The impact of Analysis of Algorithms

on Bioinformatites

Gastonil Gonneto Tis.

Intormatike cisis, Zurich
Analysis of Algorithmis: Mafésias, April 16, 2008

Abstract

In principle, Analysis of Algorithms and Bioinformatics share few tools and methods. This is only true when we look at the surface, deeper inspection shows many points of convergence, in particular in asymptotic analysis and model development. We would also like to stress the importance and usefulness of Maximum Likelihood for modelling in bioinformatics and the relation to problems in Analysis of Algorithms.

Bertioga to Sao Sebastiao in I97I

Bertioga to Sao Sebastiao in I97|

Central Dogma of Molecular Evolution

Double stranded DNA is reproduced

Modelling

Analysis of Algorithms gives us a natural ability to model and analyze processes.

What makes a good model?
Must capture the essence of the process
As simple as possible, but not simpler
Realistic in terms of the application
Analyzable

Modelling: Closed form vs computational

Simple models may allow closed form solutions, more realistic (complicated) models may only allow numerical solutions

A closed form solution gives you insight!

Numerical computation gives you results which can be used.

Mistakes happen during DNA replication

Most mistakes are harmful, give the organism a disadvantage and it does not survive/compete.

Some mistakes are irrelevant, i.e. do not cause any difference. Rarely they remain in the population.

Some mistakes are helpful they either improve the organism or adapt it better to the environment.
These are very likely to survive in the population.

Mistakes modeled as a Markovian process

The occurrence and complicated acceptance of DNA mutations is modeled as a Markov process This is known to be flawed, but still is the best model for DNA/protein evolution

$M=$| | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.93 | 0.01 | 0.07 | 0.0 I |
| C | 0.02 | 0.95 | 0.02 | 0.02 |
| G | 0.03 | 0.01 | 0.88 | 0.01 |
| T | 0.02 | 0.03 | 0.03 | 0.96 |

Mutation matrices

$M p_{0}=p_{1}$
M defines a unit of mutation
$M^{\infty} p=f$
Infinite mutation results in the natural (default) frequencies
$M f=f$
f is the eigenvector with eigenvalue 1 of M

Mutation matrices (II)

$$
M^{d}=e^{d Q} \quad \begin{gathered}
Q \text { is the rate (differential } \\
\text { equations of transitions) matrix }
\end{gathered}
$$

$$
Q=U \Lambda U^{-1}
$$

Eigenvalue/eigenvector decomposition of Q

$$
\begin{aligned}
& M^{d}=U e^{d \Lambda} U^{-1} \\
& \lambda_{1}=0, \quad U_{1}=f \overbrace{\text { from } M f=f}^{\text {reaches steady state }} \\
& \lambda_{i}<0, \quad i>1 \quad
\end{aligned}
$$

The principle of Molecular evolution

Dog DNA
aactgagcggtt...

Elephant DNA aactgacccggtt...

Rabbit DNA
aactgaccggtt...

Phylogenetic tree of 17 vertebrates

Amphibia
Sauropsida
Metatheria
Actinopterygii
Eutheria

Tree of mammals

- Monodelphis_domestica MONDO

Probabilities vs likelihoods

Some event

Over all X, A and B defines a probability space

For particular data, as a
function of d, defines a likelihood

Maximum likelihood (I)

How to estimate parameters by Maximum likelihood?

Compute the likelihood, or log of the likelihood, and maximize

$$
\begin{aligned}
& L(\theta)=\operatorname{Prob}\{\text { event depending on } \theta\} \\
& L(\theta)=\prod_{i} \operatorname{Prob}\left\{i^{t h} \text { event depending on } \theta\right\} \\
& \ln (L(\theta))=\sum_{i} \ln \left(\operatorname{Prob}\left\{i^{t h} \text { event depending on } \theta\right\}\right)
\end{aligned}
$$

Maximum likelihood (II)

$$
\begin{aligned}
& \max (L(\theta))=L(\hat{\theta}) \\
& \frac{L^{\prime}(\hat{\theta})}{L(\hat{\theta})}=0 \\
& \frac{L^{\prime \prime}(\hat{\theta})}{L(\hat{\theta})}=-\frac{1}{\sigma^{2}(\hat{\theta})}
\end{aligned}
$$

Also applicable to vectors with the usual matrix interpretations

Maximum likelihood (III)

Completely analogous to the asymptotic estimation of integrals based on the approximation of the maximum by

$$
a_{0} e^{-a_{1} x^{2}}
$$

Maximum likelihood (IV)

The maximum likelihood estimators are:
Unbiased

Most efficient (of the unbiased estimators, the ones with smallest variance)

Normally distributed

Maximum likelihood (V)

This is ideal for symbolic/numeric computation

Complicated problems/models can be stated in their most natural form

The literature usually warns against the difficulty of computing derivatives and solving non-linear equations (maximum) ????

Some people have not discovered symbolic computation yet...

There are only two drawbacks to MLE's, but they are important ones:

- With small numbers of failures (less than 5, and sometimes less than 10 is small), MLE's can be heavily biased and the large sample optimality properties do not apply
- Calculating MLE's often requires specialized software for solving complex non-linear equations. This is less of a problem as time goes by, as more statistical packages are upgrading to contain MLE analysis capability every year.

Inter sequence distance estimation by ML

$$
\begin{array}{lllllll}
\mathbf{s} & \mathrm{A} & \mathrm{~A} & \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{G} \\
\uparrow_{d} & & & & & & \\
l & & & \\
\mathrm{t} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~T} & \mathrm{G} & \mathrm{G} \\
L(d)= & \prod_{i}\left(M^{d}\right)_{s_{i}, t_{i}}
\end{array}
$$

Inter sequence distance estimation by ML

$$
\ln (L(d))=\sum_{i} \ln \left(\left(M^{d}\right)_{s_{i}, t_{i}}\right)
$$

This is normally called the score of an alignment and it is used (with some normalization) by the dynamic programming algorithm for sequence alignment

Inter sequence distance estimation by ML

Score (likelihood) vs PAM distance for a particular protein alignment

Estimation of deletion costs by ML

The Zipfian model of indels postulates that indels have a probability given by:
$\operatorname{Pr}\{$ indel of length $k\}=c_{0}(d) \frac{1}{\zeta(\theta) k^{\theta}}$
where the first term is the probability of opening an indel and the second gives the distribution of indels according to length

Estimation of deletion costs by ML (II)

Empirically:

$$
\ln \left(c_{0}(d)\right)=d_{0}+d_{1} \ln (d)
$$

which means that the score of an indel is modeled by the formula:
$\ln ($ indel length $k)=d_{0}+d_{1} \ln (d)-\theta \ln k$
a model with 3 unknown parameters

Estimation of deletion costs by ML (III)

Collecting information from gaps in real alignments (thousands of them) we can fit these parameters by maximum likelihood

Input (part of 108 Mb of it)

$\mathrm{ML}:=\mathrm{ML}+\ln (1-\mathrm{Ps}(27.3))^{*} 8312+\ln (\mathrm{Ps}(27.3))^{*} 441+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}$ $(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{PI}(2))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{PI}(11))+\ln (\mathrm{PI}(3))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(2))+\ln$ $(\mathrm{Pl}(27))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(7))$ $+\ln (\mathrm{Pl}(5))+\ln (\mathrm{PI}(36))+\ln (\mathrm{Pl}(42))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(27))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(20))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(21))+\ln (\mathrm{PI}$ $(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(13))+\ln (\mathrm{Pl}(34))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(3))+\ln$ $(\mathrm{Pl}(5))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(39))+\ln (\mathrm{Pl}(24))+\ln$ $(\mathrm{Pl}(27))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(43))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(2))+\ln$ $(\mathrm{Pl}(19))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(23))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(45))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(16))+\ln (\mathrm{Pl}(2))$ $+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{PI}(3))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{PI}(23))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(1))+\ln (\mathrm{PI}(4))+\ln (\mathrm{PI}(21))+\ln (\mathrm{PI}(5))$ $+\ln (\mathrm{Pl}(21))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(27))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{PI}$ $(11))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(29))+\ln (\mathrm{Pl}(52))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(31))+\ln (\mathrm{Pl}(10))$ $+\ln (\mathrm{Pl}(4))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}(26))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(1))+\ln (\mathrm{PI}(15))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{PI}(13))+\ln (\mathrm{PI}$ $(16))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(43))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{PI}(9))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(19))+\ln (\mathrm{PI}(39))+\ln (\mathrm{PI}(3))+\ln$ $(\mathrm{Pl}(3))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(31))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{PI}(4))+\ln (\mathrm{PI}(8))+\ln (\mathrm{Pl}(21))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{PI}(2))+\ln (\mathrm{PI}(9))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}(4))+\ln (\mathrm{PI}(37))+\ln$ $(\mathrm{Pl}(5))+\ln (\mathrm{PI}(28))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(1))+\ln (\mathrm{PI}(2))+\ln (\mathrm{Pl}(1))+\ln$ $(\mathrm{Pl}(1))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(93))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(25))+\ln (\mathrm{Pl}(4))+\ln$ $(\mathrm{Pl}(6))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(51))+\ln (\mathrm{Pl}(55))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}$ (6) $)+\ln (\mathrm{Pl}(17))+\ln (\mathrm{PI}(15))+\ln (\mathrm{PI}(5))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}(9))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(5))+\ln (\mathrm{PI}(4))+\ln (\mathrm{PI}(6))+\ln (\mathrm{PI}(10))+\ln (\mathrm{PI}$ $(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(13))+\ln (\mathrm{PI}(2))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{PI}$ (8)) $+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(19))+\ln (\mathrm{Pl}(19))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(68))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(12))+\ln (\mathrm{Pl}(7))$ $+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(11))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(25))+\ln (\mathrm{Pl}(8))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{PI}(20))+\ln (\mathrm{PI}(22))+\ln (\mathrm{PI}$ (4)) $+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(27))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(22))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}$ $(1))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(30))+\ln (\mathrm{PI}(30))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{PI}(30))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(21))$ $+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(15))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}(2))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{PI}(11))+\ln (\mathrm{Pl}(1))$ $+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(9))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(24))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{PI}(1))+\ln (\mathrm{PI}(7))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(4))+\ln (\mathrm{Pl}(1))+\ln$ $(\mathrm{Pl}(1))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(48))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(203))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(6))+\ln$ $(\mathrm{Pl}(2))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(16))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(21))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(5))+\ln$ $(\mathrm{Pl}(2))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(41))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(4))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(37))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(24))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(9))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(1))$ $+\ln (\mathrm{Pl}(26))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{Pl}(15))+\ln (\mathrm{Pl}(19))+\ln (\mathrm{PI}(1))+\ln (\mathrm{Pl}(7))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(6))+\ln (\mathrm{Pl}(3))+\ln (\mathrm{Pl}(2))+\ln (\mathrm{PI}(3))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(9))$ $+\ln (\mathrm{Pl}(1))+\ln (\mathrm{PI}(4))+\ln (\mathrm{PI}(1))+\ln (\mathrm{PI}(10))+\ln (\mathrm{PI}(5))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{PI}(2))+\ln (\mathrm{PI}(2))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{PI}(18))+\ln (\mathrm{PI}(18))+\ln (\mathrm{PI}(6))+\ln (\mathrm{PI}(3))+\ln (\mathrm{PI}$ $(22))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(10))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(25))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(5))+\ln (\mathrm{Pl}(14))+\ln (\mathrm{Pl}(1))+\ln (\mathrm{Pl}(17))+\ln (\mathrm{Pl}(16))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{Pl}(18))+\ln (\mathrm{PI}$

Evolution happens at very different speeds

Some proteins in bacteria are 80% identical to those in humans ($3,000,000,000$ years)
Most proteins in mammals are about 80% identical (200,000,000 years)
Humans and chimpanzees are about 99\% identical at the protein level ($5,000,000$ years) Mitochondrial DNA is more than 99% identical in all humans (200,000 years)
The HIV virus has mutated about 10% in the last 20 years

Variable evolution rates (I)

It is recognized as biologically appropriate that different positions evolve at different rates Modeled with a gamma distribution (no good reason, but not a terrible idea either)

$$
d_{i} \in \Gamma(k, \theta)
$$

Variable evolution rates (II)

The Gamma distribution is only defined over positive values and has two parameters
It can be shaped from an exponential distribution to an almost normal one

$$
\begin{aligned}
p(x) & =\frac{x^{k-1} e^{-x / \theta}}{\Gamma(k) \theta^{k}} \\
E[x] & =k \theta \\
\sigma^{2}(x) & =k \theta^{2} \\
m g f(t) & =\int_{0}^{\infty} e^{t x} p(x) d x \\
& =(1-\theta t)^{-k}
\end{aligned}
$$

Variable evolution rates (III)

The expected transitions rates are the result of the combined event of selecting a distance (with gamma distribution) and an evolution transition

$$
\begin{aligned}
E\left[M^{x}\right] & =\int_{0}^{\infty} p(x) M^{x} d x \\
& =U\left(\int_{0}^{\infty} p(x) e^{\Lambda x} d x\right) U^{-1} \\
& =U m g f(\Lambda) U^{-1} \\
& =U(I-\theta \Lambda)^{-k} U^{-1}
\end{aligned}
$$

Molecular weight fingerprinting

Protein identification by the mass of its digested parts

in the lab
Protein Identification Strategy
in silico
Tissue or organism of interest

The model for comparison

How to model the approximate match of k of the weights

$\operatorname{Pr}\{\mathbf{k}, \mathbf{n}, \mathrm{eps}\}=$ Probability of \mathbf{k} boxes with at least one ball each

The model for comparison - generating function

All the distribution events are captured in the generating function:
$G_{k, n, \epsilon}=\left(a_{1} \epsilon+a_{2} \epsilon+\ldots+a_{k} \epsilon+b(1-k \epsilon)\right)^{n}$
a_{i} corresponds to a ball falling in box i and b corresponds to a ball falling outside all boxes

We want to find the coefficient of all terms having all the a_{i} to some positive power

For example, for $k=2$

$$
\begin{aligned}
G_{2, n, \epsilon} & =\left(a_{1} \epsilon+a_{2} \epsilon+b(1-2 \epsilon)\right)^{n} \\
G_{2, n, \epsilon}^{*} & =G_{2, n, \epsilon}-\left.G_{2, n, \epsilon}\right|_{a_{1}=0} \\
& =\left(a_{1} \epsilon+a_{2} \epsilon+b(1-2 \epsilon)\right)^{n}-\left(a_{2} \epsilon+b(1-2 \epsilon)\right)^{n} \\
G_{2, n, \epsilon}^{* *} & =G_{2, n, \epsilon}^{*}-G_{2, n,\left.\epsilon\right|_{a_{2}=0} ^{*}} \\
P_{2, n, \epsilon} & =1-2(1-\epsilon)^{n}+(1-2 \epsilon)^{n}
\end{aligned}
$$

The model for comparison - generating function

$$
\begin{aligned}
& P_{k, n, \epsilon}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(1-i \epsilon)^{n} \\
& P_{k, n, \epsilon}=\left(1-e^{-n \epsilon}\right)^{k}\left(1+\frac{k n \epsilon\left(e^{n \epsilon}-k\right)}{2\left(e^{n \epsilon}-1\right)^{2}} \epsilon+O\left(\epsilon^{2}\right)\right)
\end{aligned}
$$

Bioinformatics is fun

How diverse are humans?

A SNP (pronounced snip) is a position in our DNA where at least 1% of the population shows a difference. (Single Nucleotide Polymorphism)

SNPs are responsible for most of the human diversity. They are also the cause all of the genetic diseases.

There are about 300,000 SNPs in the human population.

Easy-to-find SNPs are called markers. Some easy to test markers are the main tool for genetic fingerprinting (e.g. paternity tests)

Paternity testing

Locus Mom Child Dad

D8SII79	$13 / 14$	$14 / 16$	$13 / 16$
THOI	$7 / 9$	$8 / 9$	$7 / 8$
CSFIPO	$10 / 11$	$7 / 10$	7
AR2IUY	$7 / 11$	$11 / 17$	$18 / 21$
\ldots			

DHL founder, Larry Hillblom's case

Died in a seaplane crash.
No family, University of California to receive his estate

Various women in several different countries made claims that he was the father of their children.

4 Children were proved to come from the same father and they received their rightly share.

the END

