Analysis of patterns and minimal embeddings of non-Markovian sequences

Manuel.Lladser@Colorado.EDU

Department of Applied Mathematics University of Colorado Boulder

AofA - April 13 2008

NOTATION & TERMINOLOGY.

\mathcal{A} is a finite **alphabet**

 \mathcal{A}^* is the set of all words of finite length

A language is a set $\mathcal{L} \subset \mathcal{A}^*$

 $X = (X_n)_{n \ge 1}$ is a sequence of \mathcal{A} -valued random variables

X may be **non-Markovian**

 $X_1 \cdots X_l$ models a random word of length l

PARADIGM.

For various probabilistic models for X and languages \mathcal{L} the **frequency** statistics of \mathcal{L} are asymptotically normal.

$$S_n^{\mathcal{L}} := \left(\begin{array}{c} number \ of \ prefixes \ in \ X_1 \cdots X_n \\ that \ belong \ to \ the \ language \ \mathcal{L} \end{array}\right)$$

The paradigm applies for:

- generalized patterns \oplus i.i.d. models [BenKoch93]
- simple patterns \oplus stationary Markovian models [RegSzp98]
- primitive patterns \oplus k-order Markovian models [NicSalFla02, Nic03]
- primitive patterns \oplus nice dynamical sources [BouVal02, BouVal06]
- hidden patterns \oplus i.i.d. models [FlaSpaVal06]

THE MARKOV CHAIN EMBEDDING TECHNIQUE.

IF X is a homogeneous Markov chain

IF \mathcal{L} is a regular language

IF $G = (V, \mathcal{A}, f, q, T)$ is a DFA that recognizes \mathcal{L}

IF the embedding of X into G i.e. the stochastic process $X_n^G := f(q, X_1 \cdots X_n)$ is a first-order homogenous Markov chain

THEN

$$S_n^{\mathcal{L}} = \left(\begin{array}{c} number \ of \ visits \ the \ embedded \ process \\ X^G \ makes \ to \ T \ in \ the \ first \ n-steps \end{array}\right)$$

EXAMPLE.

Consider a 1-st order Markov chain X such that

$$P[X_{1} = a] = \mu; \qquad P[X_{1} = b] = (1 - \mu);$$

$$P[X_{n+1} = a \mid X_{n} = a] = p; \qquad P[X_{n+1} = b \mid X_{n} = a] = (1 - p);$$

$$P[X_{n+1} = a \mid X_{n} = b] = q; \qquad P[X_{n+1} = b \mid X_{n} = b] = (1 - q).$$

Then the embedding of X into the Aho-Corasick automaton

that recognizes matches with the regular expression $\{a, b\}^* \{ba, abba\}$ i.e. all words of the form x = ...ba or x = ...abba is a 1-st order Markov chain.

What about a completely general sequence X?

EXAMPLE. A seemingly unbiassed coin.

Let 0

Consider the random binary sequence $X = (X_n)_{n \ge 1}$ such that

$$X_{n+1} \stackrel{d}{=} \begin{cases} \text{Bernoulli}(p) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i > \frac{1}{2} \\ \text{Bernoulli}(1/2) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{2} \\ \text{Bernoulli}(1-p) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i < \frac{1}{2} \end{cases}$$

Question. Is there a Markovian structure where X can be embedded into for analyzing the asymptotic distribution of the frequency statistics of a given language?

GENERAL SETTING.

Given

- a possibly **non-Markovian** sequence X
- $\bullet\,$ a possibly **non-regular** language $\mathcal L$
- a transformation $R: \mathcal{A}^* \to \mathcal{S}$

define X^R to be the stochastic process

$$X_n^R := R(X_1 \cdots X_n)$$

Question 1. What conditions are necessary and sufficient in order for X^{R} to be Markovian?

Question 2. Given a pattern \mathcal{L} , is there a transformation R such that X^{R} is Markovian but also informative of the distribution of the frequency statistics of \mathcal{L} ?

REMARK.

The Markovianity or non-Markovianity of

$$X_n^R := R(X_1 \cdots X_n), \quad n \ge 1$$

does not really depend on the range of R

The above motivates to think of $R : \mathcal{A}^* \to \mathcal{S}$ as an **equivalence** relation over \mathcal{A}^* :

$$u R v \iff R(u) = R(v)$$

- R(u) is the unique equivalence class of R that contains u
- $c \in R$ means that c is an equivalence class of R

$$\sum_{\alpha \in \mathcal{A}: R(u\alpha) = c} P[X = u\alpha \dots \mid X = u\dots] = \sum_{\alpha \in \mathcal{A}: R(v\alpha) = c} P[X = v\alpha \dots \mid X = v\dots]$$

$$\sum_{\alpha \in \mathcal{A}: R(u\alpha) = c} P[X = u\alpha... \mid X = u...] = \sum_{\alpha \in \mathcal{A}: R(v\alpha) = c} P[X = v\alpha... \mid X = v...]$$

Figure. Schematic partition of $\{0, 1, 2\}^*$ into equivalence classes

$$\sum_{\alpha \in \mathcal{A}: R(u\alpha) = c} P[X = u\alpha... \mid X = u...] = \sum_{\alpha \in \mathcal{A}: R(v\alpha) = c} P[X = v\alpha... \mid X = v...]$$

Figure. Schematic partition of $\{0, 1, 2\}^*$ into equivalence classes

$$\sum_{\alpha \in \mathcal{A}: R(u\alpha) = c} P[X = u\alpha... \mid X = u...] = \sum_{\alpha \in \mathcal{A}: R(v\alpha) = c} P[X = v\alpha... \mid X = v...]$$

Figure. Schematic partition of $\{0, 1, 2\}^*$ into equivalence classes

$$\sum_{\alpha \in \mathcal{A}: R(u\alpha) = c} P[X = u\alpha... \mid X = u...] = \sum_{\alpha \in \mathcal{A}: R(v\alpha) = c} P[X = v\alpha... \mid X = v...]$$

Figure. Schematic partition of $\{0, 1, 2\}^*$ into equivalence classes

THEOREM A. X is embedable w.r.t. R if and only if, for $x \in A^*$, if we condition on having X = x... then the stochastic process

$$X_n^R := R(X_1 \cdots X_n), \quad n \ge |x|,$$

is a first-order homogeneous Markov chain with transition probabilities that do not depend on x

THEOREM B. For each equivalence relation R in \mathcal{A}^* , there exists a unique coarsest refinement R' of R w.r.t. which X is embedable

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X?

$$\longrightarrow X = a \ b \ b \ a \ b \ \dots \ \text{(original sequence)}$$

$$\longrightarrow X^R = 1 \ 0 \ 0 \ 1 \ 0 \ \dots \ \text{(non-Markovian encoding)}$$

$$X^{R'} = 0 \ 4 \ 6 \ 3 \ 4 \ \dots \ \text{(optimal Markovian encoding)}$$

$$X^Q = 6 \ 3 \ 18 \ 15 \ 10 \ \dots \ \text{(any other Markovian encoding)}$$

Figure. Partition $R = \{\mathcal{L}, \mathcal{A}^* \setminus \mathcal{L}\}$ s.t. X^R is non-Markovian

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X?

$$\longrightarrow X = a \ b \ b \ a \ b \ \dots \ \text{(original sequence)}$$

$$X^{R} = 1 \ 0 \ 0 \ 1 \ 0 \ \dots \ \text{(non-Markovian encoding)}$$

$$\longrightarrow X^{R'} = 0 \ 4 \ 6 \ 3 \ 4 \ \dots \ \text{(optimal Markovian encoding)}$$

$$X^{Q} = 6 \ 3 \ 18 \ 15 \ 10 \ \dots \ \text{(any other Markovian encoding)}$$

Figure. Coarsest refinement R' of R w.r.t. which X is embedable

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X?

$$\longrightarrow X = a \ b \ b \ a \ b \ \dots \ \text{(original sequence)}$$

$$X^{R} = 1 \ 0 \ 0 \ 1 \ 0 \ \dots \ \text{(non-Markovian encoding)}$$

$$X^{R'} = 0 \ 4 \ 6 \ 3 \ 4 \ \dots \ \text{(optimal Markovian encoding)}$$

$$\longrightarrow X^{Q} = 6 \ 3 \ 18 \ 15 \ 10 \ \dots \ \text{(any other Markovian encoding)}$$

Figure. Arbitrary refinement Q of R w.r.t. which X is embedable

REMARK. The optimal refinement R' of R such that $X^{R'}$ is embedable is obtained through a limiting process: this makes it almost impossible to characterize de equivalence classes of R'

Motivated by this we will introduce an embedding which—while not as optimal—it is analytically tractable (!) **DEFINITION.** The **Markov relation** induced by X into \mathcal{A}^* is the equivalence relation defined as

$$uR^{X}v \Leftrightarrow (\forall w \in \mathcal{A}^{*}) : P[X = uw... | X = u...] = P[X = vw... | X = v...]$$

DEFINITION. The **Markov relation** induced by X into \mathcal{A}^* is the equivalence relation defined as

$$uR^{X}v \Leftrightarrow (\forall w \in \mathcal{A}^{*}) : P[X = uw... | X = u...] = P[X = vw... | X = v...]$$

Figure. Weighted tree visualization of definition with $\mathcal{A} = \{0, 1\}$

An equivalence relation R is said to be **right-invariant** if for all $u, v \in \mathcal{A}^*$ and $\alpha \in \mathcal{A}$:

$$R(u) = R(v) \Longrightarrow R(u\alpha) = R(v\alpha)$$

THEOREM C. X is embedable w.r.t. any right-invariant equivalence relation that is a refinement of R^X ; in particular, X is embedable w.r.t. R^X EXAMPLE. Back to the seemingly unbiassed coin.

For 0 , define

$$X_{n+1} \stackrel{d}{=} \begin{cases} \text{Bernoulli}(p) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i > \frac{1}{2} \\ \text{Bernoulli}(1/2) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{2} \\ \text{Bernoulli}(1-p) &, \quad \frac{1}{n} \sum_{i=1}^{n} X_i < \frac{1}{2} \end{cases}$$

We aim to understand the frequency statistics of

$$\mathcal{L}_1 = \{0,1\}^* \{1\},\$$

$$\mathcal{L}_2 = \{0\}^* \{1\} \{0\}^* (\{1\} \{0\}^* \{1\} \{0\}^*)^*$$

within X

PROPOSITION. $R: \{0,1\}^* \to \mathbb{Z}$ defined as

$$R(x) = 2\left\{\sum_{i=1}^{|x|} x_i - \frac{|x|}{2}\right\} = \sum_{i=1}^{|x|} x_i - \sum_{i=1}^{|x|} (1 - x_i)$$

is a right-invariant refinement of \mathbb{R}^X . In particular, $X_n^R := \mathbb{R}(X_1 \cdots X_n)$ is a first-order homogeneous Markov chain

 X^R is **recurrent**, with **period** 2. Because $0 , <math>X^R$ is **positive recurrent**; in particular, there exists a stationary distribution π . Observe that

$$S_n^{\mathcal{L}_1} = \sum_{i=1}^n X_i$$

$$S_n^{\mathcal{L}_1} = \sum_{i=1}^n X_i$$

COROLLARY A. If U and V are \mathbb{Z} -valued random variables such that

$$P[U = n] = 2 \cdot \pi(n), \quad n = 0 \pmod{2};$$

$$P[V = n] = 2 \cdot \pi(n), \quad n = 1 \pmod{2};$$

then for $\mathcal{L}_1 := \{0,1\}^*\{1\}$ it applies that

$$\lim_{\substack{n \to \infty \\ n = 0 \pmod{2}}} 2n \cdot \left\{ \frac{S_n^{\mathcal{L}_1}}{n} - \frac{1}{2} \right\} \stackrel{d}{=} U;$$
$$\lim_{\substack{n \to \infty \\ n = 1 \pmod{2}}} 2n \cdot \left\{ \frac{S_n^{\mathcal{L}_1}}{n} - \frac{1}{2} \right\} \stackrel{d}{=} V.$$

 \mathcal{L}_2 is recognized by the automaton:

According to the Mihill-Nerode theorem, $Q:\{0,1\}^* \to \{A,B\}$ defined as

 $Q(x) := \left(\begin{array}{c} \text{state in the automaton where the path} \\ \text{associated with } x \text{ ends when starting at } A \end{array}\right)$

is right-invariant

Hence $R \times Q$ is also right-invariant and a refinement of R^X . In particular, $X_n^{R \times Q} := (X_n^R, X_n^Q)$ is a first-order homogeneous Markov chain

 $X^{R \times Q}$ is **positive recurrent**, with **period** 4. Returning times to a state have finite second moment. This allows to use the central limit theorem for additive functionals of Markov chains to obtain the following result.

COROLLARY B. There exists $\sigma > 0$ such that

$$\lim_{n \to \infty} \sqrt{n} \cdot \left\{ \frac{S_n^{\mathcal{L}_2}}{n} - \frac{1}{2} \right\} \stackrel{d}{=} \sigma \cdot W,$$

where W is a standard Normal random variable

CONCLUSION. For the <u>same</u> non-Markovian sequence X, <u>non-Gaussian</u> (discrete w/phases) and <u>Gaussian</u> limits are obtained for the frequency statistics of different regular languages (More details in the 2008 ANALCO proceedings.)

... Thank you (!)