (+1,+1, . . . ,+1) ⇒ lim
`→∞
〈xr 〉` > 0

z = (−1,−1, . . . ,−1) ⇒ lim
`→∞
〈xr 〉` < 0
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A different case: Ising spin glass

µ(x) =
1

Z
exp

β ∑
(ij)∈En

Jijxixj + B
∑

i

xi


Jij ∈ {+1,−1} uniformly random

[Viana, Bray 1985]

[Other approaches: Talagrand 2001, Guerra, Toninelli 2003]

[Approximation by trees: Montanari, Gerschenfeld, in preparation]
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Trees vs graphs: from reconstruction to pure states
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Alice and Bob

Andrea Montanari Graphical models, from graphs to trees (and back)



Alice, Bob and G

root
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Exit Bob

root

Andrea Montanari Graphical models, from graphs to trees (and back)



Alice samples a proper coloring (uniformly). . .

root
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. . . and hides a ball B(root, t)

root
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Bob. . .

root

?
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. . . guesses right!

root

!
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The problem

Does Bob have a chance?
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Formally

X = {Xi : i ∈ V } uniformly random proper coloring.

µU( · |G ) distribution of XU ≡ {Xi : i ∈ U ⊆ V }

B(r , t) = {i ∈ V : d(i , r) ≥ t}

Definition

The reconstruction problem is solvable for the sequence of random
rooted graphs Gn = (Vn = [n],En) if for some ε > 0,

||µr ,B(r ,t)( · , · |Gn)− µr ( · |Gn)µB(r ,t)( · |Gn)||TV ≥ ε ,

with positive probability (bounded away from 0 as n→∞).
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When G =Tree

→ Bleher, Ruiz, Zagrebenov (1995): Ising model on b-ary trees

→ Evans, Kenyon, Peres, Schulman (2000): Ising on general trees

→ Mossel, Peres (2003): Non binary variables

→Brightwell, Winkler (2004), Martin (2004): Independent sets.

→Chayes et al. (2006): Asymmetric Ising.
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Pure states decomposition in q-COL

γd(q) γc(q) γs(q)

[Biroli, Monasson, Weigt 2001]

[Mézard, Parisi, Zecchina 2003]

[Achlioptas, Ricci 2007]

[Krzakala, Montanari, Ricci, Semerjian, Zdeborova 2007]
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Pure states decomposition in q-COL

Conjecture (Mézard, Montanari, 05)

γd(q) =

= Multiple pure states

= Graph reconstruction threshold

= Tree reconstruction threshold
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A general sufficient condition

Theorem (Gerschenfeld, Montanari, 2007)

If µ( · |G ) is roughly spherical then

Graph solvable ⇔ Tree solvable.

If µ( · |G ) is not roughly spherical then

Graph reconstruction is solvable
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Roughly spherical???

Xi ∈ {0, 1}.
X (1) = {X (1)

i }, X (2) = {X (2)
i } independent with distribution

µ( · |Gn)

X (1)

X (2)

µ( · |Gn) is roughly spherical if d(X (1),X (2)) ≈ n/2 with high
probability.
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Can you check this condition?

Theorem

1. q-coloring, γ < (q − 1) log(q − 1): roughly spherical.

2. Ising spin glass 2γ(tanhβ)2 < 1: roughly spherical.

3. Ising ferromagnet: not roughly spherical

[Tree reconstruction threshold

1. Bhatayangar, Vera, Vigoda 2008, Sly 2008

2. Evans, Kenyon, Peres, Schulman 2000

3. Tree 6=Graph ]
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Conclusion

Combinatorics/Probability problems on random sparse graphs.

Unifying approach: approximation by trees.

Naturally leads to analytc questons.
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