

Analytic Combinatorics of the Mabinogion and OK-Corral Urns

Philippe Flajolet

Based on joint work with Thierry Huillet and Vincent Puyhaubert ALEA'08, Maresias, Brazil, April 2008

Analytic Combinatorics

of the Mabinogion and OK-Corral Urns

Philippe Flajolet

Based on joint work with Thierry Huillet and Vincent Puyhaubert ALEA'08, Maresias, Brazil, April 2008

Mabinogion

MABINOGION
 THJ. JH

Population of N sheep that bleat either $A[a a h]$ or $B[e e h]$. At times $t=0,1,2, \ldots$, a randomly chosen sheep bleats and convinces one sheep of the other kind to change its opinion.

- Time to reach unanimity?
- Probability that one minority group wins?

Mabinogion

MABINOGION TH Th J. H

Population of N sheep that bleat either $A[a a h]$ or $B[e e h]$.
At times $t=0,1,2, \ldots$, a randomly chosen sheep bleats and convinces one sheep of the other kind to change its opinion.

- Time to reach unanimity?
- Probability that one minority group wins?
E.g.: French election campaign (2007): $N=60,000,000$. Probability of reversing of majority of 51% ?
In the "fair" case ($N / 2, N / 2$), time to reach unanimity?

OK Corral

OK CORRAL

Population of N gangsters of gang either A or B.
At times $t=0,1,2, \ldots$, a randomly chosen gangster kills a member of the other group.

- Time to win?
- Probability that one minority group survives?

OK Corral

OK CORRAL

Population of N gangsters of gang either A or B.
At times $t=0,1,2, \ldots$, a randomly chosen gangster kills a member of the other group.

- Time to win?
- Probability that one minority group survives?

E.g.: The OK Corral fight at Tombstone. (Wyatt Earp and Doc Holliday)

Urn models (1)

- An urn contains balls of 2 possible colours

- A fixed set of rules governs the urn evolution:

Balanced urns: $\alpha+\beta=\gamma+\delta=: \sigma$
Classically: $\beta, \gamma \geq 0$ and $\sigma>0$.
Convention: The ball "drawn" is not withdrawn (not taken out)!

Urn models (2)

All (classical) balanced 2×2 models are "integrable"!

- $=$ An urn $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$;
- = A partial differential operator $\mathfrak{D}=x^{\alpha+1} y^{\beta} \partial_{x}+x^{\gamma} y^{\delta+1} \partial_{y}$;
- = An ordinary nonlinear system $\left\{\dot{X}=X^{\alpha+1} Y^{\beta}, \quad \dot{Y}=X^{\gamma} Y^{\delta+1}\right\}$.

Refs: [FI-Ga-Pe'05]; [FI-Dumas-Puyhaubert'06] [Conrad-Fl'06] [Hwang-Kuba-Panholzer'07+]; [Mahmoud \star]. Cf also: Janson $\star^{\text {© }}$ ©

§1. Ehrenfest \& Mabinogion

Ehrenfest

Ehrenfest's two chambers $\mathcal{E}=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$;

- Formally: $\mathfrak{D}=x \partial_{y}+y \partial_{x} ; \quad\{\dot{X}=Y ; \quad \dot{Y}=Y\} ;$
- Combinatorics of set partitions: histories from $(N, 0)$ to ($N-k, k$) are partitions with $N-k$ even classes and k odd classes:

$$
\mathbb{P}[(N, 0) \rightarrow(k, N-k), N \text { steps }]=\frac{n!}{N^{n}} \cdot\binom{N}{k} \cdot\left[z^{n}\right] \sinh ^{k}(z) \cosh ^{N-k}(z)
$$

Also: path in a special graph

Also: special walks on the interval $\mathbf{k - 1} \stackrel{k / N}{\longleftrightarrow} \xrightarrow{(N-k) / N} \mathbf{k + 1}$

Mabinogion (1)

Time-reversal relates $\mathcal{M}[N]$ and $\mathcal{E}[N+2]$, with fudge factors

Theorem M1. Absorption time T of the Mabinogion urn:

$$
\mathbb{P}(T=n+1)=\frac{N-1}{N^{n+1}}\binom{N-2}{k-1} n!\left[z^{n}\right](\sinh z)^{k-1}(\cosh z)^{N-k-1}
$$

Trajectories

Mabinogion (2)

Theorem M2. Probability $\Omega_{N, k}$ of majority reversal: $k=x N$ is initial \# of A's, with $x>\frac{1}{2}$; A's become extinct

$$
-\lim _{N \rightarrow \infty} \frac{1}{N} \log \Omega_{N, k}=\log 2+x \log x+(1-x) \log (1-x)
$$

Mabinogion (2)

Theorem M2. Probability $\Omega_{N, k}$ of majority reversal: $k=x N$ is initial \# of A's, with $x>\frac{1}{2}$; A's become extinct

$$
-\lim _{N \rightarrow \infty} \frac{1}{N} \log \Omega_{N, k}=\log 2+x \log x+(1-x) \log (1-x)
$$

Proof. Laplace transform + Laplace method (peak at end-point).

$$
\begin{aligned}
\Omega_{N, k} & =\cdots \int_{0}^{\infty} e^{-z}(\sinh z)^{k-1}(\cosh z)^{N-k-1} d z \\
& =\cdots \int_{0}^{1}(1-y)^{k-1}(1+y)^{N-k-1} d y \\
& \sim 2^{-N+1}\binom{N-2}{k-1} \frac{1}{2 x-1}
\end{aligned}
$$

$N=60,000,000: 51 \% \rightarrow 10^{-5,215} ; 50.1 \% \rightarrow 10^{-54}$.

Mabinogion (3)

Theorem M3. Time T till absorption, when $k=x N$ is initial number of A's, with $x<\frac{1}{2}$:

$$
\begin{aligned}
\mathbb{P}\left(\frac{T-N \tau}{\sigma \sqrt{N}}\right) & \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-w^{2} / 2} d w \\
\tau(x)=\frac{1}{2} \log \frac{1}{1-2 x} ; \sigma(x)^{2} & =\frac{x(1-x)}{(1-2 x)^{2}}+\frac{1}{2} \log (1-2 x)
\end{aligned}
$$

Mabinogion (3)

Theorem M3. Time T till absorption, when $k=x N$ is initial number of A's, with $x<\frac{1}{2}$:

$$
\begin{aligned}
\mathbb{P}\left(\frac{T-N \tau}{\sigma \sqrt{N}}\right) & \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-w^{2} / 2} d w \\
\tau(x)=\frac{1}{2} \log \frac{1}{1-2 x} ; \sigma(x)^{2} & =\frac{x(1-x)}{(1-2 x)^{2}}+\frac{1}{2} \log (1-2 x) .
\end{aligned}
$$

Proof. Laplace transform

$$
\mathbb{E}\left[e^{u T}\right]=\cdots \int_{0}^{\infty} e^{-z}\left(\sinh \frac{u z}{N}\right)^{k-1}\left(\cosh \frac{u z}{N}\right)^{N-k-1} d z
$$

Characteristic functions $u=e^{i t / \sqrt{N}}$. Laplace method (with peak inside the interval) and perturbation.

Experiments

Distribution of absorption time UNFAIR URN

FAIR URN

Mabinogion (4)

Theorem M4. FAIR URN $N=\nu+\nu$: time \widehat{T} till absorption

$$
\mathbb{P}(\widehat{T}=n) \sim \frac{2}{\nu} C e^{-t} e^{-e^{-2 t}} ; \quad n=\frac{1}{2} \nu \log \nu+t \nu
$$

Mabinogion (4)

Theorem M4. FAIR URN $N=\nu+\nu$: time \widehat{T} till absorption

$$
\mathbb{P}(\widehat{T}=n) \sim \frac{2}{\nu} C e^{-t} e^{-e^{-2 t}} ; \quad n=\frac{1}{2} \nu \log \nu+t \nu
$$

(i) Exact distribution $\propto \sum_{j=1}^{\nu / 2} \operatorname{Geom}\left(\left(\frac{2 j-1}{\nu}\right)^{2}\right)$.
(ii) Saddle point for $\left[z^{n}\right](\sinh z)^{N}$ when $n \approx N \log N$, with suitable perturbations.

$$
\widehat{T}_{\infty} \stackrel{d}{\equiv} \sum_{\ell \geq 1} \frac{\varepsilon_{\ell}-1}{\ell-1 / 2}, \quad \varepsilon_{\ell} \in \operatorname{Exp}(1)
$$

[Simatos-Robert-Guillemin'08] [Biane-Pitman-Yor*]

§2. Friedman \& OK-Corral

Friedman

Adverse campaign model: $\mathcal{F}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$=\mathrm{A}$ counterbalance of influences [Friedman 1949]

- System: $\{\dot{X}=X Y, \quad \dot{Y}=X Y\}$ is exactly solvable

Distribution is expressed in terms of Eulerian numbers:

- rises in perms;
- leaves in increasing Cayley trees;
- other urn models [Mahmoud*] [FIDuPu06].

$$
\begin{aligned}
A(z, u) & =\sum_{n, k} A_{n, k} u^{k^{z^{n}}} \frac{1-u}{n!}=\frac{1-u e^{z(1-u)}}{1-u} \\
A_{n, k} & =\sum_{0 \leq j \leq k}(-1)^{j}\binom{n+1}{j}(k-j)^{n}
\end{aligned}
$$

OK Corral

Calamity Jane
(c) Morris \& Goscinny

Two gangs of m and n gunwomen At any time, one shooter shoots

- Survival probabilities?
- Time till one gang wins \simeq size of surviving population?

OK Corral (1)

Friedman $\mathcal{F}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$; OK Corral $\mathcal{O}=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$; i.e., $\mathcal{O}=-\mathcal{F}$
Time reversal: $\mathbb{P}_{O}(m, n \searrow s)=\frac{s}{m+n} P_{\mathcal{F}}(s, 0 \rightarrow m, n)$
Theorem 01. Probability of s survivors of type A, from (m, n)

$$
\mathbb{P}_{\mathcal{O}}(m, n, s)=\frac{s!}{(m+n)!} \sum_{k=1}^{m}(-1)^{m-k}\binom{k-1}{s-1}\binom{m+n}{n+k} k^{m+n-s}
$$

Involves generalized Eulerian numbers and expansions + identities.
Theorem O2. The probability that first group survives is

$$
\mathbb{P}_{\mathcal{O S}}(m, n)=\frac{1}{(m+n)!} \sum_{k=1}^{m} A_{m+n-k}=\frac{1}{(m+n)!} \sum_{k=1}^{n}(-1)^{m-k}\binom{m+n}{n+k} k^{m+n}
$$

OK Corral (2)

Theorem 03. NEARLY FAIR FIGHTS: If $\frac{m-n}{\sqrt{m+n}}=\theta$, then

$$
\mathbb{P}_{\mathcal{O S}}(m, n)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\theta \sqrt{3}} e^{-t^{2} / 2} d t+O\left(\frac{1}{n}\right)
$$

Theorem 04. UNFAIR FIGHTS: Probability of survival with $m=\alpha n$ and $\alpha<1$ is exponentially small. It is related to the Large Deviation rate for Eulerian statistics.

Make use of explicit GFs and usual Large Deviation techniques [Quasi-Powers, shifting of the mean]

Theorem 05. [Kingman] Number of survivors:

- If $(m-n) \gg \sqrt{m+n}$ then in probability $S \rightarrow \sqrt{m^{2}-n^{2}}$;
- If $(m-n) \ll \sqrt{m+n}$ then

$$
\mathbb{P}\left(S \leq \lambda n^{3 / 4}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda^{2} \sqrt{3 / 8}} e^{-t^{2} / 2} d t
$$

Only dominant asymptotics, indirectly from Kingman et al. Get:

Theorem 06. MOMENTS

$$
\mathbb{E}\left[S^{\ell}\right]=\frac{1}{(m+n)!} \sum_{k=1}^{m}(-1)^{m-k}\binom{m+n}{n-k} k^{m+n-1}\left[f_{\ell}(k) Q(k)+g_{\ell}(k)\right],
$$

where f_{ℓ}, g_{ℓ} are polynomials and $Q(k)=\frac{k}{k}+\frac{k(k-1)}{k^{2}}+\cdots$ is Ramanujan's $=$ birthday paradox function.
\rightsquigarrow Complex asymptotics à la Lindelöf-Rice.

Conclusions?

- Analytic combinatorics has something to say about balanced urn models, including some nonstandard ones \neq probabilistic approaches [Mahmoud-Smythe-Janson].
- Analysis of imbalanced models??? Higher dimensions?

Conclusions?

- Analytic combinatorics has something to say about balanced urn models, including some nonstandard ones \neq probabilistic approaches [Mahmoud-Smythe-Janson].
- Analysis of imbalanced models??? Higher dimensions?
"Rather surprisingly, relatively sizable classes of nonlinear systems are found to have an extra property, integrability, which changes the picture completely.
Integrable systems [...] form an archipelago of solvable models in a sea of unknown, and can be used as stepping stones to investigate properties of 'nearby' non-integrable systems."

Eilbeck, Mikhailov, Santini, and Zakharov (2001)

