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Key comparisons and bit comparisons

Two measures to quantify the performance of searching or sorting
algorithms:

Number of key comparisons

Algorithms compare keys pairwise irrespective of their
representation.
Performance is analyzed in terms of the number of key
comparisons required by the algorithms.

Number of bit comparisons

Keys are represented as bit strings.
Algorithms operate on individual bits to compare keys.
Performance may be analyzed in terms of the number of bit
comparisons required by the algorithms.
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Example: Quicksort

Task: Sort keys in S := {k1, k2, . . . , kn} (= {k(1), k(2), . . . , k(n)}).

(i) Randomly select a pivot key (denote it by ki ).

(ii) Compare each of the other keys with ki (ki = k(j)) and create
three subsets of S:
S1 := {k(1), . . . , k(j−1)},
S2 := {k(j)},
S3 := {k(j+1), . . . , k(n)}.

(iii) Apply the algorithm to Sm if |Sm| > 1 (m = 1, 3).
The algorithm accomplishes the task in a recursive and
random fashion.
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Key and bit comparisons required by Quicksort

k1 = .0010010 . . . , k2 = .0110100 . . . ,
k3 = .0011011 . . . , k4 = .0001101 . . ..

(i) Suppose k3 is selected as a pivot.

(ii) Quicksort requires:

4 bit comparisons to determine k1 < k3.
2 bit comparisons to determine k2 > k3.
3 bit comparisons to determine k4 < k3.

S1 = {k1, k4}, S2 = {k3}, S3 = {k2}.
(iii) Apply Quicksort to S1. (3 more bit comparisons to determine

k4 < k1.)

In total, Quicksort requires 4 key comparisons and 12 bit
comparisons to complete the task.
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Key comparisons and bit comparisons

It is ideal to analyze sorting or searching algorithms in terms
of both key and bit comparisons. (Key-based algorithms can
be compared with digital algorithms.)

Only Quicksort has been analyzed in terms of both key and
bit comparisons (Fill and Janson, 2004): Asymptotically,
Quicksort requires 2n ln n key comparisons and n(ln n)(lg n)
bit comparisons to sort n keys.
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Our study

Objective of our study: Analyze the bit complexity of Quickselect
(also known as Find)

Quickselect finds an order statistic.

Quickselect has been extensively analyzed with regard to the
number of key comparisons required by the algorithm, but our
study is the first to investigate its bit complexity.
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Quickselect

Task: Find the m-th smallest key in S := {k1, k2, . . . , kn}
(= {k(1), k(2), . . . , k(n)})

(i) Randomly select a pivot key (denote it by ki ).

(ii) Compare each of the other keys with ki (ki = k(j)) and create
three subsets of S:
S1 := {k(1), . . . , k(j−1)},
S2 := {k(j)},
S3 := {k(j+1), . . . , k(n)}.

(iii) If j = m, then the algorithm returns ki .
If j > m, then the algorithm operates on S1 and finds the m-th
smallest key in the set.
If j < m, then the algorithm operates on S3 and finds the
(m − j)-th smallest key in the set.
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James Allen Fill Také Nakama Bit Complexity of Quickselect



Background
Our study

Results
Summary

Ongoing work

Objective of our study
Quickselect
Framework of our study
Preliminaries

Quickselect

Task: Find the m-th smallest key in S := {k1, k2, . . . , kn}
(= {k(1), k(2), . . . , k(n)})

(i) Randomly select a pivot key (denote it by ki ).

(ii) Compare each of the other keys with ki (ki = k(j)) and create
three subsets of S:
S1 := {k(1), . . . , k(j−1)},
S2 := {k(j)},
S3 := {k(j+1), . . . , k(n)}.

(iii) If j = m, then the algorithm returns ki .
If j > m, then the algorithm operates on S1 and finds the m-th
smallest key in the set.
If j < m, then the algorithm operates on S3 and finds the
(m − j)-th smallest key in the set.
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Quickselect

Let κ(m, n) denote the expected number of key comparisons
required by Quickselect to find the m-th order statistic in a set of n
keys.

κ(m, n) = 2[n+3+(n+1)Hn−(m+2)Hm−(n+3−m)Hn+1−m]
(Knuth, 1972).

κ(m̄, n) := 1
n

∑n
m=1 κ(m, n) = 3n − 8Hn + 13− 8Hn

n
(Mahmoud, Modarres, and Smythe, 1995).

Many other results exist regarding the number of key comparisons
required by Quickselect.
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Framework of our study

Quickselect is applied to a set of n distinct keys uniformly and
independently distributed in (0,1).

Each key is represented as a bit string, and Quickselect
operates on individual bits in order to find a target key.

We derive exact and asymptotic formulae for the expected
numbers of bit comparisons required by Quickselect.
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Preliminaries

Quickselect finds the m-th smallest key in a set of n keys
U1, . . . ,Un. Let U(i) denote the i-th smallest key.

P{U(i) and U(j) are compared} =


2

j−m+1 if m ≤ i
2

j−i+1 if i < m < j
2

m−i+1 if j ≤ m.

fU(i),U(j)
(s, t) :=

( n
i−1,1,j−i−1,1,n−j

)
s i−1(t − s)j−i−1(1− t)n−j .

The event that U(i) and U(j) are compared is independent of
the random variables U(i) and U(j).
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Define P1(s, t,m, n) :=
∑

m≤i<j≤n
2

j−m+1 fU(i),U(j)
(s, t),

P2(s, t,m, n) :=
∑

1≤i<m<j≤n
2

j−i+1 fU(i),U(j)
(s, t),

P3(s, t,m, n) :=
∑

1≤i<j≤m
2

m−i+1 fU(i),U(j)
(s, t),

P(s, t,m, n) := P1(s, t,m, n) + P2(s, t,m, n) + P3(s, t,m, n).

we can write the expectation µ(m, n) of the number of bit
comparisons required to find the rank-m key in a set of n keys
as

µ(m, n) =

∫ 1

0

∫ 1

s
β(s, t)P(s, t,m, n) dt ds,

where β(s, t) denotes the first bit at which the keys s and t
differ.
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Hence

µ(m, n) =

∫ 1

0

∫ 1

s
β(s, t)P(s, t,m, n) dt ds

=
∞∑

k=0

2k∑
l=1

∫ (l− 1
2

)2−k

(l−1)2−k

∫ l2−k

(l− 1
2

)2−k

(k + 1)P(s, t,m, n) dt ds,

where k represents the last bit at which s and t agree.

We analyze this expression in order to quantify the bit
complexity of Quickselect.

James Allen Fill Také Nakama Bit Complexity of Quickselect



Background
Our study

Results
Summary

Ongoing work

Objective of our study
Quickselect
Framework of our study
Preliminaries

Preliminaries

Hence

µ(m, n) =

∫ 1

0

∫ 1

s
β(s, t)P(s, t,m, n) dt ds

=
∞∑

k=0

2k∑
l=1

∫ (l− 1
2

)2−k

(l−1)2−k

∫ l2−k

(l− 1
2

)2−k

(k + 1)P(s, t,m, n) dt ds,

where k represents the last bit at which s and t agree.

We analyze this expression in order to quantify the bit
complexity of Quickselect.
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Results: Exact computation of µ(1, n)

The expected number µ(1, n) of bit comparisons required by
Quickselect to find the smallest key in a set of n keys satisfies

µ(1, n) = 2n(Hn − 1) + 2
n−1∑
j=2

Bj

n − j + 1−
(n

j

)
j(j − 1)(1− 2−j)

,

where Bj denotes the j-th Bernoulli number. (Note that
µ(1, n) = µ(n, n) by symmetry.)

We analyzed this expression (in particular,

tn :=
∑n−1

j=2 Bj
n−j+1−(n

j)
j(j−1)(1−2−j )

) to obtain an asymptotic

expression for µ(1, n).
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Results: Asymptotic analysis of µ(1, n)

Lemma. For n ≥ 2, let un := tn+1 − tn (with t2 = 0) and
vn := vn+1 − vn. Let γ denote Euler’s constant (

.
= 0.57722), and

define χk := 2πik
ln 2 . Then

(i) vn = 1
n+1 +

Hn+2
ln 2
−( γ

ln 2
− 1

2
)

(n+1)(n+2) − Σn,
where
Σn :=

∑
k∈Z\{0}

ζ(1−χk )Γ(n+1)Γ(1−χk )
(ln 2)Γ(n+3−χk ) ;

(ii) un = −Hn + a− Hn+1

(ln 2)(n+1) +
(
γ−1
ln 2 −

1
2

)
1

n+1 + Σ̃n,

where
a := 14

9 + 17−6γ
18 ln 2 −

2
ln 2

∑
k∈Z\{0}

ζ(1−χk )Γ(1−χk )
Γ(4−χk )(1−χk ) ,

Σ̃n :=
∑

k∈Z\{0}
ζ(1−χk )Γ(1−χk )

(ln 2)(1−χk )
Γ(n+1)

Γ(n+2−χk ) ;
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James Allen Fill Také Nakama Bit Complexity of Quickselect



Background
Our study

Results
Summary

Ongoing work

Exact computation of µ(1, n)
Asymptotic analysis of µ(1, n)
Exact computation for average case
Asymptotic analysis of average case
Asymptotic analysis of µ(m, n)
Closed formula for µ(m, n)

Results: Asymptotic analysis of µ(1, n)

Lemma.

(iii) tn = −(nHn − n − 1) + a(n − 2)− 1
2 ln 2

[
H2

n + H
(2)
n − 7

2

]
+
(
γ−1
ln 2 −

1
2

) (
Hn − 3

2

)
+ b − ˜̃Σn,

where
b :=

∑
k∈Z\{0}

2ζ(1−χk )Γ(−χk )
(ln 2)(1−χk )Γ(3−χk ) ,

˜̃Σn :=
∑

k∈Z\{0}
ζ(1−χk )Γ(−χk )Γ(n+1)
(ln 2)(1−χk )Γ(n+1−χk ) ,

and H
(2)
n denotes the n-th Harmonic number of order 2, i.e.,

H
(2)
n :=

∑n
i=1

1
i2 .

James Allen Fill Také Nakama Bit Complexity of Quickselect



Background
Our study

Results
Summary

Ongoing work

Exact computation of µ(1, n)
Asymptotic analysis of µ(1, n)
Exact computation for average case
Asymptotic analysis of average case
Asymptotic analysis of µ(m, n)
Closed formula for µ(m, n)

Results: Asymptotic analysis of µ(1, n)

Asymptotic expression for µ(1, n):

µ(1, n) = cn − 1

ln 2
(ln n)2 −

(
2

ln 2
+ 1

)
ln n + O(1),

where c
.

= 5.27938.

Cf. the expectation for key comparisons is asymptotically 2n.
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Results: Exact computation for average case: µ(m̄, n)

µ(m̄, n) := 1
n

∑n
m=1 µ(m, n)

= 2(n − 1)− 8
nF1(n) + 4

nF2(n) + 4
9F3(n)− 4F4(n) + 8

nF5(n),

where

F1(n) :=
∑n

j=3

(−1)j(n
j)

(j−1)(j−2) , F2(n) :=
∑n−1

j=2
Bj

j(1−2−j )

[
n−(n

j)
j−1 − 1

]
,

F3(n) :=
∑n−1

j=2

(−1)j(n−1
j )

j−1 ,

F4(n) :=
∑n−1

j=3
Bj

j(j−1)(1−2−j )

[
n−1−(n−1

j−1)
j−2 − 1

]
,

F5(n) :=
∑n

j=3

(−1)j(n
j)

j(j−1)(j−2)[1−2−(j−1)]
.
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Results: Asymptotic analysis of µ(m̄, n)

Asymptotic expression for µ(m̄, n):

µ(m̄, n) = c̃n − 4

ln 2
(ln n)2 + 4

(
2

ln 2
− 1

)
ln n + O(1),

where c̃
.

= 8.20731.

Cf. the expectation for key comparisons is asymptotically 3n.
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Results: Asymptotic analysis of µ(m, n)

Asymptotic analysis of µ(m, n) for fixed m has yet to be completed.
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Results: Closed formula for µ(m, n)

µ(m, n) =
∑∞

k=0

∑2k

l=1

∫ (l− 1
2

)2−k

(l−1)2−k

∫ l2−k

(l− 1
2

)2−k (k + 1)P(s, t,m, n) dt ds

=
∑n−1

b=1(1− 2b)−2
∑n−2

f =m−1

∑n−f−2
h=α

∑f +h+1
j=β aj ,b+j−(f +h+2)

× 1
(n+1)(f +1)

∑f +1
i=m

∑f +h+2
j=f +2

( j−i−1
f−i+1

)( n−j
n−j+f +2

)
(−1)n−i−j+1

× 2
j−m+1

( n
i−1,1,j−i−1,1,n−j

)
(−1)f +h−j+1( 1

2 )n−j+2

×
∑(j−1)

V
f

j ′=0
W

(j−1−h)

(f +1
j ′

)( h+1
j−1−j ′

) [(
1
2

)j ′ − (1
2

)f +1
]
, where

aj ,r := Br
r

(j−1
r−1

)
if r ≥ 2; := 1

j ,
1
2 if r = 0, 1.

The running time for the computation is of order n7.
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Results: Closed formula for µ(m, n)
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Summary

At least for finding the smallest (or largest) key and in the
average case, the expected number of bit comparisons
required by Quickselect is asymptotically different from that
of key comparisons only by a constant factor.

Asymptotic analysis of µ(m, n) for fixed m has yet to be
completed.

Exact computation of µ(m, n) for fixed m can be achieved by
O(n7) elementary operations.

Ongoing work: Generalize the bit-string input model, for
example to Bernoulli trials with success probability p.

James Allen Fill Také Nakama Bit Complexity of Quickselect



Background
Our study

Results
Summary

Ongoing work

Summary

At least for finding the smallest (or largest) key and in the
average case, the expected number of bit comparisons
required by Quickselect is asymptotically different from that
of key comparisons only by a constant factor.

Asymptotic analysis of µ(m, n) for fixed m has yet to be
completed.

Exact computation of µ(m, n) for fixed m can be achieved by
O(n7) elementary operations.

Ongoing work: Generalize the bit-string input model, for
example to Bernoulli trials with success probability p.
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Ongoing work: More general bit-string input models

This was not on a previous slide, but we recall

µ(1, n) = 2

∫ 1

0

∫ t

0
β(s, t)F (t)−2[(1−F (t))n−1+nF (t)] dF (s) dF (t)

with input (key) distribution function F (t) ≡ t.
By the same argument, this is true for general continuous F
on [0, 1].
Since

0 ≤ (1− F (t))n − 1 + nF (t) ≤ (n − 1)F (t),

it follows by the dominated convergence theorem that if

c ≡ cF := 2

∫ 1

0

∫ t

0
β(s, t)F (t)−1 dF (s) dF (t) <∞

then µ(1, n) ∼ c n as n→∞.
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0

∫ t

0
β(s, t)F (t)−2[(1−F (t))n−1+nF (t)] dF (s) dF (t)

with input (key) distribution function F (t) ≡ t.
By the same argument, this is true for general continuous F
on [0, 1].
Since

0 ≤ (1− F (t))n − 1 + nF (t) ≤ (n − 1)F (t),

it follows by the dominated convergence theorem that if

c ≡ cF := 2

∫ 1

0

∫ t

0
β(s, t)F (t)−1 dF (s) dF (t) <∞

then µ(1, n) ∼ c n as n→∞.
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Asymptotic slope c

The asymptotic slope constant

c ≡ cF := 2

∫ 1

0

∫ t

0
β(s, t)F (t)−1 dF (s) dF (t)

is not always finite; a necessary condition is that∫ 1
0 log(1/t) dF (t) <∞.

In the Bernoulli(p)-strings case, one can show c = 2
∑∞

k=0 γk

converges geometrically quickly, where

γk = 1 +
∑2k

j=1

[
F
( j

2k

)
− F

( j−1
2k

)]
ln F

( j
2k

)
and

F (.b1b2 . . . bk) = q
k∑

m=1

bm

m−1∏
i=1

q1−bi pbi .
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Asymptotic slope c : Bernoulli(p) strings
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Asymptotic slope c : uniform case

To be investigated: How does c behave as a function of the
success probability p?

In the uniform case F (t) ≡ t (i.e., p = 1/2), the
series-formula for c = 2

∑∞
k=0 γk = 5.27937 82410 80958+

reduces:
γk = 1 + 2−k

∑2k

j=1 ln
( j

2k

)
.

Earlier, complex analysis gave, with χk := 2πik/ ln 2,

c =
28

9
+

17− 6γ

9 ln 2
− 4

ln 2

∑
k 6=0

ζ(1− χk)Γ(1− χk)

Γ(4− χk)(1− χk)
.

We, and independently Grabner and Prodinger (2007), first
found the real series for cunif by “reverse engineering”.
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Still to do (or at least to try)

Higher moments? (or at least concentration)

Get beyond lead term for p 6= 1/2 and other F with cF <∞?

What if cF =∞? We can even have µ(1, 2) =∞.

Handle Quicksort similarly. This is actually easier, at least for
Bernoulli(p) strings: With

E(p) = entropy = −[p ln p + (1− p) ln(1− p)], we have

µn = 2
n∑

j=2

(−1)j
(n

j

)
j(j − 1)(1− pj − qj)

∼ n(ln n)2

E(p)
,

and periodic fluctuations are no longer involved. Among
distributions F with a density∗ f , lead-order asymptotics are
not affected by choice of f [Fill and Janson, 2004].
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Still to do (or at least to try)

Back to Quickselect, how much is saved if compared bits are
remembered? (For Quicksort, Fill and Janson [2004] showed
that this can remove extra log-factor from lead order of
asymptotics.)

What happens if we work in higher order bases? In particular,
how do results for Bernoulli trials generalize to multinomial
trials?
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