Asymptotic probability of Boolean functions over implication

Danièle Gardy, Univ. Versailles
with
Hervé Fournier and Antoine Genitrini, Univ. Versailles
Bernhard Gittenberger, T.U. Wien

April 2008

Outline

- Boolean expressions and trees
- A restricted propositional calculus
- Tautologies
- Probability and complexity of a Boolean function
- Main result: sketch of proof
- Extensions and open questions

Boolean expressions

$$
\begin{aligned}
& ((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x})) \\
& (x \vee(y \wedge \bar{x})) \vee(((z \wedge \bar{y}) \vee(x \vee \bar{u})) \wedge(x \vee y))
\end{aligned}
$$

Boolean expressions

$$
\begin{aligned}
& ((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x})) \\
& (x \vee(y \wedge \bar{x})) \vee(((z \wedge \bar{y}) \vee(x \vee \bar{u})) \wedge(x \vee y))
\end{aligned}
$$

Probability that a "random" expression on n boolean variables is a tautology (always true)?

Boolean expressions

$((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x}))$
$(x \vee(y \wedge \bar{x})) \vee(((z \wedge \bar{y}) \vee(x \vee \bar{u})) \wedge(x \vee y))$
Probability that a "random" expression on n boolean variables is a tautology (always true)?

- $n=1: 4$ boolean functions; $\operatorname{Proba}($ True $)=0.2886$
- $n=2: 16$ boolean functions; $\operatorname{Proba}($ True $)=0.209$
- $n=3: 256$ boolean functions; $\operatorname{Proba}($ True $)=0.165$

Boolean expressions

$((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x}))$
$(x \vee(y \wedge \bar{x})) \vee(((z \wedge \bar{y}) \vee(x \vee \bar{u})) \wedge(x \vee y))$
Probability that a "random" expression on n boolean variables is a tautology (always true)?

- $n=1: 4$ boolean functions; $\operatorname{Proba}($ True $)=0.2886$
- $n=2: 16$ boolean functions; $\operatorname{Proba}($ True $)=0.209$
- $n=3: 256$ boolean functions; $\operatorname{Proba}($ True $)=0.165$
- $n \rightarrow+\infty: 2^{2^{n}}$ boolean functions
Proba(True) ~?

Boolean expressions

$((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x}))$
$(x \vee(y \wedge \bar{x})) \vee(((z \wedge \bar{y}) \vee(x \vee \bar{u})) \wedge(x \vee y))$
Probability that a "random" expression on n boolean variables is a tautology (always true)?

- $n=1: 4$ boolean functions; $\operatorname{Proba}($ True $)=0.2886$
- $n=2: 16$ boolean functions; $\operatorname{Proba}($ True $)=0.209$
- $n=3: 256$ boolean functions; $\operatorname{Proba}($ True $)=0.165$
- $n \rightarrow+\infty: 2^{2^{n}}$ boolean functions

$$
\text { Proba(True) } \sim ?
$$

$\operatorname{Proba}(f)$ for any boolean function f ?

Boolean expressions and trees

$((x \vee \bar{x}) \wedge x) \wedge(\bar{x} \vee(x \vee \bar{x}))$

Consider a well-formed boolean expression

- Choose set of logical connectors, with arities \leftrightarrow Choose labels and arities for internal nodes
- Choose set of boolean literals for the leaves \leftrightarrow Choose labels for leaves

Boolean expressions and trees

- Expression \sim labelled tree
- Random expression \sim random labelled tree
- What notion of randomness on trees?
- Choose size m of the tree; assume all trees of same size are equiprob. Then let $m \rightarrow+\infty$
- Choose tree at random (e.g., by a branching process): size is also random. Then label tree at random.

Boolean expressions and trees

- Expression \sim labelled tree
- Random expression \sim random labelled tree
- Two notions of randomness on trees/boolean expressions
- Each boolean expression computes a boolean function
- A boolean function is represented by an infinite number of expressions
- Can we use random boolean expressions to define a probability distribution on boolean functions?

Former work : And/Or trees

- One of the most studied models for random boolean expressions
- Binary trees; no simple node
- Internal nodes are labelled by \vee or \wedge
- Leaves are labelled by the literals: $x_{1}, \ldots, x_{n}, \overline{x_{1}}, \ldots, \overline{x_{n}}$

And/Or trees

- Paris et al. 94: first definition of a tree distribution on boolean functions
- Lefman and Savicky 97:
- Proof of existence of a tree distribution (by pruning)
- Tree complexity of $f: L(f)=$ size of smallest tree that computes f
$-\frac{1}{4}\left(\frac{1}{8 n}\right)^{L(f)} \leqslant P(f) \leqslant e^{-c L(f) / n^{3}}(1+O(1 / n))$
- Chauvin et al. 04: alternative definition of probability by generating functions; improvment on upper bound: $P(f) \leqslant e^{-c L(f) / n^{2}}(1+O(1 / n))$
- For tautologies:
- Woods 05: Asymptotic probability $P($ True $) \sim 1 / 4 n$ and probable shape of tautologies: $l \vee \ldots \vee \bar{l} \vee \ldots$
- Kozik 08: Alternative derivation of asymptotic probability and shape

And/Or trees: probability and complexity

To sum up:

- definition of a tree-induced probability distribution on boolean functions
- probability of constant functions True and False: known
- probability of a non-constant function:
- lower bound (1/4) (8n) $)^{-L(f)}$ (not that bad; order looks right)
- upper bound $e^{-c L(f) / n^{2}}(1+O(1 / n))$ (probably not tight)

And/Or trees: probability and complexity

To sum up:

- definition of a tree-induced probability distribution on boolean functions
- probability of constant functions True and False: known
- probability of a non-constant function:
- lower bound (1/4) (8n $)^{-L(f)}$ (not that bad; order looks right)
- upper bound $e^{-c L(f) / n^{2}}(1+O(1 / n))$ (probably not tight)
- Partial results. Can we go further?

And/Or trees: probability and complexity

To sum up:

- definition of a tree-induced probability distribution on boolean functions
- probability of constant functions True and False: known
- probability of a non-constant function:
- lower bound (1/4) (8n) $)^{-L(f)}$ (not that bad; order looks right)
- upper bound $e^{-c L(f) / n^{2}}(1+O(1 / n))$ (probably not tight)
- Partial results. Can we go further?
- Consider a simpler system

A restricted propositional calculus

- Finite number of boolean variables : $x_{1}, x_{2}, \ldots, x_{n}$; no negative literals.
- A single connector $\rightarrow\left(x_{1} \rightarrow x_{2}\right.$ is also $\left.\overline{x_{1}} \vee x_{2}\right)$.
- Expressions are binary trees: $(x \rightarrow y) \rightarrow(x \rightarrow(z \rightarrow u) \rightarrow t)$

A restricted propositional calculus

- Finite number of boolean variables : $x_{1}, x_{2}, \ldots, x_{n}$; no negative literals.
- A single connector $\rightarrow\left(x_{1} \rightarrow x_{2}\right.$ is also $\left.\overline{x_{1}} \vee x_{2}\right)$.
- Expressions are binary trees: $(x \rightarrow y) \rightarrow(x \rightarrow(z \rightarrow u) \rightarrow t)$

- An expression is a (possibly empty) sequence of expressions: premises, followed by a variable: goal.

A restricted propositional calculus

- Finite number of boolean variables : $x_{1}, x_{2}, \ldots, x_{n}$; no negative literals.
- A single connector \rightarrow
- "Simple" system: may hope for a detailed study of random expressions and boolean functions.
- Relevance to intuitionnistic logic:

Tautology \sim proof of a goal from premises

Boolean functions and expressions

An expression (a tree) computes a boolean function on k variables.

- What is the set of boolean functions that can be computed?
\Rightarrow Post set $S_{0}=\left\{x \vee g\left(x_{1}, \ldots, x_{k}\right)\right\}$

Boolean functions and expressions

An expression (a tree) computes a boolean function on k variables.

- What is the set of boolean functions that can be computed?
\Rightarrow Post set $S_{0}=\left\{x \vee g\left(x_{1}, \ldots, x_{k}\right)\right\}$
- Many different expressions compute the same boolean function.

Probability that a "random" expression computes a specific function?

Probability of a boolean function

- Informally, it is the ratio of trees that compute f to the total number of trees (assuming this ratio can be defined).
- Define the size of a formula (tree) as the number of variable occurrences (leaves).
- Define $A_{m}=\{$ trees of size $m\} ; A_{m}(f)=\left\{\right.$ trees in A_{m} that compute $\left.f\right\}$. Assume a uniform distribution on A_{m}.
- Probability that a tree of size m computes f :

$$
P_{m}(f)=\frac{\left|A_{m}(f)\right|}{\left|A_{m}\right|}
$$

- For any boolean function $f, \lim _{m \rightarrow+\infty} P_{m}(f)$ exists?

Probability of a boolean function

Existence of a limit $P(f)=\lim _{m \rightarrow+\infty} P_{m}(f)$?

- Enumerate trees by size: g.f. $\Phi(z)=\sum_{m}\left|A_{m}\right| z^{m}=(1-\sqrt{1-4 n z}) / 2$
- Enumerate the set $A(f)$ of trees computing a specific function f :

Generating function $\phi_{f}(z)$?
Consider all boolean functions
$A(f)=\cup_{g, h}(A(g), \rightarrow, A(h)) \Rightarrow \phi_{f}=\sum_{g, h} \phi_{g} \phi_{h}$
\Rightarrow write a system of algebraic equations for the enumerating functions
\Rightarrow Drmota-Lalley-Woods theorem gives asymptotics of $\left[z^{m}\right] \phi_{f}(z)$

- Putting all this together proves the existence of the prob. distribution P

For any boolean function f, we compute

$$
P(f)=\lim _{m \rightarrow+\infty} \frac{\left[z^{m}\right] \phi_{f}(z)}{\left[z^{m}\right] \Phi(z)}
$$

Probability of a boolean function

- We have proved the existence of $P(f)$ for any f
$\left(f \notin S_{0}: P(f)=0\right)$
- Can we compute explicitly the probability of a boolean function?

Probability of a boolean function

- We have proved the existence of $P(f)$ for any f
$\left(f \notin S_{0}: P(f)=0\right)$
- Can we compute explicitly the probability of a boolean function?
- The complexity of a function f is the smallest size of a tree that computes f.
- What is the relation beween the complexity and the probability of a boolean function?
- What is the typical shape of a tree that computes a specific function?
- What is the average complexity of a random boolean function?

Tautologies

We begin with the simplest function: the constant True

- Simple tautology: a premise is equal to the goal.
- We know the probability of simple tautologies:

$$
\frac{4 n+1}{(2 n+1)^{2}} \sim \frac{1}{n}
$$

- Almost all tautologies are simple (Fournier et al. 07)
- Hence $P($ True $) \sim 1 / n$
- Consequence: almost all tautologies in the system of implication and positive literals are intuitionnistic tautologies.

Probability of boolean functions

We know a.s. the shape of a random tautology.
We can compute the probability of True.
Can we extend this to a non-constant boolean function f ?

Probability of boolean functions

- True: $1 / n+O\left(1 / n^{2}\right)$
- Literal $x: 1 / 2 n^{2}+O\left(1 / n^{3}\right)$
- Function $x \rightarrow y: 9 / 16 n^{3}+O\left(1 / n^{4}\right)$
- For all $f \in S_{0} \backslash\{1\}$:

$$
P(f)=\frac{\lambda(f)}{4^{L(f)} n^{L(f)+1}}(1+O(1 / n))
$$

$-\lambda(f)$ is related to the minimal trees for f

- The trees of $A(f)$ are simple: a.s. obtained from a minimal tree by a single expansion

Sketch of proof

- Start from the set of minimal trees that compute f.
- Define extension rules: we obtain a larger (infinite) set of trees, still computing f; we can compute the probability of this set.
- Probability of this new set is related to the sizes of the initial trees, i.e. to the tree complexity of f.
- Do we obtain a.s. all the trees that compute f ?
- If so, we know the probability of f, and we can express it in terms of its complexity.

Extensions of minimal trees

Consider a tree A that computes f, and a node of A

When can we expand a node of A, and still get a tree that computes $f ?$?

Extensions of minimal trees: example

$f=x_{1} \rightarrow x_{2}$ has a unique minimal tree $A_{\text {min }}$:

- E is a tautology
- E has goal x_{1}
- E has a premise x_{2}

Extensions of minimal trees: example

$f=x_{1} \rightarrow x_{2}$ has a unique minimal tree $A_{\text {min }}$:

- E is a tautology
- E has goal x_{2}
- E has a premise x_{1}

Extensions of minimal trees: example

$f=x_{1} \rightarrow x_{2}$ has a unique minimal tree $A_{\text {min }}$:

- E is a tautology
- E has goal x_{1}
- E has a premise x_{2}

Extensions of minimal trees: example

$f=x_{1} \rightarrow x_{2}$ has a unique minimal tree $A_{\text {min }}$

- Nine possible types of expansion $\Rightarrow \operatorname{set} \mathcal{E}\left(A_{m i n}\right)$ of trees computing f
- We can compute the probability of $\mathcal{E}\left(A_{\text {min }}\right)$:

$$
\frac{9}{16 n^{3}}+O\left(\frac{1}{n^{4}}\right)
$$

- This is the probability of f

Extensions of minimal trees

- Define extensions for minimal trees
- Compute probability of the set $\mathcal{E}(f)$ obtained by one extension
- Compute probability of the set $\mathcal{E}^{+}(f)$ obtained by a finite number of extensions
- Compute probability of $A(f) \backslash \mathcal{E}^{+}(f)$:
- Define pruning rules: inverses of expansion rules
- Any tree of $A(f)$ can be pruned into an irreducible tree
$-\{$ Minimal trees $\} \subset\{$ Irreducible trees $\}$
- Almost all trees of f can be pruned into irreducible trees.

Probability of a boolean function f

- Expression of the probability

$$
P(f)=\frac{\lambda(f)}{4^{L(f)} n^{L(f)+1}}(1+O(1 / n))
$$

- We obtain almost all the trees by a single expansion of a minimal tree

$$
P(f)=\operatorname{Proba}(\mathcal{E}(f)(1+o(1))
$$

- The number of possible expansions is related to properties of minimal trees:
- $m=$ number of minimal trees for f
$-e=$ number of essential variables of f
Then

$$
2(2 m-1) L(f) \leq \lambda(f) \leq(1+2 e)(2 L(f)-1) m
$$

Possible extensions

- Computation of the constant factor $\lambda(f)$?

Done for read-once functions; for other functions?

- Result can be adapted when trees are obtained by a growing process
- What if we allow negative literals?
- What if we choose a different set of connectors?

Average complexity of a boolean function

- For a uniform distribution on boolean functions, maximal and average tree complexity is $2^{k} / \log k$ (Shannon, Lupanov...)
- What if the distribution is not uniform? for example, a tree distribution?
- We have computed the probability of a boolean function of known (hence, "fixed, small" and independent of k) complexity.
- What about the probability of a function of "large" (dependent on k) complexity?

