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Counting Combinatorial Structures

We are interested in counting combinatorial (discrete)
structures of a given“size”. For example, binary sequences of
length n, trees with n vertices (or edges), permutations of n
elements, number of ways to partition a set with n elements,
number of ways to partition a positive integer n, polynomials
of degree n over a finite field.
Labelled structures are structures involving labels, e.g.,
permutations, set partitions, and labelled trees.
Unlabelled structures are structures not involving labels, e.g.,
integer partitions, polynomials, and unlabelled trees.



Two Basic Counting Principles

Let S and T be two finite sets. Then |S| denotes the
cardinality (the number of elements) of S, and S × T denotes
the Cartesian product, that is, the set of ordered pairs (s, t)
with s ∈ S, t ∈ T .
The Addition Principle: Suppose S and T are two disjoint
sets, then

|S ∪ T | = |S|+ |T |.

The Multiplication Principle:

|S × T | = |S| × |T |.



Generating Functions

Let A be a set of structures, and An be the set of structures
in A of size n. We assume that An is a finite set. Let an be
the number of elements in A of size n.
The formal power series A(x) =

∑
n≥0 anx

n is called the
ordinary generating function (OGF) of A, and
Â(x) =

∑
n≥0 anx

n/n! is called the exponential generating
function (EGF) of A.



Generating Functions

We will see that generating functions are very powerful tools in
combinatorial enumeration, which link discrete structures with
continuous functions. Ordinary generating functions are
usually linked with unlabelled structures and exponential
generating functions are usually linked with labelled structures.



Examples of Generating Functions

Let A be the set of binary sequences, including the empty
sequence. Here the size of a sequence is the length of the
sequence. It is easy to see that |An| = 2n. Hence

A(x) =
∑
n≥0

2nxn =
1

1− 2x
,

Â(x) =
∑
n≥0

2nxn/n! = exp(2x).



Examples of Generating Functions

Let A be the set of permutations, including the empty
permutation. The size here is the number of elements of a
permutation, and it is clear that |An| = n!. Thus we have

A(x) =
∑
n≥0

n!xn,

Â(x) =
∑
n≥0

n!xn/n! =
1

1− x
.



The Product Formula for OGF of Unlabelled

Structures

Let A(x) be the OGF for A and B(x) be the OGF for B.
Suppose A ∩ B = ∅, then it is easy to see that A(x) + B(x) is
the OGF for A ∪ B.
Suppose that the size of (a, b) ∈ A×B is the sum of the sizes
of a and b. Then the number of structures in A× B of size n

is equal to
n∑

j=0

ajbn−j . Thus the OGF for A× B is given by

∑
n≥0

(
n∑

j=0

ajbn−j

)
xn = A(x)B(x).



Counting Unlabelled Structures with OGF

Example
Let A be the set of all binary sequences. We note that each
nonempty binary sequence is uniquely decomposed into an
ordered pair (a, b), where a is the first bit of the sequence and
b consists of the remaining bits of the sequence. We can write

A = A0 ∪ (A1 ×A).

Hence we have A(x) = 1 + (2x)A(x), where 1 is the OGF for
A0 and 2x is the OGF for A1.
Thus we have

A(x) =
1

1− 2x
=
∑
n≥0

2nxn.



Counting Unlabelled Structures with OGF

Example
Let A be the set of binary sequences with no adjacent 0’s. We
have

A = A0 ∪ ({1} × A) ∪ {0} ∪ ({01} × A).

Thus A(x) = 1 + xA(x) + x + x2A(x), or

A(x) =
1 + x

1− x − x2

=
∑
n≥0

1√
5

(1 +
√

5

2

)n+2

−

(
1−

√
5

2

)n+2
 xn.



Counting Unlabelled Structures with OGF

Let An be the set of rooted plane trees with n edges.



Counting Unlabelled Structures with OGF

First Approach: We note

A = ∪k≥0(A1 ×A)k .

That is, an element in A is decomposed into a sequence of
elements in A1 ×A. Hence

A(x) =
∑
k≥0

(xA(x))k =
1

1− xA(x)
.

So we have

A(x) =
1−

√
1− 4x

2x
=
∑
n≥0

1

n + 1

(
2n

n

)
xn.



Counting Unlabelled Structures with OGF

Second Approach: Decompose a rooted plane tree with at
least one edge into three components: the left-most subtree,
the left-most edge incident with the root vertex, and the rest.

This gives
A(x) = 1 + xA(x)A(x).



The Product Formula for EGF of Labelled

Structures

Now we consider labelled structures such that each structure
of size n is also associated with n standard labels 1, 2, . . . , n.
Let Â(x) be the EGF for A and B̂(x) be the EGF for B.
Suppose A ∩ B = ∅, then Â(x) + B̂(x) is the EGF for A ∪ B.
Now we consider labelled structures formed by ordered pairs
(a, b) of structures in A and B. There is an extra factor to be
considered here. That is the distribution of labels among a
and b.
We again assume that the size of (a, b) is the sum of the sizes
of a and b.



The Product Formula for EGF of Labelled

Structures

Now a structure (a, b) of size n is obtained by taking a
structure a ∈ Ak , a structure b ∈ Bn−k , and a distribution of
labels 1, 2, . . . , n among a and b. Since there are

(
n
k

)
ways to

distribute k labels to a and n − k remaining labels to b, the
number of structures (a, b) of size n is equal to

n∑
k=0

(
n

k

)
akbn−k .



The Product Formula for EGF of Labelled

Structures

Let A⊗B denote the set of (a, b) with a distribution of labels.
Then the EGF for structures A⊗B is

∑
n≥0

(
n∑

k=0

(
n

k

)
akbn−k

)
xn/n!

=
∑
n≥0

(
n∑

k=0

ak

k!

bn−k

(n − k)!

)
xn

= Â(x)B̂(x).



Counting Labelled Structures with EGF

Example Derangements are permutations with no fixed
elements. Let S be the set of all permutations, D be the set
of derangements, and F be the set of sets (of fixed points).
We note that each permutation is decomposed uniquely into a
set of fixed points and a derangement, that is, S = D⊗F .
Also the EGF for F is

F̂ (x) =
∑
n≥0

xn/n! = ex .

Thus

exD̂(x) = Ŝ(x) =
1

1− x
,

D̂(x) =
1

1− x
e−x .



Counting Labelled Structures with EGF

Recall that each permutation is decomposed uniquely into an
unordered collection of cycles. For each k ≥ 1, let Âk(x)
denote the EGF for permutations with exactly k cycles. Since
there are (n − 1)! cyclic permutations of size n, we have

Â1(x) =
∑
n≥1

(n − 1)!xn/n! =
∑
n≥1

xn/n = ln
1

1− x
.

Noting that the order of the cycles does not matter, we obtain

Â2(x) = (1/2)Â1(x)Â1(x) = (1/2)

(
ln

1

1− x

)2

.



Counting Labelled Structures with EGF

In general we have

Âk(x) = (1/k!)(Â1(x))k = (1/k!).

Now suppose D̂k(x) denotes the EGF for derangements with
exactly exact k cycles. Since a derangement has no cycle of
length 1, we have

D̂1(x) =
∑
n≥2

(n−1)!xn/n! = ln
1

1− x
−x , D̂k(x) = (1/k!)(D̂1(x))k ,

and

D̂(x) =
∑
k≥1

(1/k!)(D̂1(x))k = exp(D̂1(x)) =
1

1− x
e−x .



The Exponential Formula for Labelled Structures

We saw that permutations are decomposed into an unordered
collection of cycles. Many combinatorial structures have
similar decompositions. For example, a graph is decomposed
into connected components, a rooted tree is decomposed into
subtrees.
Let C be a set of labelled structures, called the components.
Let F be the set of labelled structures obtained by taking any
unordered collection of structures in C, and by distributing the
labels. We say that F is constructed from C by the multi-set
construction.



The Exponential Formula for Labelled Structures

Let Ĉ (x) be the EGF for the components (structures in C, and
F̂ (x) be the EGF for the structures in F . We have

F̂ (x) =
∑
k≥0

(1/k!)(Ĉ (x))k = exp(Ĉ (x)).

This is called the Exponential Formula for labelled structures.



The Exponential Formula for Labelled Structures

Example
Let Ĝ (x) be the EGF of labelled graphs, and Ĉ (x) be the EGF
of labelled connected graphs, where the size of a graph is the
number of vertices. We have

Ĝ (x) = exp(Ĉ (x)), Ĉ (x) = ln Ĝ (x).

Since there are 2(n
2) labelled graphs with n vertices, we have

Ĝ (x) =
∑
n≥0

2(
n
2)xn/n!.



The Exponential Formula for Labelled Structures

Example
Let Â(x) be the EGF of partitions of {1, 2, . . . , n}, and Ĉ (x)
be the EGF of sets. Then we have

Ĉ (x) =
∑
n≥1

xn/n! = exp(x)− 1,

Â(x) = exp(Ĉ (x)) = exp(exp(x)− 1).



The Exponential Formula for Labelled Structures

Example
Let Â(x) be the EGF of rooted labelled trees, where the size of
a tree is the number of vertices. We note that each rooted
tree is decomposed into a vertex and an unordered collection
of rooted subtrees. Thus

Â(x) = x exp(Â(x)).

One may apply Lagrange inversion formula to obtain

Â(x) =
∑
n≥0

nn−1xn/n!.

This implies that there are nn−1 rooted labelled trees with n
vertices.



The Exponential Formula for Unlabelled Structures

Now we consider unlabelled structures consisting of a multi-set
of components. Let F be the set of unlabelled structures
which are built by taking a multi-set of components from C.
Let ck be the number of structures in C of size k . For each
c ∈ C, let SEQ(c) denote the set of sequences of c . Then

F =
∏
c∈C

SEQ(c),

and hence

F (x) =
∏
j≥1

∏
c∈Cj

1

1− x j
=
∏
j≥1

(
1

1− x j

)cj

.



The Exponential Formula for Unlabelled Structures

We note

F (x) =
∏
j≥1

1

(1− x j)cj
= exp

(∑
j≥1

cj ln(1− x j)−1

)

= exp

(∑
j≥1

cj

∑
k≥1

xkj/k

)
= exp

(∑
k≥1

(1/k)
∑
j≥1

cjx
kj

)

= exp

(∑
k≥1

(1/k)C (xk)

)
.

This is called the Exponential Formula for unlabelled
structures.



The Exponential Formula for Unlabelled Structures

Example
A partition of a positive integer n is a multi-set of positive
integers whose sum is n. Here the OGF of components is

C (x) =
∑
n≥1

xn =
x

1− x
.

Hence the OGF of integer partitions is

P(x) = exp

(∑
k≥1

1

k

xk

1− xk

)
.



The Exponential Formula for Unlabelled Structures

Example
Let Fq denote the finite field with q elements. Let C (x) be
the OGF for monic irreducible polynomials, and F (x) be the
OGF for all monic polynomials over Fq. Then we have

exp

(∑
k≥1

(1/k)C (xk)

)
= F (x) =

∑
n≥0

qnxn =
1

1− qx
,

and hence
∑
k≥1

(1/k)C (xk) = ln
1

1− qx
. Using Möbius

inversion, we obtain

C (x) =
∑
r≥1

µ(r)

r
ln

1

1− qx r
.



Bivariate Generating Functions

We may use a bivariate generating function F (x , y) for
decomposable structures so that x marks the size of the
structure and y marks the number of components of the
structure. Let Fn,k denote the set of structures of size n with
exactly k components. For labelled structures, we use

F (x , y) =
∑
n≥0

∑
k≥0

|Fn,k |xny k/n!.

For unlabelled structures, we use

F (x , y) =
∑
n≥0

∑
k≥0

|Fn,k |xny k .



The Exponential Formula for Bivariate Generating

Functions

For labelled structures, we have

F (x , y) =
∑
k≥0

y k(Ĉ (x))k/k! = exp(yĈ (x)).

For unlabelled structures, we have

F (x , y) =
∏
j≥1

(
1− yx j

)−cj = exp

(∑
k≥1

(1/k)y kC (xk)

)
.



Use Bivariate Generating Functions to Compute

Moments

We may turn Fn into a probability space by assigning a
uniform distribution so that each structure in Fn has
probability 1/|Fn|. Let Xn be the number of components of a
random structure in Fn. We may use the bivariate generating
function to compute E (Xn) and E (Xn(Xn − 1)).

E (Xn) =
[xn]Fy(x , 1)

[xn]F (x , 1)
, E (Xn(Xn − 1)) =

[xn]Fyy(x , 1)

[xn]F (x , 1)
.



Use Bivariate Generating Functions to Compute

Moments

Example
Let Xn be the number of cycles of a random permutation of n
elements. We had EGF for the components

Ĉ (x) = ln
1

1− x
, F (x , y) = exp

(
y ln

1

1− x

)
.

Hence

Fy(x , 1) = ln
1

1− x
exp

(
ln

1

1− x

)
=

1

1− x
ln

1

1− x
.

[xn]Fy(x , 1) =
n∑

k=1

1

k
= ln n + γ + o(1),

where γ is the Euler constant.



Use Bivariate Generating Functions to Compute

Moments

Example
Let Xn be the number of irreducible factors of a random monic
polynomial of degree n over Fq. We have

F (x , y) = exp(yC (x)), C (x) =
∑
r≥1

µ(r)

r
ln

1

1− qx r
,

F (x , 1) =
1

1− qx
, Fy(x , 1) = C (x) exp(C (x)) =

1

1− qx
C (x).

One can show that

[xn]Fy(x , 1) ∼ [xn]

(
1

1− qx
ln

1

1− qx

)
= qn

n∑
k=1

1

k
.



Use Bivariate Generating Functions to Compute

Moments

Example
Let A(x , y) be the OGF for binary sequences with no adjacent
0’s such that x marks the length of the sequence and y marks
the number of 1’s in the sequence. We have

A(x , y) = 1 + x + yxA(x , y) + yx2A(x , y).

Hence

A(x , y) =
1 + x

1− xy − x2y
.

A(x , 1) =
1 + x

1− x − x2
=

3 +
√

5

2
√

5

1

1− r1x
− 3−

√
5

2
√

5

1

1− r2x
.



The Binary Sequence Example Continued

Example

Ay(x , 1) =
(1 + x)(x + x2)

(1− x − x2)2

=
2 +

√
5

5

1

(1− r1x)2
− 10 + 7

√
5

25

1

1− r1x

+
2−

√
5

5

1

(1− r2x)2
− 10− 7

√
5

25

1

1− r2x
,

where r1 =
1 +

√
5

2
, r2 =

1−
√

5

2
. Noting r1 > 1 and |r2| < 1,

we have
[xn]Fy(x , 1)

[xn]F (x , 1)
∼ 5 +

√
5

10
n.



Structures with Distinct Components: The Set

Construction

Let D(x , y) be the OGF for unlabelled structures with distinct
components. Then we have

D(x , y) =
∏
j≥1

(
1 + yx j

)cj

= exp

(∑
k≥1

(1/k)(−y)k(−C (xk))

)

= exp

(∑
k≥1

(1/k)(−1)k−1y kC (xk)

)
.

Compare this with the exponential formula on slide 29.



Structures with Distinct Components: Integer

Partitions

The component generating function for integer partitions is

C (x) =
x

1− x
.

Hence the OGF for integer partitions with distinct parts is

D(x , y) =
∏
j≥1

(
1 + yx j

)
= exp

(∑
k≥1

(1/k)(−1)k−1y k xk

1− xk

)



Structures with Distinct Components: Polynomials

Recall that the OGF for irreducible polynomials over Fq is

C (x) =
∑
r≥1

µ(r)

r
ln

1

1− qx r
.

Hence the OGF for monic polynomials over Fq with distinct
irreducible factors is

D(x , y) = exp

(∑
k≥1

(1/k)(−1)k−1y kC (xk)

)

It will be shown later that the asymptotic behavior of D(x , y)
is mainly determined by the first term (k = 1).



Structures with Restricted Component Sizes:

Integer Partitions

Let Po(x) be the OGF for integer partitions with odd parts
only, and Pd(x) be the OGF for integer partitions with distinct
parts. Then we have

Po(x) =
∏
j≥1

1

1− x2j−1
=
∏
j≥1

1− x2j

1− x j
=
∏
j≥1

(1 + x j) = Pd(x).


