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Boolean expressions

((x ∨ x̄) ∧ x) ∧ (x̄ ∨ (x ∨ x̄))

(x ∨ (y ∧ x̄)) ∨ (((z ∧ ȳ) ∨ (x ∨ ū)) ∧ (x ∨ y))
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Boolean expressions

((x ∨ x̄) ∧ x) ∧ (x̄ ∨ (x ∨ x̄))

(x ∨ (y ∧ x̄)) ∨ (((z ∧ ȳ) ∨ (x ∨ ū)) ∧ (x ∨ y))

Probability that a “random” expression on n boolean variables is a tautology
(always true)?
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Boolean expressions
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(x ∨ (y ∧ x̄)) ∨ (((z ∧ ȳ) ∨ (x ∨ ū)) ∧ (x ∨ y))

Probability that a “random” expression on n boolean variables is a tautology
(always true)?

• n = 1: 4 boolean functions; Proba(True) = 0.2886

• n = 2: 16 boolean functions; Proba(True) = 0.209

• n = 3: 256 boolean functions; Proba(True) = 0.165
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Boolean expressions

((x ∨ x̄) ∧ x) ∧ (x̄ ∨ (x ∨ x̄))

(x ∨ (y ∧ x̄)) ∨ (((z ∧ ȳ) ∨ (x ∨ ū)) ∧ (x ∨ y))

Probability that a “random” expression on n boolean variables is a tautology
(always true)?

• n = 1: 4 boolean functions; Proba(True) = 0.2886

• n = 2: 16 boolean functions; Proba(True) = 0.209

• n = 3: 256 boolean functions; Proba(True) = 0.165

• n → +∞: 22n

boolean functions

Proba(True) ∼?
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Boolean expressions

((x ∨ x̄) ∧ x) ∧ (x̄ ∨ (x ∨ x̄))

(x ∨ (y ∧ x̄)) ∨ (((z ∧ ȳ) ∨ (x ∨ ū)) ∧ (x ∨ y))

Probability that a “random” expression on n boolean variables is a tautology
(always true)?

• n = 1: 4 boolean functions; Proba(True) = 0.2886

• n = 2: 16 boolean functions; Proba(True) = 0.209

• n = 3: 256 boolean functions; Proba(True) = 0.165

• n → +∞: 22n

boolean functions

Proba(True) ∼?

Proba(f) for any boolean function f?
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Boolean expressions and trees

((x ∨ x̄) ∧ x) ∧ (x̄ ∨ (x ∨ x̄))

∧

x

∧

∨

∨ x̄

x xx̄

∨

x̄

Consider a well-formed boolean expression

• Choose set of logical connectors, with arities
↔ Choose labels and arities for internal nodes

• Choose set of boolean literals for the leaves
↔ Choose labels for leaves
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Boolean expressions and trees

• Expression ∼ labelled tree

• Random expression ∼ random labelled tree

• What notion of randomness on trees?

– Choose size m of the tree; assume all trees of same size are equiprob.

Then let m → +∞
– Choose tree at random (e.g., by a branching process): size is also

random. Then label tree at random.
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Boolean expressions and trees

• Expression ∼ labelled tree

• Random expression ∼ random labelled tree

• Two notions of randomness on trees/boolean expressions

• Each boolean expression computes a boolean function

• A boolean function is represented by an infinite number of expressions

• Can we use random boolean expressions to define a probability distribution

on boolean functions?
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Former work : And/Or trees

• One of the most studied models for random boolean expressions

• Binary trees; no simple node

• Internal nodes are labelled by ∨ or ∧

• Leaves are labelled by the literals: x1, ..., xn, x̄1, ..., x̄n

∧

x

∧

∨

∨ x̄

x xx̄

∨

x̄
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And/Or trees

• Paris et al. 94: first definition of a tree distribution on boolean functions

• Lefman and Savicky 97:

– Proof of existence of a tree distribution (by pruning)

– Tree complexity of f : L(f)= size of smallest tree that computes f

– 1
4

(

1
8n

)L(f)
6 P (f) 6 e−cL(f)/n3

(1 + O(1/n))

• Chauvin et al. 04: alternative definition of probability by generating
functions; improvment on upper bound: P (f) 6 e−cL(f)/n2

(1 + O(1/n))

• For tautologies:

– Woods 05: Asymptotic probability P (True) ∼ 1/4n and probable
shape of tautologies: l ∨ ... ∨ l̄ ∨ ...

– Kozik 08: Alternative derivation of asymptotic probability and shape
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And/Or trees: probability and complexity

To sum up:

• definition of a tree-induced probability distribution on boolean functions

• probability of constant functions True and False: known

• probability of a non-constant function:

– lower bound (1/4) (8n)−L(f) (not that bad; order looks right)

– upper bound e−cL(f)/n2

(1 + O(1/n)) (probably not tight)
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And/Or trees: probability and complexity

To sum up:

• definition of a tree-induced probability distribution on boolean functions

• probability of constant functions True and False: known

• probability of a non-constant function:

– lower bound (1/4) (8n)−L(f) (not that bad; order looks right)

– upper bound e−cL(f)/n2

(1 + O(1/n)) (probably not tight)

• Partial results. Can we go further?
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And/Or trees: probability and complexity

To sum up:

• definition of a tree-induced probability distribution on boolean functions

• probability of constant functions True and False: known

• probability of a non-constant function:

– lower bound (1/4) (8n)−L(f) (not that bad; order looks right)

– upper bound e−cL(f)/n2

(1 + O(1/n)) (probably not tight)

• Partial results. Can we go further?

• Consider a simpler system
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A restricted propositional calculus

• Finite number of boolean variables : x1, x2, . . . , xn; no negative literals.

• A single connector → (x1 → x2 is also x1 ∨ x2).

• Expressions are binary trees: (x → y) → (x → (z → u) → t)

t

uz

yx x

→

→

→

→→
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A restricted propositional calculus

• Finite number of boolean variables : x1, x2, . . . , xn; no negative literals.

• A single connector → (x1 → x2 is also x1 ∨ x2).

• Expressions are binary trees: (x → y) → (x → (z → u) → t)

t

uz

yx x

→

→

→

→→

• An expression is a (possibly empty) sequence of expressions: premises,
followed by a variable: goal.
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A restricted propositional calculus

• Finite number of boolean variables : x1, x2, . . . , xn; no negative literals.

• A single connector →

• “Simple” system: may hope for a detailed study of random expressions
and boolean functions.

• Relevance to intuitionnistic logic:

Tautology ∼ proof of a goal from premises
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Boolean functions and expressions

An expression (a tree) computes a boolean function on k variables.

• What is the set of boolean functions that can be computed?

⇒ Post set S0 = {x ∨ g(x1, ..., xk)}
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Boolean functions and expressions

An expression (a tree) computes a boolean function on k variables.

• What is the set of boolean functions that can be computed?

⇒ Post set S0 = {x ∨ g(x1, ..., xk)}

• Many different expressions compute the same boolean function.

Probability that a “random” expression computes a specific function?
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Probability of a boolean function

• Informally, it is the ratio of trees that compute f to the total number of
trees (assuming this ratio can be defined).

• Define the size of a formula (tree) as the number of variable occurrences
(leaves).

• Define Am = {trees of size m}; Am(f) = {trees in Am that compute f}.

Assume a uniform distribution on Am.

• Probability that a tree of size m computes f :

Pm(f) =
|Am(f)|
|Am|

• For any boolean function f , limm→+∞Pm(f) exists?
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Probability of a boolean function

Existence of a limit P (f) = limm→+∞Pm(f)?

• Enumerate trees by size: g.f. Φ(z) =
∑

m |Am|zm = (1 −
√

1 − 4nz)/2

• Enumerate the set A(f) of trees computing a specific function f :

Generating function φf (z)?

Consider all boolean functions

A(f) = ∪g,h(A(g),→, A(h)) ⇒ φf =
∑

g,h φg φh

⇒ write a system of algebraic equations for the enumerating functions

⇒ Drmota-Lalley-Woods theorem gives asymptotics of [zm]φf (z)

• Putting all this together proves the existence of the prob. distribution P

For any boolean function f , we compute

P (f) = lim
m→+∞

[zm]φf (z)

[zm]Φ(z)
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Probability of a boolean function

• We have proved the existence of P (f) for any f

(f 6∈ S0: P (f) = 0)

• Can we compute explicitly the probability of a boolean function?
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Probability of a boolean function

• We have proved the existence of P (f) for any f

(f 6∈ S0: P (f) = 0)

• Can we compute explicitly the probability of a boolean function?

• The complexity of a function f is the smallest size of a tree that com-
putes f .

• What is the relation beween the complexity and the probability

of a boolean function?

• What is the typical shape of a tree that computes a specific function?

• What is the average complexity of a random boolean function?
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Tautologies

We begin with the simplest function: the constant True

• Simple tautology: a premise is equal to the goal.

• We know the probability of simple tautologies:

4n + 1

(2n + 1)2
∼ 1

n

• Almost all tautologies are simple (Fournier et al. 07)

• Hence P (True) ∼ 1/n

• Consequence: almost all tautologies in the system of implication and
positive literals are intuitionnistic tautologies.
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Probability of boolean functions

We know a.s. the shape of a random tautology.

We can compute the probability of True.

Can we extend this to a non-constant boolean function f?
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Probability of boolean functions

• True: 1/n + O
(

1/n2
)

• Literal x: 1/2n2 + O
(

1/n3
)

• Function x → y: 9/16n3 + O
(

1/n4
)

• For all f ∈ S0 \ {1}:

P (f) =
λ(f)

4L(f)nL(f)+1
(1 + O(1/n))

– λ(f) is related to the minimal trees for f

– The trees of A(f) are simple: a.s. obtained from a minimal tree by
a single expansion
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Sketch of proof

• Start from the set of minimal trees that compute f .

• Define extension rules: we obtain a larger (infinite) set of trees, still com-
puting f ; we can compute the probability of this set.

• Probability of this new set is related to the sizes of the initial trees, i.e.
to the tree complexity of f .

• Do we obtain a.s. all the trees that compute f?

• If so, we know the probability of f , and we can express it in terms of its
complexity.

0-27



Extensions of minimal trees

Consider a tree A that computes f , and a node of A

→

→

L R

E
⇒→

L R

When can we expand a node of A, and still get a tree that computes f??
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Extensions of minimal trees: example

f = x1 → x2 has a unique minimal tree Amin:

x1 x2

→

→
→

x1 x2

⇒
E

• E is a tautology

• E has goal x1

• E has a premise x2
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Extensions of minimal trees: example

f = x1 → x2 has a unique minimal tree Amin:

→

x1 x2

⇒

→

x2→

x1E

• E is a tautology

• E has goal x2

• E has a premise x1
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Extensions of minimal trees: example

f = x1 → x2 has a unique minimal tree Amin:

→

x1 x2

⇒

→

x1

x2E

→

• E is a tautology

• E has goal x1

• E has a premise x2
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Extensions of minimal trees: example

f = x1 → x2 has a unique minimal tree Amin

• Nine possible types of expansion ⇒ set E(Amin) of trees computing f

• We can compute the probability of E(Amin):

9

16n3
+ O

(

1

n4

)

• This is the probability of f
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Extensions of minimal trees

• Define extensions for minimal trees

• Compute probability of the set E(f) obtained by one extension

• Compute probability of the set E+(f) obtained by a finite number of
extensions

• Compute probability of A(f) \ E+(f):

– Define pruning rules: inverses of expansion rules

– Any tree of A(f) can be pruned into an irreducible tree

– {Minimal trees} ⊂ {Irreducible trees}
– Almost all trees of f can be pruned into irreducible trees.
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Probability of a boolean function f

• Expression of the probability

P (f) =
λ(f)

4L(f)nL(f)+1
(1 + O(1/n))

• We obtain almost all the trees by a single expansion of a minimal tree

P (f) = Proba(E(f) (1 + o(1))

• The number of possible expansions is related to properties of minimal
trees:

– m = number of minimal trees for f

– e = number of essential variables of f

Then
2(2m − 1)L(f) ≤ λ(f) ≤ (1 + 2e)(2L(f) − 1)m
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Possible extensions

• Computation of the constant factor λ(f)?

Done for read-once functions; for other functions?

• Result can be adapted when trees are obtained by a growing process

• What if we allow negative literals?

• What if we choose a different set of connectors?
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Average complexity of a boolean function

• For a uniform distribution on boolean functions, maximal and average
tree complexity is 2k/ log k (Shannon, Lupanov...)

• What if the distribution is not uniform? for example, a tree distribution?

• We have computed the probability of a boolean function of known (hence,
“fixed, small” and independent of k) complexity.

• What about the probability of a function of “large” (dependent on k)
complexity?
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