ON ANALYTIC METHODS IN COMBINATORICS

Eugenijus MANSTAVIČIUS

Vilnius University

E-mail: eugenijus.manstavicius@mif.vu.lt
2008-04-15; AofA08, Maresias, Brasil

The Target

Given a sequence of analytic in $|z|<1$ functions

$$
F_{n}(z)=\sum_{m=0}^{\infty} M_{m n} z^{m} \quad(\rightarrow F(z), \quad \text { not necessary })
$$

$n=1,2, \ldots$ find

$$
M_{n n} \sim ?
$$

or

$$
M_{m n} \sim
$$

$(m, n) \in D$, some region, or $m=m(n) \rightarrow \infty$ as $n \rightarrow \infty$.
If

$$
\sum_{n=1}^{\infty} F_{n}(z) y^{n}
$$

is too cumbersome, the Tauber theorems for double sums fail.

For probabilistic problems,

$$
F_{n}(z, t)=\sum_{m=0}^{\infty} M_{m n}(t) z^{m} \quad\left(t \in T_{n}, \text { a parameter }(s)\right)
$$

find

$$
M_{n n}(t) \sim
$$

or

$$
M_{m n}(t) \sim
$$

$(m, n) \in D$, some region, or $m=m(n) \rightarrow \infty$ as $n \rightarrow \infty$ uniformly in $t \in T_{n}$.

Typical Problems

- Enumeration of combinatorial structures of order n with component sizes constraints depending on n;
- Asymptotic value distribution problems for sequences of mappings defined on combinatorial structures;
- Hypothetically! (Do not ask me) Evaluation of the total cost if the price at each step of an algorithm depends on the size of data;

First on the two problems, for permutations only.

Notation

Let σ be a permutation of an n set, \mathbf{S}_{n} be the symmetric group, and

$$
\sigma=\kappa_{1} \cdots \kappa_{w}, \quad w=w(\sigma)
$$

be the decomposition into the product of independent cycles. Let $k_{j}(\sigma)$ be the number of cycles of length j in the decomposition, $1 \leq j \leq n$,

$$
\bar{k}(\sigma)=\left(k_{1}(\sigma), \ldots, k_{n}(\sigma)\right)
$$

be the structure vector.
Denote

$$
\ell(\bar{k})=1 k_{1}+\cdots+n k_{n}, \quad \bar{k} \in \mathbb{Z}_{+}^{\mathrm{n}} .
$$

Then

$$
\ell(\bar{k}(\sigma))=n
$$

Define

$$
\nu_{n}(\ldots):=\frac{1}{n!}\left|\left\{\sigma \in \mathbf{S}_{n}: \ldots\right\}\right| .
$$

The probability of permutations with a given structure vector $\bar{k} \in \mathbf{Z}_{+}^{\mathbf{n}}$ is

$$
\nu_{n}(\bar{k}(\sigma)=\bar{k})=\mathbf{1}\{\ell(\bar{k})=n\} \prod_{j=1}^{n} \frac{1}{j^{k_{j} k_{j}!}}=P(\bar{\xi}=\bar{k} \mid \ell(\bar{\xi})=n)
$$

Here $\xi_{j}, 1 \leq j \leq n$, are i. Poisson r.vs, $\mathbf{E} \xi_{j}=1 / j$.

Ewens probability

If $\Theta>0, \Theta_{(n)}:=\Theta(\Theta+1) \cdots(\Theta+n-1)$, and

$$
\nu_{n, \Theta}(\{\sigma\}):=\Theta^{w(\sigma)} / \Theta_{(n)}, \quad \sigma \in \mathbf{S}_{n},
$$

for the class of $\sigma \in \mathbf{S}_{n}$, we obtain

$$
\nu_{n, \Theta}(\bar{k}(\sigma)=\bar{k})=\mathbf{1}\{\ell(\bar{k})=n\} \frac{n!}{\Theta_{(n)}} \prod_{j=1}^{n}\left(\frac{\Theta}{j}\right)^{k_{j}} \frac{1}{k_{j}!}
$$

The Ewens probability on the partitions $\ell(\bar{k})=n$.

- \mathbf{S}_{n} with respect to $\nu_{n, \Theta}$ is a clue to combinatorial structures having the generating function

$$
G(z) \sim A(1-z)^{-\Theta}, \quad A \in \mathbf{R}, \quad z \rightarrow 1
$$

Permutations missing long cycles

Let

$$
\psi(n, m)=\left|\left\{\sigma \in \mathbf{S}_{n}: k_{j}(\sigma)=0 \quad \forall m<j \leq n\right\}\right|
$$

the number of permutations missing cycles with lengths in $(m, n]$.
Theorem (A corollary from E.M., 1992). If
$1 \leq u:=n / m \leq C m / \log m$, then

$$
\frac{\psi(m, n)}{n!}=\rho(u)\left(1+O\left(1+\frac{u \log u}{m}\right)\right)
$$

where $\rho(u)$ is the Dickman function, a continuous solution to $x \rho^{\prime}(x)+\rho(x-1)=0$ with $\rho(x)=1$ for $0 \leq x \leq 1$.

For other regions of u, more complicated formulas.

The Saddle Point Method

Start with Cauchy:

$$
\frac{\psi(m, n)}{n!}=\frac{1}{2 \pi i} \int_{|z|=\alpha} \exp \left\{\sum_{j \leq m} \frac{z^{j}}{j}\right\} \frac{d z}{z^{n+1}}
$$

where $\alpha=\alpha(m, n)$ satisfies

$$
\sum_{j \leq m} \alpha^{j}=n
$$

This is affordable to obtain asymptotical formulae for α and for the integral as well.

The number of permutations missing lengths in $J=J_{n} \subset\{1, \ldots, n\}$, an arbitrary set, remains mysterious.

An excursion

Let $J=J_{n} \subset\{1, \ldots, n\}$ be arbitrary. Then

$$
\nu_{n}(J):=\nu_{n}\left(k_{j}(\sigma)=0 \forall j \in J\right) \ll \exp \left\{-\sum_{j \in J} \frac{1}{j}\right\}
$$

with an absolute constant in \ll, an analogue of $O(\cdot)$.
The dependence on n changes the picture in the lower estimates.

Let

$$
\mu_{n}(K):=\min _{J} \nu_{n}(J)
$$

where the minimum is taken over J satisfying

$$
\sum_{j \in J} \frac{1}{j} \leq K
$$

Theorem (E.M., 2001). For all $K \geq 0$,

$$
\liminf _{n \rightarrow \infty} \mu_{n}(K) \geq \exp \left\{-\mathrm{e}^{7 K}\right\}
$$

If $J=(m, n] \cap \mathbf{N}, K \sim \log \frac{n}{m}$, then

$$
\nu_{n}(J) \sim \exp \left\{-(1+o(1)) K \mathrm{e}^{K}\right\}
$$

Conjectured as the smallest frequency in terms of K.

For the Ewens frequency,

$$
\mu_{n, \Theta}(K):=\min _{J} \nu_{n, \Theta}(J),
$$

where the minimum is taken over J satisfying

$$
\sum_{j \in J} \frac{1}{j^{1 \wedge \Theta}} \leq K
$$

Theorem (E.M., 2002). For all $K \geq 0$,

$$
\liminf _{n \rightarrow \infty} \mu_{n, \Theta}(K) \geq c_{1} \exp \left\{-\mathrm{e}^{C K}\right\}, \quad c, C>0
$$

There is no minimum $1 \wedge \Theta$ in the upper estimates.
Unsatisfactory, for $0<\Theta<1$.

A Value Distribution Problem

Given $a_{j n} \in \mathbf{R}, 1 \leq j \leq n, n \in \mathbf{N}$, examine the distribution functions

$$
V_{n}(x):=\nu_{n}\left(a_{1 n} k_{1}(\sigma)+\cdots+a_{n n} k_{n}(\sigma)-\alpha(n)<x\right), \quad \alpha(n) \in \mathbf{R}
$$

as $n \rightarrow \infty$.
If $a_{j n}=1$ for $j \in J_{n} \subset\{1,2, \ldots, n\}$ and $a_{j n}=0$ otherwise, the sum gives the number of cycles with lengths in J_{n}.

Test your methods if they are capable to deal with the sequences of generating functions and preserve the uniformity in parameters!

Theorem (E. M., 2005). Let $a_{j n} \in\{0,1\}$ and $\alpha(n)=0$. The frequencies $V_{n}(x)$ weakly converge to the Poisson limit law with parameter $\mu>0$, if and only if

$$
\sum_{\substack{j \leq n \\ a_{j n}=1}} \frac{1}{j}=\mu+o(1)
$$

and

$$
\sum_{\substack{\varepsilon n<j \leq n \\ a_{j n}=1}} \frac{1}{j}=o(1)
$$

for each fixed $0<\varepsilon<1$.
(The influence of long cycles must be negligible).
More general results in E. M., Acta Math. Univ. Ostraviensis, 2005. Except of the degenerated at one point limit law (see E. M., The Ramanujan J., to appear), the problem remains open.

Analysis

The number of permutations missing the cycles of length $j \in J=J_{n}$.

$$
\sum_{n=0}^{\infty} \nu_{n}(J) z^{n}=\frac{1}{1-z} \exp \left\{-\sum_{j \in J} \frac{z^{j}}{j}\right\}=: \frac{1}{1-z} \exp \left\{A_{n}(z)\right\}
$$

If

- $\quad J$ is fixed (does not depend on n) and

$$
\sum_{j \in J} \frac{1}{j}<\infty
$$

- $n^{-1}|\{j \leq n: j \in J\}| \rightarrow d(J) \quad$ exists.

Tauber theorems (see the recent book by A. L. Jakymiv, 2005).
Transfer method (Flajolet-Odlyzko) if you can control $A_{n}(z)$) in some region outside $|z| \leq 1$.

In the value distribution problem,

$$
\begin{aligned}
\varphi_{n}(y):= & \frac{1}{n!} \sum_{\sigma \in \mathbf{S}_{n}} \prod_{j=1}^{n} y^{a_{j n} k_{j}(\sigma)}, \quad a_{j n} \in \mathbf{R},|y| \leq 1 . \\
& \sum_{n=0}^{\infty} \varphi_{n}(y) z^{n}=\exp \left\{\sum_{j=1}^{\infty} \frac{y^{a_{j n}}}{j} z^{j}\right\} .
\end{aligned}
$$

On the right, the variable $y \in \mathbf{C}$ is "deeply" hidden and the sequence parameter n is present!

We have the sequence of analytic in $|z|<1$ functions, depending also on $|y| \leq 1$. That is the only information we begin with!

Some Ideas

(See, E. M. (1996,...), V. Zakharovas (2001,...)). Let

$$
F_{n}(z)=\sum_{m=0}^{\infty} M_{m n} z^{m}:=\exp \left\{\sum_{j \leq n} \frac{b_{j n}}{j} z^{j}\right\}=\mathrm{e}^{A_{n}(z)}, \quad\left|b_{j n}\right| \leq 1
$$

Omitting the extra index n. Estimate $M_{n}\left(=M_{n n}\right)=\left[z^{n}\right] F(z)$.
Use

$$
M_{n}=\frac{1}{n} \sum_{k=0}^{n-1} M_{k} b_{n-k}, \quad M_{0}=1
$$

and Parseval's equality.

For $1 / n \leq \varepsilon<1$,

$$
\left|M_{n}\right| \leq \varepsilon+\frac{1}{\varepsilon n^{3 / 2}} \sum_{k=0}^{n} k^{2}\left|M_{k}\right|^{2}
$$

Hence we obtain

$$
\left|M_{n}\right| \leq \varepsilon+\frac{1}{\varepsilon n}\left(\frac{1}{2 \pi n} \int_{-\pi}^{\pi}\left|F\left(\mathrm{e}^{i t}\right)\right|^{2}\left|A^{\prime}\left(\mathrm{e}^{i t}\right)\right|^{2} d t\right)^{1 / 2}
$$

Extract the max $\left|F\left(\mathrm{e}^{i t}\right)\right|$ and use again Parseval for the remaining integral.

Theorem. If $\left|b_{j}\right| \leq 1$ and $n \geq 1$, then

$$
\left|M_{n}\right| \leq 14 \exp \left\{-\frac{1}{2} \min _{|t| \leq \pi} \sum_{j \leq n} \frac{1-\Re\left(b_{j} \mathrm{e}^{-i j t}\right)}{j}\right\}
$$

Uniformity in all parameters is preserved.

To derive an asymptotic formula for M_{n}, use the integral Cauchy formula on $|z|=\mathrm{e}^{-1 / n}$ and, similarly, apply Parseval's equality in the strip $K / n \leq|\arg z| \leq \pi$. Here $1 \leq K \leq n$ is a parameter.

Nothing outside $|z|<1$ is needed!
For $|\arg z| \leq K / n$, apply standard analysis.
Disadvantage: Some information about the logarithmic derivative is needed.

For General Decomposable Structures

Find a formula for M_{n} defined via

$$
M(z)=\sum_{n \geq 0} M_{n} z^{n}:=\exp \left\{\sum_{j \geq 1} \frac{d_{j} b_{j} z^{j}}{j}\right\} \cdot H(z)
$$

where $d_{j} \geq 0, b_{j}=b_{j}(n, t) \in \mathbf{C},\left|b_{j}\right| \leq 1$, and $H(z)=H_{n}(z)$ is a "better" function than the series under the exponent, say, analytic in $|z|<1$ and smooth on $|z|=1$.

The numbers d_{j} appear from the structure definitions. Actually, we have them or D_{n} in

$$
\sum_{n \geq 0} D_{n} z^{n}:=\exp \left\{\sum_{j \geq 1} \frac{d_{j} z^{j}}{j}\right\}
$$

The safety vest: it is sufficient to know $M_{n} / D_{n} \sim$?

To get rid of $H(z)$ is not difficult. Further just $H(z)=1$.
Use Cauchy formula

$$
M_{n}=\frac{1}{2 \pi i}\left(\int_{\Delta_{0}}+\int_{\Delta}\right) \frac{M(z)}{z^{n+1}} \mathrm{~d} z=: J_{0}+J
$$

$$
\Delta_{0}=\left\{z=r e^{i \tau}:|\tau| \leq K / n\right\}, \quad \Delta=\left\{z=r e^{i \tau}: K / n<|\tau| \leq \pi\right\}
$$

$$
\text { and } r=e^{-1 / n}, 2 \leq K \leq n
$$

Under $0<\theta^{-} \leq d_{j} \leq \theta^{+}<\infty$ and

$$
\sum_{j \leq n} \frac{d_{j}\left(1-\Re b_{j}\right)}{j} \leq L<\infty
$$

we obtain $J=O\left(D_{n}\left(K^{-c}+n^{-1 / 2}\right)\right)$, where the constants implied depend on L, θ^{-}, and θ^{+}only.

Very sensitive in θ^{-}.

Theorem (E.M., to appear). If

$$
\begin{gather*}
0<\theta^{-} \leq d_{j} \leq \theta^{+}<\infty, \\
\sum_{j \leq n} \frac{d_{j}\left(1-\Re b_{j}\right)}{j} \leq L<\infty, \tag{*}
\end{gather*}
$$

and, for some $\mu_{n}=o(1)$,

$$
\begin{equation*}
\frac{1}{n} \sum_{j \leq n} d_{j}\left|1-b_{j}\right| \leq \mu_{n}=o(1) \tag{**}
\end{equation*}
$$

then

$$
\frac{M_{n}}{D_{n}}=\exp \left\{\sum_{j \leq n} \frac{d_{j}\left(b_{j}-1\right)}{j}\right\}+O\left(\mu_{n}^{c_{1}}+n^{-c_{2}}\right)
$$

The constant in $O(\cdot)$ depends at most on L, θ^{-}, and θ^{+}while $c_{1}=c_{1}\left(\theta^{-}, \theta^{+}\right)>0$ and $c_{2}=c_{2}\left(\theta^{-}, \theta^{+}\right)>0$.

Condition $\left({ }^{* *}\right)$ is unsatisfactory. If no dependence on n, $\left(^{*}\right) \Rightarrow\left({ }^{* *}\right)$.

Is the Approach Sharp?

Yes, under mild conditions. No, if you can integrate beyond the convergence disk.

Again for permutations:

$$
F_{n}(z)=\sum_{m=0}^{\infty} M_{m n} z^{m}:=\exp \left\{\sum_{j \leq n} \frac{b_{j n}}{j} z^{j}\right\}=\mathrm{e}^{A_{n}(z)}, \quad\left|b_{j n}\right| \leq 1
$$

If the quantity

$$
r(p):=\sum_{j \leq n} \frac{\left|b_{j n}-1\right|^{p}}{j}, \quad p>1,
$$

is small enough, one can obtain asymptotic expansion for $M_{n n}$ with $N-1 \geq 1$ terms with accuracy $O\left(r(p)^{N}+n^{-c}\right), c>0$.

Some Results

Again

$$
V_{n}(x):=\nu_{n}\left(a_{1 n} k_{1}(\sigma)+\cdots+a_{n n} k_{n}(\sigma)-A(n)<x\right),
$$

where now

$$
\sum_{j \leq n} \frac{a_{j n}^{2}}{j}=1, \quad A(n):=\sum_{j \leq n} \frac{a_{j n}}{j}
$$

Set

$$
D_{n}:=\sum_{\substack{j, k \leq n \\ j+k>n}} \frac{a_{j n} a_{k n}}{j k}, \quad E_{n}:=\sum_{j \leq n} \frac{\left|a_{j n}\right|^{3}}{j}
$$

Theorem (E.M., 1998). Let $\Phi(x)$ be the distribution function of the standard normal law. Then

$$
V_{n}(x)-\Phi(x)-\frac{D_{n} x}{2 \sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \ll E_{n}
$$

with an absolute constant in the symbol \ll.
Corollary. We have

$$
V_{n}(x)-\Phi(x) \ll E_{n}^{2 / 3}
$$

and the exponent 2/3 is optimal.

Further Reading

1) V. Zakharovas (PhD and Lithuanian Math. J., 2002-04):

- Two terms in the Erdős-Turán problem, e.g. in the CLT for the group theoretical order of a random permutation;
- Mean value theorems and value distribution problems for mapping on the subset

$$
\left\{\sigma \in \mathbf{S}_{n}: \sigma^{r}=\mathbf{1}\right\}, \quad r \in \mathbf{N} .
$$

2) Generalizations for other combinatorial structures (assemblies, multisets, selections (see R.Arratia, A. Barbour and S. Tavaré, 2003, for definitions and examples)) under progress.

THE END

