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MAXIMUM INDEPENDENT SET

Independent set
An independent (or stable) set in a graph is a set of
vertices no two of which share the same edge.
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MIS = {1, 3, 5, 7}

Maximum independent set (MIS)
The MIS problem asks for an independent set with the
largest size.

NP hard!!
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MAXIMUM INDEPENDENT SET

Equivalent versions

The same problem as MAXIMUM CLIQUE on the
complementary graph (clique = complete subgraph).

Since the complement of a vertex cover in any graph
is an independent set, MIS is equivalent to
MINIMUM VERTEX COVERING . (A vertex cover is a
set of vertices where every edge connects at least
one vertex.)

Among Karp’s (1972) original list of 21 NP-complete
problems.

Hsien-Kuei Hwang PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS



MAXIMUM INDEPENDENT SET

Equivalent versions

The same problem as MAXIMUM CLIQUE on the
complementary graph (clique = complete subgraph).

Since the complement of a vertex cover in any graph
is an independent set, MIS is equivalent to
MINIMUM VERTEX COVERING . (A vertex cover is a
set of vertices where every edge connects at least
one vertex.)

Among Karp’s (1972) original list of 21 NP-complete
problems.

Hsien-Kuei Hwang PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS



MAXIMUM INDEPENDENT SET

Equivalent versions

The same problem as MAXIMUM CLIQUE on the
complementary graph (clique = complete subgraph).

Since the complement of a vertex cover in any graph
is an independent set, MIS is equivalent to
MINIMUM VERTEX COVERING . (A vertex cover is a
set of vertices where every edge connects at least
one vertex.)

Among Karp’s (1972) original list of 21 NP-complete
problems.

Hsien-Kuei Hwang PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS



THEORETICAL RESULTS

Random models: Erdős-Rényi’s Gn,p

Vertex set = {1, 2, . . . , n} and all edges occur
independently with the same probability p.

The cardinality of an MIS in Gn,p

Matula (1970), Grimmett and McDiarmid (1975),
Bollobas and Erdős (1976), Frieze (1990): If pn →∞,
then (q := 1− p)

|MISn| ∼ 2 log1/q pn whp,

where q = 1− p; and ∃k = kn such that

|MISn| = k or k + 1 whp.
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A GREEDY ALGORITHM

Adding vertices one after another whenever possible
The size of the resulting IS:

Sn
d
= 1 + Sn−1−Binom(n−1;p) (n > 1),

with S0 ≡ 0.

Equivalent to the length of the right arm of random
digital search trees.
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ANALYSIS OF THE GREEDY ALGORITHM

Easy for people in this community

Mean: E(Sn) ∼ log1/q n + a bounded periodic
function.

Variance: V(Sn) ∼ a bounded periodic function.

Limit distribution does not exist:
E
(

e(Xn−log1/q n)y
)
∼ F (log1/q n; y), where

F (u; y) :=
1− ey

log(1/q)

∏
`>1

1− ey q`

1− q`

∑
j∈Z

Γ

(
− y + 2jπi

log(1/q)

)
e2jπiu.
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A BETTER ALGORITHM?

Goodness of GREEDY IS
Grimmett and McDiarmid (1975), Karp (1976),
Fernandez de la Vega (1984), Gazmuri (1984),
McDiarmid (1984):
Asymptotically, the GREEDY IS is half optimal.

Can we do better?
Frieze and McDiarmid (1997, RSA), Algorithmic theory
of random graphs, Research Problem 15:
Construct a polynomial time algorithm that finds an
independent set of size at least (1

2 + ε)|MISn| whp or
show that such an algorithm does not exist modulo
some reasonable conjecture in the theory of
computational complexity such as, e.g., P 6= NP.
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JERRUM’S (1992) METROPOLIS ALGORITHM

A degenerate form of simulated annealing
Sequentially increase the clique (K ) size by: (i) choose a vertex
v u.a.r. from V; (ii) if v 6∈ K and v connected to every vertex of K ,
then add v to K ; (iii) if v ∈ K , then v is subtracted from K with
probability λ−1.

He showed: ∀λ > 1,∃ an initial state from which the
expected time for the Metropolis process to reach a
clique of size at least (1 + ε) log1/q(pn) exceeds
nΩ(log pn).

nlog n = e(log n)2

Hsien-Kuei Hwang PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS



JERRUM’S (1992) METROPOLIS ALGORITHM

A degenerate form of simulated annealing
Sequentially increase the clique (K ) size by: (i) choose a vertex
v u.a.r. from V; (ii) if v 6∈ K and v connected to every vertex of K ,
then add v to K ; (iii) if v ∈ K , then v is subtracted from K with
probability λ−1.

He showed: ∀λ > 1,∃ an initial state from which the
expected time for the Metropolis process to reach a
clique of size at least (1 + ε) log1/q(pn) exceeds
nΩ(log pn).

nlog n = e(log n)2

Hsien-Kuei Hwang PROBABILISTIC ANALYSIS OF AN EXHAUSTIVE SEARCH ALGORITHM IN RANDOM GRAPHS



POSITIVE RESULTS

Exact algorithms
A huge number of algorithms proposed in the
literature; see Bomze et al.’s survey (in Handbook of
Combinatorial Optimization, 1999).

Special algorithms
– Wilf’s (1986) Algorithms and Complexity

describes a backtracking algorithms enumerating
all independent sets with time complexity nO(log n).

– Chvátal (1977) proposes exhaustive algorithms
where almost all Gn,1/2 creates at most n2(1+log2 n)

subproblems.
– Pittel (1982):

P
(

n
1−ε

4 log1/q n 6 Timeused by
Chvátal’s algo 6 n

1+ε
2 log1/q n

)
> 1− e−c log2 n
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AIM: A MORE PRECISE ANALYSIS OF THE
EXHAUSTIVE ALGORITHM

MIS contains either v or not

Xn
d
= Xn−1 + X ∗

n−1−Binom(n−1;p) (n > 2),

with X0 = 0 and X1 = 1.

Special cases
– If p is close to 1, then the second term is small, so

we expect a polynomial time bound.
– If p is sufficiently small, then the second term is

large, and we expect an exponential time bound.
– What happens for p in between?
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MEAN VALUE

The expected value µn := E(Xn) satisfies

µn = µn−1 +
∑

06j<n

(
n − 1

j

)
pjqn−1−jµn−1−j .

with µ0 = 0 and µ1 = 1.

Poisson generating function

Let f̃ (z) := e−z ∑
n>0 µnzn/n!. Then

f̃ ′(z) = f̃ (qz) + e−z .
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RESOLUTION OF THE RECURRENCE

Laplace transform

The Laplace transform of f̃

L (s) =

∫ ∞

0
e−xs f̃ (x) dx

satisfies
sL (s) =

1
q

L

(
s
q

)
+

1
s + 1

.

Exact solutions

L (s) =
∑
j>0

q(j+1
2 )

sj+1(s + q j)
.
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RESOLUTION OF THE RECURRENCE

Exact solutions

L (s) =
∑
j>0

q(j+1
2 )

sj+1(s + q j)
.

Inverting gives f̃ (z) =
∑
j>0

q(j+1
2 )

j!
z j+1

∫ 1

0
e−qj uz(1−u)j du.

Thus µn =
∑

16j6n

(
n
j

)
(−1)j

∑
16`6j

(−1)`q j(`−1)−(`
2), or

µn = n
∑

06j<n

(
n − 1

j

)
q(j+1

2 )
∑

06`<n−j

(
n − 1− j

`

)
q j`(1− q j)n−1−j−`

j + ` + 1
.

Neither is useful for numerical purposes for large n.
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QUICK ASYMPTOTICS

Back-of-the-envelope calculation

Take q = 1/2. Since Binom(n − 1; 1
2) has mean n/2, we

roughly have
µn ≈ µn−1 + µbn/2c.

This is reminiscent of Mahler’s partition problem.
Indeed, if ϕ(z) =

∑
n µnzn, then

ϕ(z) ≈ 1 + z
1− z

ϕ(z2) =
∏
j>0

1
1− z2j .

So we expect that (de Bruijn, 1948; Dumas and
Flajolet, 1996)

log µn ≈ c
(

log
n

log2 n

)2

+ c′ log n + c′′ log log n + Periodicn.
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ASYMPTOTICS OF µn

Poisson heuristic (de-Poissonization, saddle-point
method)

µn =
n!

2πi

∮
|z|=n

z−n−1ez f̃ (z) dz

≈
∑
j>0

f̃ (j)(n)

j!
n!

2πi

∮
|z|=n

z−n−1ez(z − n)j dz

= f̃ (n) +
∑
j>2

f̃ (j)(n)

j!
τj(n),

where τj(n) := n![zn]ez(z − n)j = j![z j ](1 + z)ne−nz

(Charlier polynomials). In particular, τ0(n) = 1,
τ1(n) = 0, τ2(n) = −n, τ3(n) = 2n, and τ4(n) = 3n2 − 6n.
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A MORE PRECISE EXPANSION FOR f̃ (x)

Asymptotics of f̃ (x)

Let ρ = 1/ log(1/q) and R log R = x/ρ. Then

f̃ (x) ∼ Rρ+1/2e(ρ/2)(log R)2
G(ρ log R)√

2πρ log R

1 +
∑
j>1

φj(ρ log R)

(ρ log R)j

 ,

as x →∞, where G(u) := q({u}2+{u})/2F (q−{u}),

F (s) =
∑

−∞<j<∞

q j(j+1)/2

1 + q js
sj+1,

and the φj(u)’s are bounded, 1-periodic functions of u
involving the derivatives F (j)(q−{u}).
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A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

R = x/ρ/W (x/ρ), Lambert’s W -function

W (x) = log x − log log x +
log log x

log x
+

(log log x)2 − 2 log log x
2(log x)2 + · · · .

So that

f̃ (x) ∼
xρ+1/2G

(
ρ log x/ρ

log(x/ρ)

)
√

2πρρ+1/2 log x
exp

(
ρ

2

(
log

x/ρ

log(x/ρ)

)2
)

.

Method of proof: a variant of the saddle-point method

f̃ (x) =
1

2πi

∫ 1+i∞

1−i∞
eszL (s) ds
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JUSTIFICATION OF THE POISSON HEURISTIC

Four properties are sufficient
The following four properties are enough to justify the
Poisson-Charlier expansion.

– f̃ ′(z) = f̃ (qz) + e−z;
– F (s) = sF (qs) (F (s) =

∑
i∈Z q j(j+1)/2sj+1/(1 + q js));

–
f̃ (j)(x)

f̃ (x)
∼
(

ρ log x
x

)j

;

– |f (z)| 6 f (|z|) where f (z) := ez f̃ (z).

Thus (ρ = 1/ log(1/q))

µn ∼
nρ+1/2G

(
ρ log n/ρ

log(n/ρ)

)
√

2πρρ+1/2 log n
exp

(
ρ

2

(
log

n/ρ

log(n/ρ)

)2
)

.
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VARIANCE OF Xn

σn :=
√

V(Xn)

σ2
n = σ2

n−1 +
∑

06j<n

πn,jσ
2
n−1−j +Tn, πn,j :=

(
n − 1

j

)
pjqn−1−j ,

where Tn :=
∑

06j<n πn,j∆
2
n,j , ∆n,j := µj + µn−1 − µn.

Asymptotic transfer: an = an−1 +
∑

06j<n πn,jan−1−j + bn

If bn ∼ nβ(log n)κ f̃ (n)α, where α > 1, β, κ ∈ R, then

an ∼
∑
j6n

bj ∼
n

αρ log n
bn.
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ASYMPTOTICS OF THE VARIANCE

Asymptotics of Tn: by elementary means

Tn ∼ q−1pρ4n−3(log n)4 f̃ (n)2.

Applying the asymptotic transfer

σ2
n ∼ Cn−2(log n)3f̃ (n)2.

where C := pρ3/(2q).

Variance
Mean2 ∼ C

(log n)3

n2
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ASYMPTOTIC NORMALITY OF Xn

Convergence in distribution
The distribution of Xn is asymptotically normal

Xn − µn

σn

d→ N (0, 1),

with convergence of all moments.

Proof by the method of moments
– Derive recurrence for E(Xn − µn)

m.
– Prove by induction (using the asymptotic

transfer) that

E(Xn − µn)
m

∼
(m)!

(m/2)!2m/2 σm
n , if 2 | m,

= o(σm
n ), if 2 - m,
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A STRAIGHTFORWARD EXTENSION

b = 1, 2, . . .

Xn
d
= Xn−b + X ∗

n−b−Binom(n−b;p),

with Xn = 0 for n < b and Xb = 1.

For example, MAXIMUM TRIANGLE PARTITION:

Xn
d
= Xn−3 + X ∗

n−3−Binom(n−3;p3),

The same tools we developed apply
Xn asymptotically normally distributed with mean and
variance of the same order as the case b = 1.
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A NATURAL VARIANT

What happens if Xn
d
= Xn−1 + X ∗

uniform[0,n-1]?

µn = µn−1 +
1
n

∑
06j<n

µj ,

satisfies µn ∼ cn−1/4e2
√

n. Note: µn ≈ µn−1 + µn/2 fails.

Limit law not Gaussian (by method of moments)

Xn

µn

d→ X ,

where g(z) :=
∑

m>1 E(X m)zm/(m ·m!) satisfies

z2g′′ + zg′ − g = zgg′.
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CONCLUSION

Random graph algorithms:
a rich source of interesting recurrences

Obrigado!
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