Analysis of patterns and minimal embeddings of non-Markovian sequences

Manuel.Lladser@Colorado.EDU
Department of Applied Mathematics
University of Colorado
Boulder

AofA - April 132008

NOTATION \& TERMINOLOGY.

\mathcal{A} is a finite alphabet
\mathcal{A}^{*} is the set of all words of finite length

A language is a set $\mathcal{L} \subset \mathcal{A}^{*}$
$X=\left(X_{n}\right)_{n \geq 1}$ is a sequence of \mathcal{A}-valued random variables
X may be non-Markovian
$X_{1} \cdots X_{l}$ models a random word of length l

PARADIGM.

For various probabilistic models for X and languages \mathcal{L} the frequency statistics of \mathcal{L} are asymptotically normal.

$$
S_{n}^{\mathcal{L}}:=\binom{\text { number of prefixes in } X_{1} \cdots X_{n}}{\text { that belong to the language } \mathcal{L}}
$$

The paradigm applies for:

- generalized patterns \oplus i.i.d. models [BenKoch93]
- simple patterns \oplus stationary Markovian models [RegSzp98]
- primitive patterns $\oplus k$-order Markovian models [NicSalFla02, Nic03]
- primitive patterns \oplus nice dynamical sources [BouVal02, BouVal06]
- hidden patterns \oplus i.i.d. models [FlaSpaVal06]

THE MARKOV CHAIN EMBEDDING TECHNIQUE.

IF X is a homogeneous Markov chain
IF \mathcal{L} is a regular language
IF $G=(V, \mathcal{A}, f, q, T)$ is a DFA that recognizes \mathcal{L}
IF the embedding of X into G i.e. the stochastic process $X_{n}^{G}:=f\left(q, X_{1} \cdots X_{n}\right)$ is a first-order homogenous Markov chain

THEN

$$
S_{n}^{\mathcal{L}}=\binom{\text { number of visits the embedded process }}{X^{G} \text { makes to } T \text { in the first } n \text {-steps }}
$$

EXAMPLE.

Consider a 1 -st order Markov chain X such that

$$
\begin{array}{ll}
P\left[X_{1}=a\right]=\mu ; & P\left[X_{1}=b\right]=(1-\mu) ; \\
P\left[X_{n+1}=a \mid X_{n}=a\right]=p ; & P\left[X_{n+1}=b \mid X_{n}=a\right]=(1-p) ; \\
P\left[X_{n+1}=a \mid X_{n}=b\right]=q ; & P\left[X_{n+1}=b \mid X_{n}=b\right]=(1-q) .
\end{array}
$$

Then the embedding of X into the Aho-Corasick automaton

that recognizes matches with the regular expression $\{a, b\}^{*}\{b a, a b b a\}$ i.e. all words of the form $x=\ldots b a$ or $x=\ldots a b b a$ is a 1 -st order Markov chain.

What about a completely general sequence X ?

EXAMPLE. A seemingly unbiassed coin.

Let $0<p<1 / 2$

Consider the random binary sequence $X=\left(X_{n}\right)_{n \geq 1}$ such that

$$
X_{n+1} \stackrel{d}{=} \begin{cases}\operatorname{Bernoulli}(p) & , \frac{1}{n} \sum_{i=1}^{n} X_{i}>\frac{1}{2} \\ \operatorname{Bernoulli}(1 / 2) & , \frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{2} \\ \operatorname{Bernoulli}(1-p) & , \frac{1}{n} \sum_{i=1}^{n} X_{i}<\frac{1}{2}\end{cases}
$$

Question. Is there a Markovian structure where X can be embedded into for analyzing the asymptotic distribution of the frequency statistics of a given language?

GENERAL SETTING.

Given

- a possibly non-Markovian sequence X
- a possibly non-regular language \mathcal{L}
- a transformation $R: \mathcal{A}^{*} \rightarrow \mathcal{S}$
define X^{R} to be the stochastic process

$$
X_{n}^{R}:=R\left(X_{1} \cdots X_{n}\right)
$$

Question 1. What conditions are necessary and sufficient in order for X^{R} to be Markovian?

Question 2. Given a pattern \mathcal{L}, is there a transformation R such that X^{R} is Markovian but also informative of the distribution of the frequency statistics of \mathcal{L} ?

REMARK.

The Markovianity or non-Markovianity of

$$
X_{n}^{R}:=R\left(X_{1} \cdots X_{n}\right), \quad n \geq 1
$$

does not really depend on the range of R

The above motivates to think of $R: \mathcal{A}^{*} \rightarrow \mathcal{S}$ as an equivalence relation over \mathcal{A}^{*} :

$$
u R v \Longleftrightarrow R(u)=R(v)
$$

- $R(u)$ is the unique equivalence class of R that contains u
- $c \in R$ means that c is an equivalence class of R

DEFINITION. X is embedable w.r.t. R provided that for all $u, v \in \mathcal{A}^{*}$ and $c \in R$, if $u R v$ then

$$
\sum_{\alpha \in \mathcal{A}: R(u \alpha)=c} P[X=u \alpha \ldots \mid X=u \ldots]=\sum_{\alpha \in \mathcal{A}: R(v \alpha)=c} P[X=v \alpha \ldots \mid X=v \ldots]
$$

DEFINITION. X is embedable w.r.t. R provided that for all $u, v \in \mathcal{A}^{*}$ and $c \in R$, if $u R v$ then

$$
\sum_{\alpha \in \mathcal{A}: R(u \alpha)=c} P[X=u \alpha \ldots \mid X=u \ldots]=\sum_{\alpha \in \mathcal{A}: R(v \alpha)=c} P[X=v \alpha \ldots \mid X=v \ldots]
$$

Figure. Schematic partition of $\{0,1,2\}^{*}$ into equivalence classes

DEFINITION. X is embedable w.r.t. R provided that for all $u, v \in \mathcal{A}^{*}$ and $c \in R$, if $u R v$ then

$$
\sum_{\alpha \in \mathcal{A}: R(u \alpha)=c} P[X=u \alpha \ldots \mid X=u \ldots]=\sum_{\alpha \in \mathcal{A}: R(v \alpha)=c} P[X=v \alpha \ldots \mid X=v \ldots]
$$

Figure. Schematic partition of $\{0,1,2\}^{*}$ into equivalence classes

DEFINITION. X is embedable w.r.t. R provided that for all $u, v \in \mathcal{A}^{*}$ and $c \in R$, if $u R v$ then

$$
\sum_{\alpha \in \mathcal{A}: R(u \alpha)=c} P[X=u \alpha \ldots \mid X=u \ldots]=\sum_{\alpha \in \mathcal{A}: R(v \alpha)=c} P[X=v \alpha \ldots \mid X=v \ldots]
$$

Figure. Schematic partition of $\{0,1,2\}^{*}$ into equivalence classes

DEFINITION. X is embedable w.r.t. R provided that for all $u, v \in \mathcal{A}^{*}$ and $c \in R$, if $u R v$ then

$$
\sum_{\alpha \in \mathcal{A}: R(u \alpha)=c} P[X=u \alpha \ldots \mid X=u \ldots]=\sum_{\alpha \in \mathcal{A}: R(v \alpha)=c} P[X=v \alpha \ldots \mid X=v \ldots]
$$

Figure. Schematic partition of $\{0,1,2\}^{*}$ into equivalence classes

THEOREM A. X is embedable w.r.t. R if and only if, for $x \in \mathcal{A}^{*}$, if we condition on having $X=x \ldots$ then the stochastic process

$$
X_{n}^{R}:=R\left(X_{1} \cdots X_{n}\right), \quad n \geq|x|,
$$

is a first-order homogeneous Markov chain with transition probabilities that do not depend on x

THEOREM B. For each equivalence relation R in \mathcal{A}^{*}, there exists a unique coarsest refinement R^{\prime} of R w.r.t. which X is embedable

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X ?

```
\(\longrightarrow X \quad=\quad \begin{array}{lllllll} & b & b & b & a & b & \ldots \\ \text { (original sequence) }\end{array}\)
\(\longrightarrow X^{R}=\begin{array}{lllllll} & 0 & 0 & 1 & 0 & \cdots & \text { (non-Markovian encoding) }\end{array}\)
    \(X^{R^{\prime}}=\begin{array}{lllllll}0 & 4 & 6 & 3 & 4 & \cdots & \text { (optimal Markovian encoding) }\end{array}\)
    \(X^{Q}=\begin{array}{lllllll}6 & 3 & 18 & 15 & 10 & \cdots & \text { (any other Markovian encoding) }\end{array}\)
```


Figure. Partition $R=\left\{\mathcal{L}, \mathcal{A}^{*} \backslash \mathcal{L}\right\}$ s.t. X^{R} is non-Markovian

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X ?

```
\(\longrightarrow X \quad=\begin{array}{lllllll}a & b & b & a & b & \ldots & \text { (original sequence) }\end{array}\)
    \(X^{R}=\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & \cdots & \text { (non-Markovian encoding) }\end{array}\)
\(\longrightarrow X^{R^{\prime}}=\begin{array}{lllllll}0 & 4 & 6 & 3 & 4 & \cdots & \text { (optimal Markovian encoding) }\end{array}\)
    \(X^{Q}=\begin{array}{lllllll}6 & 3 & 18 & 15 & 10 & \cdots\end{array}\) (any other Markovian encoding)
```


Figure. Coarsest refinement R^{\prime} of R w.r.t. which X is embedable

APPLICATION/QUESTION. What is the smallest state-space for studying the frequency statistics of a language \mathcal{L} in X ?

```
\(\longrightarrow X \quad=\begin{array}{lllllll}a & b & b & a & b & \ldots & \text { (original sequence) }\end{array}\)
    \(X^{R}=\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & \cdots & \text { (non-Markovian encoding) }\end{array}\)
    \(X^{R^{\prime}}=\begin{array}{lllllll}0 & 4 & 6 & 3 & 4 & \cdots & \text { (optimal Markovian encoding) }\end{array}\)
\(\longrightarrow X^{Q}=\begin{array}{lllllll}6 & 3 & 18 & 15 & 10 & \ldots & \text { (any other Markovian encoding) }\end{array}\)
```

L				$A * / L$			
(0)	(1)		(2)	(3)		(4)	(5)
				ab			
(6)							
			(8)				
	(7)			(9)			
a				$\begin{aligned} & (10) \\ & \text { abbab } \end{aligned}$		(11)	
				(12)	(13)		
(14)			(16)	(17)		(18)	

Figure. Arbitrary refinement Q of R w.r.t. which X is embedable

REMARK. The optimal refinement R^{\prime} of R such that $X^{R^{\prime}}$ is embedable is obtained through a limiting process: this makes it almost impossible to characterize de equivalence classes of R^{\prime}

Motivated by this we will introduce an embedding which-while not as optimal-it is analytically tractable (!)

DEFINITION. The Markov relation induced by X into \mathcal{A}^{*} is the equivalence relation defined as

$$
u R^{X} v \Leftrightarrow\left(\forall w \in \mathcal{A}^{*}\right): P[X=u w \ldots \mid X=u \ldots]=P[X=v w \ldots \mid X=v \ldots]
$$

DEFINITION. The Markov relation induced by X into \mathcal{A}^{*} is the equivalence relation defined as

$$
u R^{X} v \Leftrightarrow\left(\forall w \in \mathcal{A}^{*}\right): P[X=u w \ldots \mid X=u \ldots]=P[X=v w \ldots \mid X=v \ldots]
$$

Figure. Weighted tree visualization of definition with $\mathcal{A}=\{0,1\}$

An equivalence relation R is said to be right-invariant if for all $u, v \in \mathcal{A}^{*}$ and $\alpha \in \mathcal{A}$:

$$
R(u)=R(v) \Longrightarrow R(u \alpha)=R(v \alpha)
$$

THEOREM C. X is embedable w.r.t. any right-invariant equivalence relation that is a refinement of R^{X}; in particular, X is embedable w.r.t. R^{X}

EXAMPLE. Back to the seemingly unbiassed coin.

For $0<p<1 / 2$, define

$$
X_{n+1} \stackrel{d}{=} \begin{cases}\operatorname{Bernoulli}(p) & , \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}>\frac{1}{2} \\ \operatorname{Bernoulli}(1 / 2) & , \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{2} \\ \operatorname{Bernoulli}(1-p) & , \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}<\frac{1}{2}\end{cases}
$$

We aim to understand the frequency statistics of

$$
\begin{aligned}
\mathcal{L}_{1} & =\{0,1\}^{*}\{1\} \\
\mathcal{L}_{2} & =\{0\}^{*}\{1\}\{0\}^{*}\left(\{1\}\{0\}^{*}\{1\}\{0\}^{*}\right)^{*}
\end{aligned}
$$

within X

PROPOSITION. $R:\{0,1\}^{*} \rightarrow \mathbb{Z}$ defined as

$$
R(x)=2\left\{\sum_{i=1}^{|x|} x_{i}-\frac{|x|}{2}\right\}=\sum_{i=1}^{|x|} x_{i}-\sum_{i=1}^{|x|}\left(1-x_{i}\right)
$$

is a right-invariant refinement of R^{X}. In particular, $X_{n}^{R}:=R\left(X_{1} \cdots X_{n}\right)$ is a first-order homogeneous Markov chain

X^{R} is recurrent, with period 2. Because $0<p<1 / 2, X^{R}$ is positive recurrent; in particular, there exists a stationary distribution π.
Observe that

$$
S_{n}^{\mathcal{L}_{1}}=\sum_{i=1}^{n} X_{i}
$$

$$
S_{n}^{\mathcal{L}_{1}}=\sum_{i=1}^{n} X_{i}
$$

COROLLARY A. If U and V are \mathbb{Z}-valued random variables such that

$$
\begin{array}{lll}
P[U=n] & =2 \cdot \pi(n), & n=0(\bmod 2) \\
P[V=n] & =2 \cdot \pi(n), & n=1(\bmod 2)
\end{array}
$$

then for $\mathcal{L}_{1}:=\{0,1\}^{*}\{1\}$ it applies that

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n=0(\bmod 2)}} 2 n \cdot\left\{\frac{S_{n}^{\mathcal{L}_{1}}}{n}-\frac{1}{2}\right\} \stackrel{d}{=} U ; \\
& \lim _{\substack{n \rightarrow \infty \\
n=1(\bmod 2)}} 2 n \cdot\left\{\frac{S_{n}^{\mathcal{L}_{1}}}{n}-\frac{1}{2}\right\} \stackrel{d}{=} V .
\end{aligned}
$$

\mathcal{L}_{2} is recognized by the automaton:

According to the Mihill-Nerode theorem, $Q:\{0,1\}^{*} \rightarrow\{A, B\}$ defined as

$$
Q(x):=\binom{\text { state in the automaton where the path }}{\text { associated with } x \text { ends when starting at } A}
$$

is right-invariant

Hence $R \times Q$ is also right-invariant and a refinement of R^{X}. In particular, $X_{n}^{R \times Q}:=\left(X_{n}^{R}, X_{n}^{Q}\right)$ is a first-order homogeneous Markov chain

$X^{R \times Q}$ is positive recurrent, with period 4. Returning times to a state have finite second moment. This allows to use the central limit theorem for additive functionals of Markov chains to obtain the following result.

COROLLARY B. There exists $\sigma>0$ such that

$$
\lim _{n \rightarrow \infty} \sqrt{n} \cdot\left\{\frac{S_{n}^{\mathcal{L}_{2}}}{n}-\frac{1}{2}\right\} \stackrel{d}{=} \sigma \cdot W,
$$

where W is a standard Normal random variable

CONCLUSION. For the same non-Markovian sequence X, non-Gaussian (discrete w/phases) and Gaussian limits are obtained for the frequency statistics of different regular languages
(More details in the 2008 ANALCO proceedings.)
... Thank you (!)

