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Abstract

Let I1, I2, . . . , In be independent indicator functions on some
probability space (Ω,A,P). We suppose that these indicators can
be observed sequentially. Further let T be the set of stopping
times on (Ik), k = 1, . . . , n adapted to the increasing filtration
(Fk), where Fk = σ(I1, . . . , Ik). The odds-algorithm solves the
problem of finding a stopping time τ ∈ T which maximizes the
probability of stopping on the last Ik = 1, if any. To apply the
algorithm one needs only the odds for the events {Ik = 1}, that is
rk = pk/(1− pk), where pk = E(Ik), k = 1, 2, . . . , n, or at least a
certain number of them. The goal of this work is to offer tractable
solutions for the case where the pk are unknown and must be
sequentially estimated.
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The motivation is that this case is important for many real word
applications of optimal stopping. We study several approaches to
incorporate sequential information in the algorithm. Our main
result is a new version of the odds-algorithm based on online
observation and sequential updating. Questions of speed and
performance of the different approaches are studied in detail, and
the comparisons are conclusive so that we propose to always use
this algorithm to tackle selection problems of this kind.
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Introduction

Let I1, I2, . . . be independent indicator functions on some
probability space (Ω,A,P) with pk = E(Ik). Further let

qk = 1− pk , rk = pk/qk ,

that is rk presents the odds of the event {Ik = 1}. We may
observe the indicators sequentially and may stop on at most one,
but only online, that is, at the moment of observation. We win if
we stop on the last Ik = 1 (if any) and lose otherwise (including
not stopping at all). Formally, let T be the set of non-anticipative
stopping rules defined by T = {τ : {τ = k} ∈ Fk}, where Fk is
the σ−algebra generated by I1, I2, . . . , Ik . The odds-theorem of
optimal stopping (Bruss [2]), determines the rule which maximizes
the probability of stopping on the last indicator which takes the
value one (if any). This solution is conveniently computed via the
odds-algorithm described in the following Algorithm.
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odds-algorithm

Input: define

Rk := rn + rn−1 + · · ·+ rk , k = 1..n,

Qk := qnqn−1 · · · qk , k = 1..n,

and precompute

s = s(n) =

{
1, if R1 < 1
sup{k : Rk ≥ 1}, otherwise.

(1)

Output: optimal stopping rule.
The optimal stopping rule to stop on the last “1” is: stop on the
first indicator Ik with Ik = 1 and k ≥ s. If none exists, stop on n
and lose.
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We say that we “win” if the algorithm stops on the last 1. The
optimal win probability (as seen at time 1, 2, . . . , s − 1) equals
RsQs . The odds-algorithm is very convenient and allows for many
interesting applications as e.g. selection problems for randomly
arriving objects, timing problems, buying and selling problems and
clinical trials, automated maintenance problems and others. (Bruss
[2], [4], Tamaki [13], and Iung et al. [8]). The algorithm can also
be adapted to continuous time decision processes with Poisson
arrivals (see [2]). Related problems have been studied by
Suchwalko and Szajowski [11], Szajowski [12] and Kurushima and
Ano [9].
A particular feature of the odds-algorithm is that the number of
computational steps to find the optimal rule is (sub)-linear in n.
The algorithm is optimal itself, in the sense that clearly no
algorithm can exists which would in general yield the rule with less
than O(n) computations. It yields the optimal rule and the optimal
win probability at the same time, and is optimal itself.

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

A related problem to the problem of stopping on the last event
{Ik = 1} is the problem of stopping with maximum probability on
the kth last indicator which equals 1. (see Bruss and Paindaveine
[6]). The precise solution is more complicated but a slight
modification of the odds-algorithm gives a good approximation. A
harder related problem is the problem of stopping on a last specific
pattern in an independent sequence of variables taken frome some
finite or infinite alphabet as studied by Bruss and Louchard [5]. In
these problems, the pk are supposed to be known.
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Unknown odds

The applicability of the above odds-algorithm is somewhat
restricted, because in many practical applications, the decision
maker would not know beforehand the values pk , at least not
precisely.
The corresponding optimal stopping problem for unknown pk is
now in general much harder. In some cases , the precise solution
can be given, and this also within the framework of the
odds-algorithm (see Van Lokeren [10]), but these cases are very
special. In this work we study the problem in more generality.
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Note that we cannot give too much freedom to the randomness of
the pk , because, if we allow, as we typically do, the pk to be
different from each other, they must be still estimable. More
precisely, the odds rk+1, rk+2, . . . , rn must be estimable from
I1, I2, . . . , Ik . This means that the number of unknown parameters
on which the pk (and thus the rk) may depend, must stay very
small compared with n. Since n is, in many important applications,
as for instance the compassionate use-clinical trial example (see
Bruss [4]), itself not large (10 or 15 say) we focus our interest in
this work on only one unknown parameter, p say. Hence the pk are
thought of as being deterministic function of one unknown
parameter p.
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The model pk = pfk

This is our main model. The parameter p is unknown but the
factor fk is supposed to be known. This is an adequate setting for
many problems. In the mentioned clinical-trial example, for
instance, p is considered as the unknown success probability for a
medical treatment and fk is a factor (between 0 and 1) which
reduces the success probability for the kth patient according to his
or her state of health.
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The idea is to combine the convenience of the odds-algorithm with
the concurrent task of estimating the “future odds” from preceding
observations. We will study both the case of a Bayesian setting
with a prior for the unknown parameter p as well as the case of a
completely unknown p. Both cases are well-motivated. If a new
type of practical problem is encountered, one has sometimes so
little information that one should not take the risk of introducing a
bias by a prior distribution. However, with some confirmed prior
information, the Bayesian setting has typically the advantage of
leading to more efficient estimators.
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Let thus (fk), k = 1, . . . , n be a sequence of known real
non-negative values. We put

pk = pfk , p ∈ [0, 1], pfk ≤ 1.

Here it is understood that if we suppose a support [a, b] for the
distribution of p other than [0, 1], then the fk may range between 0
and 1/b, that is fk is not necessarily a reducing factor, but may
also increase the intrinsic success probability.
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Fixed p

Let

pk = pfk ,

qk := 1− pfk ,

and

rk :=
pfk

1− pfk
,

that is rk is the (unknown) odds for {Ik = 1}. If Ik = 1 we say that
a success occurs at time k. Further let

Ik(p) := [[ success occurs at time k]].1

It is easy to see that

E

[
s∑
1

Ik(p)

]
= p

s∑
1

fk ,

1Here we use the indicator function notation proposed by Knuth et al. [7].F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance
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V

[
s∑
1

Ik(p)

]
= p

s∑
1

fk(1− pfk) = V1(s), say ,

where V denotes the variance. The odds-algorithm gives

s∗ =sup

{
s :

n∑
s

rk ≥ 1

}
, if

{
s :

n∑
s

rk ≥ 1

}
6= ∅,

1, otherwise

We should write s∗(n), but here and in the sequel, we drop the n
to simplify the notation (when there is no ambiguity).
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Hence s∗ is the time index from which onwards it is optimal to
stop on the first event Ik = 1, and the corresponding optimal win
probability equals Rs∗Qs∗ (see the odds-algorithm). Here, of
course, Rs and Qs are functions of p and f1, . . . , fs . We think of
the fk as being fixed and write

s∗ = ϕ(p),

and

ψ(s, p) =
n∏
s

ql

n∑
s

rl .

Hence, the optimal success probability for a given p is given by

ψ∗(p) = ψ(s∗, p). (2)
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Sequential estimation

We use as an estimator of p

p̂(s, p) =

∑s
1 Ik(p)∑s

1 fk
, (3)

and this for two reasons: first, p̂(s, p) is an unbiased estimator of
p. Indeed,

E(p̂(s, p)) =

∑s
1 E(Ik(p))∑s

1 fk
= p.

V(p̂(s, p)) = V1(s)

/[
s∑
1

fk

]2

.

Secondly, this estimator is efficient for constant fk , that is it has
the smallest possible variance, as one can readily show using the
Fisher-information and Rao-Cramer’s bound. We note however
that (3) is in general not a maximum likelihood estimator of p, as
one can easily check. This is why we offer also an alternative
approach later on.
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Let us consider the distribution for p̂ for index s and parameter p
both fixed. We denote it by

P̂(ρ|s, p) := P[p̂(s, p) = ρ].

One can see that P̂(ρ|s, p) becomes the Binomial distribution, if
the fk are constant. In the general case, it can be numerically
computed by extracting the coefficients from the generating
function

Gs(z) :=
s∏
1

[pfiz + 1− pfi ]. (4)

We get

P
[
p̂(s, p) =

ν∑s
1 fk

]
= [zν ]Gs(z),

where [zn]f (z) denotes the coefficient of zn in the power expansion
of f (z).
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The distribution of the number of successes

Let

ν(s) :=
s∑

k=1

Ik = # successes up to time s.

We note that ν(s) follows no well-known distribution unless the fk
are constant. However, we can construct a tractable recurrence
relation for the law of ν(s) from Gs(z) as given by (4). We obtain
a recurrence to compute {P(ν(s) = m}m=0,1,...,s , namely

P(ν(s) = m) =
1

m

m−1∑
k=0

P(ν(s) = k)(−1)m−1−k
s∑

j=1

rm−k
j .

with initial condition

P(ν(s) = 0) = q1.q2 . . . .qs .

The proof is given in the full report, where we also briefly
investigate a stopping rule based on sequential maximum
likelihood.
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Qualitative assessment

Let us now discuss the intrinsic weakness of any approach based on
sequential estimation.
If p̂(s, p) is small at the beginning (no events {Ik = 1} at the
beginning), the stopping threshold s is also small and we could
consequently stop too early. It is true that we only can stop on a
success, so that p̂ jumps up at each such instance. This reduces
the risk of under-estimation. However, it does not exclude it.
Similarly, if we wait some time before we compute and use p̂(s, p),
and if p is small, we could stop too late.
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As an alternative we may decide to use some fixed learning
samples and never to stop on the first sd − 1 values, that is, we
start the algorithm at s = sd . Here sd = 1 corresponds to the
classical algorithm with no delay.
The question of an optimal delay sd will be analyzed later on.
The odds-algorithm for the stopping threshold s leads to the
equation

ϕ(p̂(s, p)) ≤ s.

The threshold computation procedure is given in the following
Algorithm.
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odds-algorithm with sequential estimation of odds

Input: precompute the optimal delay sd (if we use a delay)
Output: an optimal stopping threshold s
s := sd ;cont := true
while cont do
ν :=

∑s
1 Ik ,p̂(s) = νPs

1 fk

if
∑n

s+1 rk(p̂(s)) < 1 then
cont := false

else
s := s + 1
if s = n then

cont := false
end if

end if
end while
return s
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Winning probability

s is a random variable with some distribution φ(s, p), say.
Fix p. For each time s, the possible values of the random variable
ν :=

∑s
1 Ik satisfying

ϕ

(
ν∑s
1 fk

)
≤ s

are constrained to stay in an interval denoted by

[0, γ[s]].

In order to stop at any case not later than n, we set γ[n] = n. In
the case of delaying, we just put γ[s] = −1, s = 1..sd − 1.
ν is represented by a Markov chain. In the following we drop the p
parameter to ease the notation. Let

Π[s, µ] := P[ν = µ, no stopping threshold before s].
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Then,

Π[1, 1] = pf1,Π[1, 0] = 1− pf1, φ[1, p] =

γ[1]∑
µ=0

Π[1, µ]

and, for s ≥ 2,

Π[s, µ] = Π[s − 1, µ− 1]pfs [[µ 6= 0 ∧ µ− 1 > γ[s − 1]]]

+ Π[s − 1, µ](1− pfs)[[µ > γ[s − 1]]].

The stopping threshold probability distribution is now given by

φ(s, p) =

γ[s]∑
µ=0

Π[s, µ].

Finally

P(win) = P( algorithm stops on the last 1|p) =
n∑

s=1

φ(s, p)ψ(s, p) = Θ(p), say .
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Choice of fk and n.

In the examples given in this paper, we use two different choices
for the sequence (fk). One is fk = 1 for all k. This is a natural
choice for the case when all Ik are i.i.d. Bernoulli random variables.
We could also have used fk = C for some fixed constant
0 < C ≤ 1. Our second and most frequent choice is fk = 1/k. One
reason is that we want to cover the case when all odds are
different. Besides this, there is nothing really special about this
choice except that it solves a new version of a well-known
best-choice problem, that is the secretary problem with unknown
availability probability. Indeed, suppose that in a sequence of
candidates, all are equally likely the best, second best, and so on,
that the kth candidate is available, independent of his rank, with
probability p. Then this candidate is best so far and available with
probability p/k. See also Ano et al. [1].
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Examples

We usually use the sample size n = 15, but again there is nothing
special about this choice and most graphs would look similar for n
not too small. Clearly small n like n ≤ 6, say lead to unreliable
odds-estimates and hence to bad performance.
The following Figure 1 gives Θ(p) as a function of p, for sd = 1..5.
We have choosen n = 15, fk = 1/k (These parameters will always
be used in the sequel). The circle graph gives ψ∗(p), the horizontal
line represents 1/e. The relevance of a comparison with 1/e will
be explained below.

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

Figure 1
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Figure 1: Θ(p) as a function of p, for sd = 1..5, from red to magenta,
n = 15, fk = 1/k, k = 1, . . . , n, circle : ψ∗(p), horizontal line : 1/e
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Note that Θ(p) possesses a local maximum and a local minimum
for some values of sd . This can be explained as follows: when p is
small, the chance of having ones is small, and hence the total win
probability is small for any strategy. Since the estimated odds are
very likely to be small as well for small p, the risk of a wrong
decision by the odds strategy is also small simply because stopping
on the very first 1 (if any) is the best to do. But for growing p this
risk increases in the middle range of p so that the total win
probability goes somewhat down before getting the full benefit of
large success probabilities. The difference between the local
maximum and the local minimum is of course also dependent of
the choice of the fk . A more detailed approach is given later on.
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There is a good reason why the comparison of the performance of
this algorithm with the value 1/e is the most adequate one.
Indeed, it was shown that if the odds are known and if their sum is
at least 1, then 1/e is the exact lower bound for the win
probability over all such sequences p1, p2, . . . , pn. (Bruss [3]). But,
moreover, if n becomes large and if∑n

k=1 p2
k/

∑n
k=1 pk → 0, as n →∞, then the win probability

converges to 1/e (Bruss [2]). Hence, in particular if the sum of all
odds is at least one, then it suffices that pk → 0, as k →∞.
We finally observe that, for any value of p, there is an optimal
value of sd . This will be useful later on.
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Unknown p according to a distribution P(p)

We now suppose that the unknown parameter p follows a
distribution P(p), which is unknown to the decision maker. Let
Θ(p) denote, as before, the conditional probability of winning for a
given p. The absolute win probability using our algorithm is then
given by

Pw := P( win ) =

∫ 1

0
P(p)Θ(p)dp.

There is no statistical inference on p other than using the
sequential estimator (3). The only focus is the impact of delaying
as a function of the distribution P(p). Statistical inference based
on a (known) prior distribution of p will be used in the Bayesian
approch in Section 7.
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Examples.

1) As a first example, we let P(p) be given by a parabola on [0..1],
with maximum occuring respectively at
pm ∈ [1/16, 1/8, 1/4, 1/2, 3/4, 7/8]. The parabola is starting at
the origin for pm = 1/16, 1/2, 3/4, 7/8, and landing at 0 for p = 1
for pm = 1/8, 1/4. For pm = 1/8, for instance, we give, in
Figure 2, Pw as function of the delay parameter sd .
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Figure 2
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Figure 2: Pw as function of sd , fk = 1/k, pm = 1/8
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We see that nothing is gained by delaying stopping. The situation
is the same for pm = 1/16, 1/4. However, for pm ∈ [1/2, 3/4, 7/8],
we see that it is better to ignore the first event. We see this, in
Figure 3, for pm = 7/8, where Pw is plotted as function of the
delay parameter sd .

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

Figure 3
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Figure 3: Pw as function of sd , pm = 7/8
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The optimal sd values, for our six parabolae, are given by
[1, 1, 1, 2, 2, 2]. We see that these optimal values are rather robust:
a minimal information on the shape of P(p) is enough to choose
sd .
2) As an example of large sd , we have computed Pw with a linear
P(p) = 2p. This leads to sd = 4.
In the case of sequential updating, we will denote by Pw(pm) the
success probability, without delay, and by Pwopt(pm) the success
probability, with optimal delay, for our six parabola distributions.
If we know p beforehand, we must use ψ∗(p), this leads to

Pw∗ =

∫ 1

0
P(p)ψ∗(p)dp.
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Algorithm cost

The computational cost of the odds-algorithm with sequential
updating depends essentially on the computation of p̂(s) and on
the instruction: if

∑n
s+1 rk(p̂(s)) < 1. Assuming for simplicity, that

each numerical operation costs 1 unit, we have, at time s, a cost of

C (s, p) =
s∑
1

(n − v + 1) = (n + 1/2)s − s2/2. (5)

and
C ′

s(s, p) = n + 1/2− s ≥ 0.

The mean cost M(p) is now given by

M(p) =
n∑
1

φ(s, p)[(n + 1/2)s − s2/2] = (n + 1/2)s̄ − s̄2/2,

s̄ i :=
n∑
1

φ(s, p)s i .
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Similarly the second moment is given by

M(2)(p) =
n∑
1

φ(s, p)[(n + 1/2)s − s2/2]2

= s̄4/4− (n + 1/2)s̄3 + (n + 1/2)2s̄2,

and the variance

V(p) = M(2)(p)−M(p)2.

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

Cost distribution

The cost distribution is itself computed as follows. For fixed p, we
have

C (1, p) = n,

C (2, p) = 2n − 1,

C (3, p) = 3n − 3,

...

C (n, p) = n(n + 1)/2.
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For each cost C (if this value is possible), the corresponding value
of s is given by

s = [(2n + 1)−
√

(2n + 1)2 − 8C ]/2.

This allows, with φ(s, p), the computation of the cost distribution
H(p). Figure 4 gives H(1/2) for our usual parameters. But in this
case, only three values of s lead to non-null values of φ(s, p),
which explains the shape of H(1/2).
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Figure 4
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Figure 4: Cost distribution H(1/2), sd = 1

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

Asymptotic behaviour of cost, n →∞

To study the asymptotic behaviour of the cost, as n →∞, we
must distinguish between two cases
i) if

∑∞
1 fk converges and

∑∞
1 fk/(1− fk) > 1 (otherwize we

always stop at s = 1), we have, for each p, a maximum s∗(p) such
that

∑∞
s∗ rk(p) ≥ 1, and asymptotically, ϕ(p) is independent of n.

φ(s, p) also becomes independent of n and we have a cost given by
(5), which is linear in n. Also, setting

ŝ := sup{j :
∞∑
j

fk/(1− fk) ≥ 1},

we have s∗(p) ≤ ŝ and

C (s, p) ≤ (n + 1/2)ŝ − ŝ2/2.
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ii) if
∑∞

1 fk diverges, ϕ(p) is close to n, φ(s, p) gives a maximum
weight in the neighborhood of n, and the cost is now of the order
of n2.
For instance, if fk = 1, the odds-algorithm gives s ∼ n − q/p and

C (s, p) ∼ n2/2,

if fk = 1/k, we have s ∼ ne−1/p and

C (s, p) ∼ [e−1/p − e−2/p/2]n2.
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The asymptotic behaviour of ψ∗(p, n), fk = 1/k

We can show that, asymptotically, ψ∗(p, n) possesses a unique
maximum at some critical point p∗(n) and, to the right of it, a
unique minimum, using a continuous equivalent. The proof is
given in the full report.
For n = 100, we have constructed a plot of the continuous version
of ψ∗(p, n) on the whole range p ∈ [0, 1], given in Figure 5. This
function is continuous, but its derivative is not. We also compare
it with the discrete expression for ψ∗(p, n)
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Figure 5
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Figure 5: ψ∗(p, n) (continuous version, line ) versus ψ∗(p, n) (discrete
version, circle), n = 100
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The fit is quite good, given that we used Euler-Maclaurin in the
continuous approach, with one error term, a continuous s∗(p, n)
instead of the discrete one , and a not too large value for n. Note
that Figure 5 has a similar behaviour as Figure 1 for Θ(p), in the
sequential updating approach. In Figure 1, the difference between
maximum and minimum is even more pronounced.
For large n, the difference between exact (continuous) expressions
and first order asymptotics (neglecting O(1/n) errors) become
negligible. We confine our interest to the difference between the
discrete and the continuous approach.
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To give a better view of the minimum, Figure 6 gives, on the right
of p∗(n), the same comparison.
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Figure 6
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Figure 6: ψ∗(p, n) (continuous version, line ) versus ψ∗(p, n) (discrete
version, circle), n = 100, p ≥ p∗(n),fk = 1/k
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Let us note that the optimal sd values, for our six parabolae,
n = 100, are given by [1, 3, 4, 6, 13, 13]. Again these optimal values
are rather robust.
We note that it would be hard to prove existence and unicity of
min,max in the discrete case as well as for Θ(p).
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Bayesian approach-The theory

We follow in this approach the work of Van Lokeren [10] (Mémoire
de DEA, under supervision of F.T. Bruss, unpublished). The
problem is as before, that is maximizing the probability of stopping
on the last success. Allowing the different success parameters
p1, . . . , pn to vary independently of each other leads to an ill-posed
problem. Therefore we make the following assumptions.
Let p be a random variable taking values in [0, 1] and let
Ψ : [0, 1]× N → [0, 1] be a deterministic (known) function. We
assume the success parameter pk to be given by

pk = Ψ(p, k)
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Furthermore, we suppose
(i) The conditional law of Ik , given p = x , is a Bernoulli law with
known success parameter Ψ(x , k).
(ii) The random variables I1, I2, . . . , In are
conditionally independent, given p = x .
The general solution is given in the full report.
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The algorithm for the Bayesian approach

The algorithm deals with a vector a[1..n] of bits. We convert this
vector into an integer l =

∑n
1 a[i ]2i−1 with the procedure

l := conv1(a). Similarly, for any l , we compute the corresponding
vector a with a procedure a := conv2(l). Then, according to [10],
we compute the two matrices C [0..n, 0..2n − 1] and
V [1..n, 0..2n − 1] with the following formulae

C [0, 0] := 1; for i to 2n − 1 do C [0, i ] := 0 od;

for k to n do for l from 0 to 2n − 1 do

a := conv2(l);

and, in general,

C [k, l ] :=

∫ 1

0

k∏
1

(xfi )
a[i ][1− (xfi )]

1−a[i ]P(x)dx ; od ; od ;
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for l from 0 to 2n − 1 do V [1, l ] := C [n, l + 2n−1]/C [n − 1, l ]; od ;

for k from n − 2 by − 1 to 0 do

for l from 0 to 2k − 1 do

A := C [n, l + 2k ]/C [k + 1, l + 2k ];

B := V [n − k − 1, l + 2k ];

T := max(A,B);

V [n − k, l ] := C [k + 1, l ]/C [k, l ]V [n − k − 1, l ]

+ C [k + 1, l + 2k ]/C [k, l ]T ; od ; od ;

Finally, the Bayesian optimal value is given by

PwB = V [n, 0].

The practical procedure is given in in the following Algorithm.
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Optimal strategy

Input: precompute C ,V
Output: an optimal stategy
set a[k] := Ik , k = 1..n
Stop at the first Ik for which Ik = 1 and, with
lk := conv1(a[1..k]), C [n,lk ]

C [k,lk ] ≥ V [n − k, lk ]
Stop at In if the above conditions are not fulfilled for any
1 ≤ k ≤ n − 1.
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We have computed, with our five parabola distributions, the
success probability given by the Bayesian approach: PwB(pm).
Figure 7 gives (n = 15) Pw∗(pm),PwB(pm),Pw(pm),Pwopt(pm).
Pw∗ gives naturally the best result. The other ones are
comparable, with a slight advantage for PwB and Pwopt , but Pw
is rather close. Note that for some values of pm, the value PwB is
better than Pwopt , but the the opposite is true for other values of
pm.
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Figure 7
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Figure 7: Pw∗(pm) (blue), PwB(pm) (green), Pw(pm) (magenta),
Pwopt(pm) (red),
pm ∈ [1/16, 1/8, 1/4, 1/2, 3/4, 7/8],n = 15,fk = 1/k
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Case fk = 1

The case fk = 1 for all k = 1, 2, . . . , n is the simplest interesting
special case. The following Figure 8 gives Θ(p) as a function of p,
for sd = 1..14 and n = 15. The circle graph displays ψ∗(p), the
horizontal line represents 1/e. If we compare this graph with
Figure 1, we see that the maximum and minimum are more
pronounced (at least for small values of sd).
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Figure 8
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Figure 8: Θ(p) as a function of p, for sd = 1..14, from red to magenta
then red, n = 15, fk = 1, k = 1, . . . , n, circle : ψ∗(p), horizontal line : 1/e
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The delay analysis shows that, for pm = 1/16, no delay is
necessary, but for pm = 1/8 already, we have an optimal sd = 10.
The optimal sd values, for our six parabolae, are given by
[1, 10, 10, 11, 12, 12]. Again, these optimal values are rather robust:
a minimal information on the shape of P(p) is enough to choose
sd .
Figure 9 displays H(1/2) (see Section 5), and Figure 10 displays
Pw∗(pm),PwB(pm),Pw(pm),Pwopt(pm). Again, Pw∗ gives the
best result, but its advantage is less pronounced. PwB and Pwopt

are rather close to each other. Pw is definitively bad.

F.Thomas Bruss, Guy Louchard The Odds-algorithm based on sequential updating and its performance



Abstract Introduction Fixed p Unknown p according to a distribution P(p) Algorithm cost The asymptotic behaviour of ψ∗(p, n), fk = 1/k Bayesian approach Case fk = 1 Conclusion

Figure 9
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Figure 9: Cost distribution H(1/2), sd = 1
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Figure 10
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Figure 10: Pw∗(pm) (blue), PwB(pm) (green), Pw(pm) (magenta),
Pwopt(pm) (red),
pm ∈ [1/16, 1/8, 1/4, 1/2, 3/4, 7/8], n = 15,fk = 1
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Of course, we could compute an equivalent continuous analysis of
ψ∗(p, n), as we did previously, but we will not pursue this matter in
this work.
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Conclusion

The solution of the problem of maximizing the probability of
stopping on a last success in a sequence of independent indicators
has many real-world applications, ranging from best choice
problems (secretary problems) over buying-selling strategies up to
applications in sequential search and clinical trials. If the odds are
known in advance, the odds-algorithm provides this solution in a
straightforward way, and this algorithm is, itself, optimal. If the
odds are unknown, and must be estimated from preceeding
observations, then the optimal rule is not obvious and can be made
explicit in special cases only. The objective of this work was to
examine the question wether there are good approximations for the
optimal rule. We have proposed an algorithm which is based on
the odds-algorithm and on a simple unbiased sequential estimator
of the successes probabilities pk = P(Ik = 1). Although we have no
precise estimates by how much it misses optimality, we have
established several importants facts.
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First it is asymptotically optimal, because as n →∞, the
sequential estimators of the odds will converge, in our model, to
the true odds, and we know that for the true odds the
odds-algoritm gives the optimal solution.
Secondly, its cost compares well with that of the more complicated
decision rule obtained by maximal likelihood estimates. Anyway,
the maximal likelihood algorithm should not be better than the
optimal algorithm, leading to Pw∗, and we have seen that our
algorithm compares favourably with it.
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Thirdly, a comparison is given with decision rules based on the
Bayesian model. Here again the computational cost is
uncomparably higher, but the result is not uniformly better.
We can now sumarize our conclusions. Taking all arguments
together, we would suggest to always use the odds-algorithm with
sequential updating based on the estimator defined in (3). With
some additional information we may somewhat improve on this by
a slight delay factor sd as explained before. Note also that this
algorithm, working with a number of computations which is at
most quadratic in n, stands out from a computational point of
view.
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