On the computation of rational solutions to polynomial systems over a finite field

Guillermo Matera

Universidad Nacional de General Sarmiento, Buenos Aires

AofA'08, 12-18.4.08

Let \mathbb{F}_{q} be the finite field of q elements, $\overline{\mathbb{F}}_{q}$ its algebraic closure.

Given polynomials $f_{1}, \ldots, f_{s} \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$.

Multivariate Equation Problem (ME):

- find a solution $x \in \mathbb{F}_{q}^{n}$ of the polynomial system

$$
f_{1}(X)=\cdots=f_{s}(X)=0,
$$

- find a point $x \in \mathbb{F}_{q}^{n}$ of the variety (defined over \mathbb{F}_{q})

$$
V\left(f_{1}, \ldots, f_{s}\right):=\left\{x \in \overline{\mathbb{F}}_{q}^{n}: f_{1}(x)=\cdots=f_{s}(x)=0\right\} .
$$

Motivation: coding theory, cryptography, polynomial system solving over \mathbb{Q}, etc.

Example: Public key schemes based on ME (Imai-Matsumoto, Patarin et al., Wolf-Preneel, ...).

- Given
\diamond a plaintext $x \in \mathbb{F}_{q}^{n}$,
\diamond a polynomial map $F:=\left(f_{1}, \ldots, f_{n}\right): \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{s}$,
\diamond the cyphertext is $y:=F(x)$.

Breaking such a cryptosystem "requires" solving the ME problem

$$
f_{1}(X)-y_{1}=0, \ldots, f_{n}(X)-y_{n}=0
$$

- ME is NP-complete, even for quadratic eqs. over \mathbb{F}_{2}.
- We are interested in probabilistic algorithms for ME.
- We shall assume that $q \gg$ degrees of equations.

First case: plane curves

Let $f \in \mathbb{F}_{q}[X, Y], C:=V(f):=\left\{(x, y) \in \overline{\mathbb{F}}_{q}^{2}: f(x, y)=0\right\}$, $C\left(\mathbb{F}_{q}\right):=C \cap \mathbb{F}_{q}^{2}$.

- Hardness of ME for C is related to $\# C\left(\mathbb{F}_{q}\right)$.
- Average number of points: $\# C\left(\mathbb{F}_{q}\right) \approx q$.

Estimates: Absolute irreducibility.

- $f \in \mathbb{F}_{q}[X, Y]$ is abs. irred. if it's irreducible in $\overline{\mathbb{F}}_{q}[X, Y]$.

Example: $f:=X+Y^{3}$ is, $g:=X^{2}-3 Y^{2}$ is not in \mathbb{F}_{5}.
$\circ C:=V(f) \subset \overline{\mathbb{F}}_{q}^{2}$ is abs. irred. if f is abs. irred.
[Weil, 1948] For $C:=V(f)$ abs. irred. with $\operatorname{deg}(f)=d$ $\left|\# C\left(\mathbb{F}_{q}\right)-q\right| \leq d^{2} q^{1 / 2}$.
Example (cont.): $\# V(f)\left(\mathbb{F}_{5}\right)=5, \# V(g)\left(\mathbb{F}_{5}\right)=0$.

Computation: search in a vertical strip (SVS).

Let $f \in \mathbb{F}_{q}[X, Y]$ be absolutely irreducible.
For $a \in \mathbb{F}_{q}$, let $C_{a}\left(\mathbb{F}_{q}\right):=C\left(\mathbb{F}_{q}\right) \cap\{X=a\}$

$$
=\left\{b \in \mathbb{F}_{q}: f(a, b)=0\right\}
$$

- Weil $\Rightarrow \operatorname{Prob}\left(a \in \mathbb{F}_{q}: C_{a}\left(\mathbb{F}_{q}\right) \neq \emptyset\right) \geq \frac{1}{d q}\left(q-d^{2} q^{\frac{1}{2}}\right)$

$$
=\frac{1}{d}\left(1-\frac{d^{2}}{q^{1 / 2}}\right) \approx \frac{1}{d}
$$

Algorithm SVS

[at most d trials]
\diamond find $a \in \mathbb{F}_{q}$ with $C_{a}\left(\mathbb{F}_{q}\right) \neq \emptyset$.
[find an \mathbb{F}_{q}-root of $f(a, Y)$]
[Gathen-Shparlinski, 1995] computes uniformly a point of $C\left(\mathbb{F}_{q}\right)$ in polynomial time.

What if $C=V(f)$ is not absolutely irreducible?

Decompose $C=\cup C_{i}$ over $\mathbb{F}_{q}\left(\right.$ factor $f=\prod_{i} f_{i}$ over $\left.\mathbb{F}_{q}\right)$.
Easy case: If $\exists C_{i}$ absolutely irred., apply SVS to C_{i}.
Hard case: If C_{i} is not absolutely irreducible for all i [C_{i} is relatively irreducible for all i], then
\diamond Fact. $C\left(\mathbb{F}_{q}\right) \subset C \cap V(\partial f / \partial Y)=V(f, \partial f / \partial Y)=: W$. [observe that $\operatorname{dim} W=0, \operatorname{deg} W \leq d(d-1)$]
\diamond Algorithm SVS-RI
\triangleright Compute the resultant $g(X):=\operatorname{res}_{Y}(f, \partial f / \partial Y)$.
\triangleright find the set of \mathbb{F}_{q}-roots of g.
\triangleright for each root $a \in \mathbb{F}_{q}$, find the \mathbb{F}_{q}-roots of $f(a, Y)$.

Cost of finding an \mathbb{F}_{q}-point in a plane curve

- If C has an absolutely irreducible \mathbb{F}_{q}-component then we perform $O^{\sim}\left(d^{2} \log ^{2} q\right)$ bit operations.
- If C is a union of relatively irreducible \mathbb{F}_{q}-components then we perform $O^{\sim}\left(d^{3} \log ^{2} q\right)$ bit operations.
- [von zur Gathen, 2007] $\operatorname{Prob}(f$ is rel. irred. $) \leq q^{-d^{2} / 4}$.

Second case: hypersurfaces

Let $f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ and let H be the hypersurface
$H:=V(f):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{F}}_{q}^{n}: f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$.
Average number of points: $\# H\left(\mathbb{F}_{q}\right) \approx q^{n-1}$.
Estimates: Absolute irreducibility.

- $f \in \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ is absolutely irreducible if it is irreducible in $\overline{\mathbb{F}}_{q}\left[X_{1}, \ldots, X_{n}\right]$.
- $H:=V(f) \subset \overline{\mathbb{F}}_{q}^{n}$ is absolutely irreducible if it is defined by an absolutely irreducible polynomial f.
[Lang-Weil, 1954] For $H:=V(f) \subset \overline{\mathbb{F}}_{q}^{n}$ absolutely irreducible of degree $\delta>0, \exists C=C(n, \delta)$ such that:

$$
\left|\# H\left(\mathbb{F}_{q}\right)-q^{n-1}\right| \leq \delta^{2} q^{n-3 / 2}+C q^{n-2} .
$$

Computation: search in 1-dim. linear section (S1S).
For $H:=V(f) \subset \overline{\mathbb{F}}_{q}^{n}$ abs. irred., we compute a point of $H\left(\mathbb{F}_{q}\right)$ in the plane curve $H \cap L$, with L an \mathbb{F}_{q}-plane.
Example: for $H: X+Y^{2}+Z^{2}=0$ and a plane L : $\{X+b Y+c Z=0\}, H \cap L=\left\{Y^{2}+Z^{2}+b Y+c Z=0\right\} \cap L$.
Effective Bertini theorem [Kaltofen, 1995]: $H \cap L$ is abs. irreducible for a random L with probability $\leq 2 \delta^{4} / q$.
Example (cont.): $H \cap L$ is abs. irred. for $b^{2}+c^{2} \neq 0$.

- Explicit bounds [Cafure-M., 2006] For $q>15 \delta^{13 / 3}$

$$
\left|\# H\left(\mathbb{F}_{q}\right)-q^{n-1}\right| \leq \delta^{2} q^{n-3 / 2}+7 \cdot \delta^{2} q^{n-2} .
$$

- Algorithm S1S
\diamond choose an \mathbb{F}_{q}-plane L at random.
\diamond apply SVS to $H \cap L$.
Cost: $O^{\sim}\left(\delta^{2} \log ^{2} q\right)$ bit operations.

Case $H=V(f)$ not absolutely irreducible.

Decompose $H=\cup H_{i}$ over \mathbb{F}_{q} (factor $f=\prod_{i} f_{i}$ over \mathbb{F}_{q}).
Easy case: If $\exists H_{i}$ absolutely irred., apply S1S to H_{i}.
Hard case: If H_{i} isn't absolutely irred. for all i, then
\diamond Fact: $H\left(\mathbb{F}_{q}\right) \subset H \cap V\left(\partial f / \partial X_{n}\right)=: W^{(1)}$.

$$
\left[\operatorname{dim} W^{(1)}=n-2, \operatorname{deg} W^{(1)} \leq \delta^{2}\right]
$$

\diamond Decompose $W^{(1)}=\cup_{i} W_{i}^{(1)}$ over \mathbb{F}_{q}.
\diamond If $\exists W_{i}^{(1)}$ absolutely irreducible, then Easy case.
\diamond Else, Hard case: introduce $W^{(2)}$.
$\left[\operatorname{dim} W^{(2)}=n-3, \operatorname{deg} W^{(2)} \leq \delta^{4}\right]$.
.

Cost (worst-case): $O\left(\delta^{2^{\mathrm{n}}} \log ^{2} q\right)$.
Average: ?
[von zur Gathen-Viola, 2007] $\operatorname{Prob}(f$ rel. irred. $) \rightarrow 0$

Third case: arbitrary dimension
Let $V:=V\left(f_{1}, \ldots, f_{s}\right):=\left\{x \in \overline{\mathbb{F}}_{q}^{n}: f_{1}(x)=\cdots=f_{s}(x)=0\right\}$.
Two invariants: dimension and degree.
Dimension: number of free variables $=$ highest codimension of a random affine linear variety L with $V \cap L \neq \emptyset$.

Degree: \#($L \cap V$), where L is a random affine linear variety of codimension $\operatorname{dim} V$.
"Expected" number of points: $\# V\left(\mathbb{F}_{q}\right) \approx q^{\operatorname{dim} V}$.
[Lang-Weil, 1954] For $V \subset \overline{\mathbb{F}}_{q}^{n}$ absolutely irreducible of dimension $r>0$ and degree $\delta, \exists C=C(n, r, \delta)$ such that

$$
\left|\# V\left(\mathbb{F}_{q}\right)-q^{r}\right| \leq \delta^{2} q^{r-1 / 2}+C q^{r-1} .
$$

Reduction to hypersurfaces: birational projections.
Let $V \subset \overline{\mathbb{F}}_{q}^{n}$ abs. irred. of dimension r and degree δ.
Fact: \exists linear $\pi: V \rightarrow \pi(V) \subset \overline{\mathbb{F}}_{q}^{r+1}$ with rational inverse $\pi^{-1}: \pi(V) \rightarrow V$ defined outside a 0-measure set.

Example (cont.): For $C:=\left\{X=Z^{2}+Z^{4}, Y=Z^{2}\right\}$, the projection onto the (X, Z)-plane is $\left\{X=Z^{2}+Z^{4}\right\}$. The inverse is $\pi^{-1}(x, z)=\left(x, z^{2}, z\right)$.
[Cafure-M., 2006] For $q>15 \delta^{13 / 3}$, we have $C \leq 7 \cdot \delta^{2}$. [Ghorpade-Lachaud, 2002] If $V:=V\left(f_{1}, \ldots, f_{s}\right)$ and $d:=\max \operatorname{deg}\left(f_{i}\right)$, then $C \leq 6 \cdot 2^{s} \cdot(s d+1)^{n+1}$.

Bézout inequality $\Rightarrow \delta \leq d^{r}$.

Computation of a birational projection (BProj).
Input: $V:=V\left(f_{1}, \ldots, f_{n-r}\right)$ absolutely irreducible.
Algorithm BProj [Cafure-M, 2006b]

- Incremental elimination method.
- Global Newton-Hensel lifting.

Cost: $O^{\sim}\left(D^{2} \log ^{2} q\right)$ bit operations, with $D \leq \Pi_{i} \operatorname{deg}\left(f_{i}\right)$.
Computation of an \mathbb{F}_{q}-point

- compute a birational projection π. [Algorithm BProj]
- find an \mathbb{F}_{q}-point in $\pi(V)$.
[Algorithm S1S]
Cost: $O^{\sim}\left(D^{2} \log ^{2} q\right)$ bit operations.
[Huang-Wong, 1999] $d^{O\left(n^{2}\right)} \log ^{2} q$ bit ops., $d:=\max \operatorname{deg}\left(f_{i}\right)$.

Extensions to non absolutely irreducible cases?

Easy case: $V=\cup_{i} V_{i}$ over \mathbb{F}_{q} and $\exists V_{i}$ absolutely irreducible with $\operatorname{dim}\left(V_{i}\right)=\operatorname{dim}(V)$.

Hard case: $V=\cup_{i} V_{i}$ over \mathbb{F}_{q} and all V_{i} with $\operatorname{dim}\left(V_{i}\right)=$ $=\operatorname{dim}(V)$ are relatively irreducible.
\diamond Each $x \in V\left(\mathbb{F}_{q}\right)$ belongs to all abs.irred. components.
\diamond Each $x \in V\left(\mathbb{F}_{q}\right)$ annihilates the discriminant of all linear birational projections.
\diamond Adding discriminants $\Rightarrow O\left(D^{2^{\mathrm{r}}} \log ^{2} q\right)$ in worst case.
[Cesaratto-von zur Gathen-M.] Probability a curve C is relatively irreducible $\rightarrow 0$ as $q \rightarrow \infty$.

Conclusions

- Worst-case complexity of ME is doubly exponential.
- Complexity of ME \approx complexity of the absolutely irreducible case.
- Finer analysis of the absolutely irred. case required.
[Bardet-Faugère-Salvy, 2003] ME over \mathbb{F}_{2} for systems with $O\left(n^{2}\right)$ eqs. is polynomial on average.

