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The Exponential Formula for Decomposable Structures

We consider labelled structures built upon components by the
multi-set construction. Let fk (ck) be the number of labeled
structures (components) of size k , and consider their
exponential generating functions

F (z) =
∑
k≥0

fk
zk

k!
, and C (z) =

∑
k≥1

ck
zk

k!
.

The Exponential Formula says

F (z) = exp(C (z)).
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The r th Smallest Component Size in a Random Structure

We turn the set of all structures of size n into a probability
space using the uniform distribution. Let Xn(r) be the size of
the r th smallest component in a random structure of size n.
We will derive results about the limiting distribution of Xn(r)
when the component generating function C (z) is of
algebraic-logarithmic type.
To do that, we will study asymptotic properties of structures
with a restricted pattern.
When the component generating function C (z) is of
logarithmic type, the smallest component size has been
studied by Panario-Richmond (2001),Arratia-Barbour-Tavaré
(2003), and Dong-Gao-Panario (2007).
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Decomposable Structures with a Restricted Pattern

Let J be a set of positive integers, N = {0, 1, 2, · · · }, and S be
a function from J to N . We say that a decomposable structure
has a restricted pattern S when the number of components of
size j in the structure is specified as S(j) for each j ∈ J .
The following notation will be used throughout the talk.

I |J | denotes the number of elements in J ,

I ĵ = max{j : j ∈ J},
I m = n −

∑
j∈J jS(j) denotes the degree of freedom of a

structure of size n and with a restricted pattern S .

We also use

C (z ; J) =
∑
j∈J

cj
z j

j!
.
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Generating Function for Structures with a Restricted
Pattern

The following is a simple extension of the Exponential Formula.
Lemma 1: Let S : J 7→ N be a given restricted pattern.
The exponential generating function of labeled structures with
a restricted pattern S is

F (z ; S) = exp (C (z)− C (z ; J))
∏
j∈J

c
S(j)
j z jS(j)

(j!)S(j)S(j)!
.
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The 4(ν, θ) region

For constants ν and θ with ν > 0, 0 < θ < π/2, define the ∆
region

4(ν, θ) = {z : |z | < 1 + ν, z 6= 1, |arg(z − 1)| > θ}
.

Figure: The ∆ region

.
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Component Generating Functions of Alg -Log Type

In this talk we assume that our component generating function
C (z) is of algebraic-logarithmic type at singularity ρ > 0, that
is, C (ρz) is analytic in 4(ν, θ) and

C (ρz) = c + d(1− z)α

(
ln

1

1− z

)β

(1 + o(1)),

as z → 1 in 4(ν, θ).
Here α is called the algebraic exponent, and β the logarithmic
exponent.
The special case α = 0, β = 1 (called the logarithmic type )
has been studied extensively before.
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Alg-Log Type with 0 < α < 1

We first consider the case that the algebraic exponent α
satisfies 0 < α < 1. In this case,

C (ρz) = c + d(1− z)α

(
ln

1

1− z

)β

(1 + o(1)),

F (ρz) = ec

(
1 + d(1− z)α

(
ln

1

1− z

)β
)

.

Flajolet-Odlyzko’s transfer theorem gives

[zn]C (ρz) ∼ d

Γ(−α)
(log n)βn−1−α,

[zn]F (ρz) ∼ d exp(c)

Γ(−α)
(log n)βn−1−α.
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More Notation

I [zn]G (z) denotes the coefficient of zn in the generating
function G (z).

I Xn(r) denotes the size of the r th smallest component of a
random decomposable combinatorial structure of size n.

I Nk = {1, 2, . . . , k}.
I

K (S) =
∏
j∈J

(
cjρ

j/j!
)S(j)

S(j)!
exp
(
−cjρ

j/j!
)
.
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The Probability of Having a Restricted Pattern

Theorem 1: Let S be a restricted pattern such that

|J | = o
(
m(log m)

−1
1−α

)
and ĵ = O(m/ log m). Then, as

m →∞, the probability that a random structure of size n has
the pattern S is given by

[zn]F (z ; S)

[zn]F (z)
∼ K (S)

(
log m

log n

)β ( n

m

)α+1

,

where the asymptotics is uniform over all J .
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The Probability of Having a Restricted Pattern

When the restricted pattern S is small such that m ∼ n, we
have

fn(S)

fn
∼
∏
j∈J

(
cjρ

j/j!
)S(j)

S(j)!
exp
(
−cjρ

j/j!
)
.

This result can be restated as follows.
Corollary 1: Let Zn(j) be the number of components of size j
in a random structure of size n. Suppose

|J | = o
(
n(log n)

−1
1−α

)
and ĵ = O(n/ log n), then

(Zn(j) : j ∈ J) are asymptotically independent Poisson random
variables with mean cjρ

j/j! for each j ∈ J .

Similar result for the logarithmic type was obtained by
Arratia-Stark-Tavaré (1995) and Dong-Gao-Panario (2007).
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Sketch of the proof of Theorem 1

From Lemma 1, we have

[zn]F (z ; S) = ρ−n[zn]F (ρz ; S)

= ρ−nK (S)[zm] exp (C (ρz)− C (ρz ; J) + C (ρ; J)) .

Using Cauchy’s integral formula and the conditions on J , one
can prove that

[zm] exp (C (ρz)− C (ρz ; J) + C (ρ; J)) ∼ [zm] exp (C (ρz)) .

Thus

[zn]F (z ; S) ∼ K (S)
d exp(c)

Γ(−α)
(log m)βm−1−αρ−n.
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Sketch of the proof of Theorem 1

Figure: The contour

.
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The r th Smallest Component Size

To keep track of the r th smallest component size, we consider
a pattern S : Nk 7→ N , where S(j) is specified below. We note
that each structure with its r th smallest component size
greater than k corresponds to a structure with a pattern S

such that
∑
i∈Nk

S(i) ≤ r − 1. Hence we have

P(Xn(r) > k) =
∑{

fn(S)

fn
:
∑
i∈Nk

S(i) ≤ r − 1

}
.

When r = O(log n) and k = o
(
n(log n)

−1
1−α

)
, S satisfies the

conditions of Theorem 1, and m ∼ n.
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The r th Smallest Component Size

Corollary 2: Suppose r = O(log n) and

k = o
(
n(log n)

−1
1−α

)
. Then, as n →∞,

P(Xn(r) > k) ∼ exp(−C (ρ; Nk))
r−1∑
j=0

C (ρ; Nk)
j/j!.

Corollary 3: The expected size of the smallest component
is asymptotic to ne−c .
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The Case α = −p < 0

In the following we consider the case

C (z) = d(1− z/ρ)−p + b ln
1

1− z/ρ
+ c + o(1) as z → ρ.

For convenience we define h(z) = d(1− z)−p + b ln 1
1−z

.
The asymptotics of [zn] exp(h(z)) has been studied by Wright
(1949) and Hayman (1956). In particular, it is known that, for
0 < p < 2,

[zn] exp(h(z)) ∼ 1√
2πp(p + 1)d

exp

(
(1 + p)d

(
n

pd

) p
p+1

+
pd

2

(
n

pd

) p−1
p+1

+
b − 1

p + 1
ln

n

pd

)
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The Case α = −p < 0

Figure: The contour through the saddle point R, where

R(1− R)−p−1 =
m

pd

.
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The Case α = −p < 0

We can extend the result of Wright and Hayman to generating
functions including a restricted pattern S , using the saddle
point method.
Theorem 2: For each 0 < p < 2, there is a positive
constant 0 < η < 1/(p + 1) such that if a pattern S satisfies

ĵ = O (mη), then

[zn]F (z ; S) ∼ K (S)√
2πp(p + 1)d

exp

(
(1 + p)d

(
m

pd

) p
p+1

+
pd

2

(
m

pd

) p−1
p+1

+
b − 1

p + 1
ln

m

pd
+ c

)
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The Case α = −p < 0

Corollary 4: Let Zn(j) be the number of components of size j

in a random structure of size n. Suppose ĵ = O(nη), then
(Zn(j) : j ∈ J) are asymptotically independent Poisson random
variables with mean cjρ

j/j! for each j ∈ J .
Corollary 5: Suppose r = O(log n) and k = O (nη). Then,
as n →∞, we have

P(Xn(r) > k) ∼ exp(−C (ρ; Nk))
r−1∑
j=0

C (ρ; Nk)
j/j!.

Corollary 6: The expected size of the smallest component is
asymptotic to the constant∑

k≥0

exp(−C (ρ; Nk)).
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Examples

I A rooted labeled tree consists of a set of components
(subtrees). The component generating function C (z) is of
alg-log type at the singularity 1/e with algebraic exponent
α = 1/2:

C (z) = 1−
√

2(1− ez)1/2 + O(1− ez).

The expected size of the smallest subtree is asymptotic to
n/e.

I A fragmented permutation is a set of permutations. The
component generating function for fragmented

permutations is C (z) =
z

1− z
=

1

1− z
− 1. We have

C (ρ, Nk) = k , and the expected size of the smallest

component is asymptotic to
∑
k≥0

e−k =
e

e − 1
.

L. Dong, Z. Gao, D. Panario, L.B. Richmond Decomposable Structures with a Restricted Pattern



Summary

Let Yn denote the number of components in a random
structure of size n, and Xn be the smallest component size.

I When C (z) is of logarithmic type, Yn is asymptotically
normal with expected value and variance both
proportional to ln n. E (Xn) is also proportional to ln n.

I When C (z) is of alg-log type with algebraic exponent

0 < α < 1, we have P(Yn = k) ∼ e−cck−1

(k − 1)!
. That is,

Yn − 1 is asymptotically Poisson with mean c . E (Xn) is
asymptotic to ne−c .

I When C (z) is of alg-log type with algebraic exponent
α < 0, Yn is also asymptotically normal with mean and
variance both proportional to np/(p+1). E (Xn) is
asymptotic to a constant.
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