
Minicourse 3:

Limiting Distributions in
Combinatorics

Michael Drmota

Institute of Discrete Mathematics and Geometry

Vienna University of Technology

A 1040 Wien, Austria

michael.drmota@tuwien.ac.at

www.dmg.tuwien.ac.at/drmota/

International Conference on Analysis of Algorithms

Maresias, Brazil, April 12–18, 2008



Contents

• Sums of independent random variables and powers of generating

functions

• A central limit theorem

• Bivariate generating functions

• Functions equations

• Non-normal limit laws

• Method of moments

• Admissible functions and central limit theorems



Standard Reference

Philippe Flajolet and Robert Sedgewick,

Analytic Combinatorics,

Cambridge University Press, to appear 2008.

(http://algo.inria.fr/flajolet/Publications/books.html)

+ special reference for last part:

M. Drmota, B. Gittenberger and T. Klausner,

Extended admissible functions and Gaussian limiting distributions,

Math. Comput. 74 (2005), 1953–1966.



Sums of independent random variables and
powers of generating functions

Coin tossing

• P{ct = head} = P{ct = tail} = 1
2.

• random variable ξ = I{ct=tail} =

{
1 if tail
0 if head

• n independent runs: ξ1, ξ2, . . . , ξn, P{ξj = 1} = P{ξj = 0} =
1

2
.

• Xn = ξ1 + ξ2 + · · ·+ ξn ... the number of tails within n runs

P{Xn = k} =

(
n
k

)
2n



Sums of independent random variables and
powers of generating functions

Counting generating function

an = 2n ... total number of possible n-runs

an,k =
(
n
k

)
... the number of n-runs with k tails

An(u) =
∑
k≥0

an,ku
k =

∑
k≥0

(n
k

)
uk = (1 + u)n ... counting gen. func.

An(1) =
∑
k≥0

an,k = an = (1 + 1)n = 2n



Sums of independent random variables and
powers of generating functions

Probability generating function

EuXn =
∑
k≥0

P{Xn = k} · uk

=
∑
k≥0

1

2n

(n
k

)
· uk

=
(1 + u)n

2n
=
An(u)

An(1)

P{Xn = k} =
an,k

an
=⇒ EuXn =

An(u)

An(1)



Sums of independent random variables and
powers of generating functions

Powers of probability generating functions

Euξ =
1

2
+

1

2
u =

1 + u

2

=⇒ EuXn = Euξ1+···+ξn

= E
(
uξ1 · · ·uξn

)
= E

(
uξ1

)
· · ·E

(
uξn

)
ξj independent !!!

=
(
1 + u

2

)n



Sums of independent random variables and
powers of generating functions

General fact

Xn = ξ1 + ξ2 + · · ·+ ξn , where the r.v.’s ξj are iid∗

=⇒ EuXn =
(
Euξ1

)n

∗ Notation. “iid” ... independently and identically distributed



Sums of independent random variables and
powers of generating functions

Relation to moment generating function mZ(v) = E evZ

E (Zr) ... r-th moment of Z

=⇒
∑
r≥0

E (Zr)
vr

r!
= E

∑
r≥0

Zrvr

r!

 = E evZ = EuZ with u = ev .



A central limit theorem

Binomial coefficients

(n
k

)
=

n!

k!(n− k)!
=

2n√
πn/2

exp

(
−

(k − n
2)

2

n/2

)
+O(2n/n)



A central limit theorem

Standard normal distribution

density: f(t) =
1√
2π
e−

1
2t

2
.

normal distribution function: Φ(x) =
1√
2π

∫ x
−∞

e−
1
2t

2
dt



A central limit theorem

Normally distributed random variable

Definition

A random variable Z has standard nomal distribution N(0,1) if

P{Z ≤ x} = Φ(x) .

A random variable Z is normally distributed (or Gaussian) with mean

µ and variance σ2 if its distribution function is given by

P{Z ≤ x} = Φ
(
x− µ

σ

)
,

Notation. L(Z) = N(µ, σ2) .



A central limit theorem

Moment generating function of N(µ, σ2):

mZ(v) = E evZ = eµv−
1
2σ

2v2 .

Characteristic function of N(µ, σ2):

ϕZ(t) = E eitZ = eiµt−
1
2σ

2t2 .

Standard normal distribution: µ = 0, σ2 = 1

E evZ = e
1
2v

2
, E eitZ = e−

1
2t

2



A central limit theorem

Definition We say, that a sequence of random variables Xn satisfies a

central limit theorem with (scaling) mean µn and (scaling) variance

σ2
n if

P{Xn ≤ µn + x · σn} = Φ(x) + o(1)

as n→∞.

Example. Xn = number of tails in n runs of coin tossing:

P{Xn ≤ n/2 + x ·
√
n/4} =

∑
k≤n/2+x·

√
n/4

1

2n

(n
k

)

∼
∑

k≤n/2+x·
√
n/4

1√
πn/2

exp

(
−

(k − n
2)

2

n/2

)
∼ Φ(x).

Xn satisfies a central limit theorem with mean n
2 and variance n

4.



Central Limit Theorem

Definition Weak convergence:

Xn
d−→ X :⇐⇒ lim

n→∞P{Xn ≤ x} = P{X ≤ x}

for all points of continuity

of FX(x) = P{X ≤ x}

Reformulation:

Xn satisfies a central limit theorem with (scaling) mean µn and

(scaling) variance σ2
n is the same as

Xn − µn

σn

d−→ N(0,1) .



A central limit theorem

Weak convergence via moment generating functions

lim
n→∞E evXn = E evX (v ∈ R) =⇒ Xn

d−→ X

Moreover, we have convergence of all moments: E (Xr
n) → E (Xr).

Recall: E evXn = E ((ev)Xn) = EuXn for u = ev.



A central limit theorem

Weak convergence via characteristic functions (Levy’s Criterion)

lim
n→∞E eitXn = E eitX (t ∈ R) ⇐⇒ Xn

d−→ X

Moreover, if for all t ∈ R

ψ(t) := lim
n→∞E eitXn

exists and ψ(t) is continous at t = 0 then ψ(t) is the characteristic

function of a random variable X for which we have Xn
d−→ X.



Central Limit Theorem

Theorem

ξ1, ξ2, . . . iid, E ξ2i <∞, Xn = ξ1 + ξ2 + . . .+ ξn

=⇒ Xn − EXn√
VXn

d−→ N(0,1)

Remark. ⇐⇒ P{Xn ≤ EXn + x
√

VXn} = Φ(x) + o(1).

Proof

µ = E ξi, σ2 = V ξi = E (ξ2i )− (E ξi)2 =⇒ EXn = nµ, VXn = nσ2.



Central Limit Theorem

ϕξi(t) = E eitξi = eitµ−
1
2σ

2t2 (1+o(1)) (t→ 0)

ϕXn(t) = ϕξi(t)
n

Zn := (Xn − µn)/
√
σ2n

=⇒ ϕZn(t) = E eitZn

= e−it
√
nµ/σ · E

(
e(it/(

√
nσ))(ξ1+···+ξn)

)
= e−it

√
nµ/σ ·

(
E e(it/(

√
nσ)ξ1

)n
= e−it

√
nµ/σ · eit

√
nµ/σ−1

2t
2 (1+o(1))

= e−
1
2t

2 (1+o(1)) → e−
1
2t

2
.

+ Levy’s criterion.



A central limit theorem

Quasi-Power Theorem (Hwang)

Let Xn be a sequence of random variables with the property that

EuXn = A(u) ·B(u)λn ·
(
1 +O

(
1

φn

))

holds uniformly in a complex neighborhood of u = 1, λn →∞ and

φn →∞ , and A(u) and B(u) are analytic functions in a neighborhood

of u = 1 with A(1) = B(1) = 1. Set

µ = B′(1) and σ2 = B′′(1) +B′(1)−B′(1)2.

=⇒ EXn = µλn +O (1 + λn/φn) , VXn = σ2λn +O (1 + λn/φn) ,

Xn − EXn√
VXn

d−→ N(0,1) (σ2 6= 0).



Bivariate generating functions

Bivariate counting generating function

A(x, u) =
∑

n,k≥0

(n
k

)
uk xn =

∑
n≥0

(1 + u)nxn =
1

1− x(1 + u)
.

Observation: this is a rational function!



Bivariate generating functions

Rational functions

P (x, u), Q(x, u) polynomials:

A(x, u) =
∑

n,k≥0

an,k u
k xn =

P (x, u)

Q(x, u)

Assumption: factorization of denominator

Q(x, u) =
r∏

j=1

(
1−

x

ρj(u)

)

with

|ρ1(u)| < max
2≤j≤r

|ρj(u)| for |u− 1| < ε.



Bivariate generating functions

Central limit theorem for rational functions

Suppose that A(x, u) =
∑
an,k u

k xn with an,k ≥ 0 is rational and satis-

fies the assumptions from above.

Let Xn be a sequence of random variables with

P{Xn = k} =
an,k

an

with an =
∑
k an,k.

Then Xn satisfies a central limit theorem with

µn = −n
ρ′1(1)

ρ1(1)
and σ2

n = n

(
−
ρ′′1(1)

ρ1(1)
−
ρ′1(1)

ρ1(1)
+
ρ′1(1)2

ρ1(1)2

)
.



Bivariate generating functions

Proof

Partial fraction decomposition:

A(x, u) =
C1(u)

1− x/ρ1(u)
+ · · ·+

Cr(u)

1− x/ρr(u)

=⇒ An(u) =
∑
k≥0

an,k u
k = C1(u)ρ1(u)

−n+· · ·+Cr(u)ρr(u)
−n ∼ C1(u)ρ1(u)

−n

=⇒ EuXn =
An(u)

An(1)
∼
C1(u)

C1(1)

(
ρ1(1)

ρ1(u)

)n

=⇒ central limit theorem.



Bivariate generating functions

Integer compositions

3 = 1 + 1 + 1 = 2 + 1 = 1 + 2 = 3 ... 4 compositions of 3.

an = number of compositions of n, A(x) =
∑
anxn:

A(x) = 1 +A(x)(x+ x2 + x3 + · · · ) = 1 +A(x)
x

1− x
.

=⇒ A(x) =
1

1− x
1−x

=
1− x

1− 2x

=⇒ an = 2n−1



Bivariate generating functions

Integer compositions

an,k = number of integer composition of n with k summands

A(x, u) =
∑
an,ku

kxn:

A(x, u) = 1 + uA(x, u)(x+ x2 + x3 + · · · ) = 1 +A(x, u)
xu

1− x
.

=⇒ A(x, u) =
1

1− xu
1−x

=
1− x

1− x(1 + u)

=⇒ central limit theorem with µn = n
2 and σ2 = n

4.



Bivariate generating functions

Systems of linear equations

Suppose, that several generating functions

A1(x, u) =
∑
n,k

a1;n,ku
kxn, . . . , Ar(x, u) =

∑
n,k

ar;n,ku
kxn

satisfy a linear system of equations.

Then all generating functions Aj(x, u) are rational and a central limit

theorem for corresponding random variables is expected.



Bivariate generating functions

Meromorphic functions

The function A(x, u) is meromorphic in x when u is considered as a

parameter and there exists a dominant root ρ1(u) such that (locally)

A(x, u) =
C(x, u)

1− x
ρ1(u)

=⇒ An(u) ∼ C(ρ1(u), u) · ρ1(u)−n

=⇒ EuXn ∼ C(ρ1(u), u)

C(ρ1(1),1)

(
ρ1(1)

ρ1(u)

)n
=⇒ central limit theorem.



Bivariate generating functions

Number of cycles in permutations

pn,k = number of permutations of {1,2, . . . , n} with k cycles

P̂ (x, u) =
∑

n,k≥0

pn,k · uk ·
xn

n!
= e

u·log 1
1−x =

1

(1− x)u

Remark: pn,k = (−1)n−ksn,k, where sn,k are the Stirling number of

the first kind.



Excursion: Singularity Analysis

Lemma 1 Suppose that

y(x) = (1− x/x0)
−α .

Then

yn = (−1)n
(−α
n

)
x−n0 =

nα−1

Γ(α)
x−n0 +O

(
nα−2

)
x−n0 .

Remark: This asymptotic expansion is uniform in α if α varies in a

compact region of the complex plane.



Excursion: Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

y(x) =
∑
n≥0

yn x
n

be analytic in a region

∆ = {x : |x| < x0 + η, | arg(x− x0)| > δ},

x0 > 0, η > 0, 0 < δ < π/2.

Suppose that for some real α

y(x) = O
(
(1− x/x0)

−α
)

(x ∈ ∆).

Then

yn = O
(
x−n0 nα−1

)
.



Excursion: Singularity Analysis

∆-region

D

x0



Bivariate generating functions

Number of cycles in permutations (continued)

P̂ (x, u) = e
u log 1

1−x =
1

(1− x)u

=⇒ pn(u) =
∑
k≥0

pn,ku
k

∼ n!
nu−1

Γ(u)

= n!
e(u−1) logn

Γ(u)

=⇒ EuXn ∼ 1

Γ(u)
(eu−1)logn

=⇒ central limit theorem with µn = logn and σ2
n = logn.

Generalization: Exp-Log-Schemes: F (x, u) = e
h(u) log 1

1−x+R(x,u).



Bivariate generating functions

Catalan trees gn = number of Catalan trees of size n.

G(x) = x(1 +G(x) +G(x)2 + · · · ) =
x

1−G(x)

G(x) =
1−

√
1− 4x

2
=⇒ gn =

1

n

(2n− 2

n− 1

)
.

(Catalan numbers)



Bivariate generating functions

Catalan trees with singularity analysis

G(x) =
1−

√
1− 4x

2
=

1

2
−

1

2

√
1− 4x

=⇒ gn ∼ −
1

2
·
4nn−3/2

Γ(−1
2)

=
4n−1

√
π · n3/2



Bivariate generating functions

Number of leaves of Catalan trees

gn,k = number of Catalan trees of size n with k leaves.

G(x, u) = xu+ x(G(x, u) +G(x, u)2 + · · · = xu+
xG(x, u)

1−G(x, u)

=⇒ G(x, u) =
1

2

(
1 + (u− 1)x−

√
1− 2(u+ 1)x+ (u− 1)2x2

)

=⇒ G(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)

for certain analytic function g(x, u), h(x, u), and ρ(u).



Bivariate generating functions

Application of singularity analysis

Considering u as a parameter we get

Gn(u) =
∑
k≥0

gn,ku
k ∼

h(ρ(u), u) · ρ(u)−n · n−3/2

2
√
π

=⇒ EuXn =
Gn(u)

Gn(1)
∼
h(ρ(u), u)

h(ρ(1),1)

(
ρ(1)

ρ(u)

)n

=⇒ central limit theorem with µn = n
2 and σ2

n = n
8



Bivariate generating functions

Cayley trees

Tn,k = number of Cayley trees of size n with k leaves

T (x, u) =
∑

n,k≥0

Tn,k u
k x

n

n!

=⇒ T (x, u) = xeT (x,u) + x(u− 1)

=⇒ ?????



Functional equations

Catalan trees: G(x, u) = xu+ xG(x, u)/(1−G(x, u))

Cayley trees: T (x, u) = xeT (x,u) + x(u− 1)

Recursive structure leads to functional equation for gen. func.:

A(x, u) = Φ(x, u,A(x, u))



Functional equations

Linear functional equation: Φ(x, u, a) = Φ0(x, u) + aΦ1(x, u)

=⇒ A(x, u) =
Φ0(x, u)

1−Φ1(x, u)

Usually techniques similar to those used for rational resp. meromorphic

functions work and prove a central limit theorem.



Functional equations

Non-linear functional equations: Φaa(x, u, a) 6= 0.

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and

Φaa(x, u, a) 6= 0.

Let x0 > 0, a0 > 0 (inside the region of convergence) satisfy the system

of equations:

a0 = Φ(x0,1, a0), 1 = Φa(x0,1, a0) .

Then there exists analytic function g(x, u), h(x, u), and ρ(u) such that

locally

A(x, u) = g(x, u)− h(x, u)

√
1−

x

ρ(u)
.



Functional equations

Idea of the Proof.

Set F (x, u, a) = Φ(x, u, a)− a. Then we have

F (x0,1, a0) = 0

Fa(x0,1, a0) = 0

Fx(x0,1, a0) 6= 0

Faa(x0,1, a0) 6= 0.

Weierstrass preparation theorem implies that there exist analytic func-

tions H(x, u, a), p(x, u), q(x, u) with H(x0,1, a0) 6= 0, p(x0,1) = q(x0,1) =

0 and

F (x, u, a) = H(x, u, a)
(
(a− a0)

2 + p(x, u)(a− a0) + q(x, u)
)
.



Functional equations

F (x, u, a) = 0 ⇐⇒ (a− a0)
2 + p(x, u)(a− a0) + q(x, u) = 0.

Consequently

A(x, u) = a0 −
p(x, u)

2
±

√
p(x, u)2

4
− q(x, u)

= g(x, u)− h(x, u)

√
1−

x

ρ(u)
,

where we write

p(x, u)2

4
− q(x, u) = K(x, u)(x− ρ(u))

which is again granted by the Weierstrass preparation theorem and we

set

g(x, u) = a0 −
p(x, u)

2
and h(x, u) =

√
−K(x, u)ρ(u).



Functional equations

A central limit theorem for functional equations

Suppose that A(x, u) = Φ(x, u,A(x, u)) , where Φ(x, u, a) has a power

series expansion at (0,0,0) with non-negative coefficients and Φaa(x, u, a) 6=
0 (+ minor technical conditions). Set

µ =
x0Φx(x0,1, a0)

Φ(x0,1, a0)
and σ2 = “long formula′′.

Then then random variable Xn defined by P{Xn = k} = an,k/an satisfies

a central limit theorem with

µn = nµ and σ2
n = nσ2.



Functional equations

Number of leaves in Cayley trees (T (x) = xeT (x))

T (x, u) = xeT (x,u) + x(u− 1)

x0 =
1

e
, t0 = T (x0) = 1.

=⇒ central limit theorem with µn = 1
e n and σ2 = e−2

e2
n.



Functional equations

Systems of functional equations

Suppose, that several generating functions

A1(x, u) =
∑
n,k

a1;n,ku
kxn, . . . , Ar(x, u) =

∑
n,k

ar;n,ku
kxn

satisfy a system of non-linear equations.

Then (under suitable conditions) all generating functions Aj(x, u) (usu-

ally) have a squareroot singularity and a central limit theorem for

corresponding random variables is expected.



Non-normal limit theorems

Example 1

an,k = number of words “aa · · · abb · · · b” of length n with k letters b.

= 1 for 0 ≤ k ≤ n.

A(x, u) =
1

1− x
·

1

1− xu

and

Xn

n+ 1
d−→ U

(U ... uniform distribution on [0,1])



Non-normal limit theorems

Why is there NO central limit theorem?

A(x, u) is a rational function BUT there is no single root ρ1(u) that

dominates for u in a neighbourhood of 1.

Furthermore, for u = 1 there is a double pole, for u 6= 1 two single

poles.



Non-normal limit theorems

Example 2

fn,k = number of forests with n nodes of k Cayley trees

Xn = number of trees in a random forest with n nodes.

F (x, u) = euT (x) =
∑
k≥0

uk
T (x)k

k!

Discrete limit distribution: lim
n→∞P{Xn = k} =

e−1

(k − 1)!
.



Non-normal limit theorems

Expected value (Ex 2)

∂

∂u
F (x, u)

∣∣∣∣
u=1

= T (x)eT (x)

T (x) = xeT (x), T (x) = 1−
√

2
√

1− ex+ · · · , [xn]eT (x) = (n+ 1)n

=⇒ T (x)eT (x) = e− 2e
√

2
√

1− ex+ ...

=⇒ EXn ∼
2en!enn−3/2(2π)−1/2

(n+ 1)n
= 2.



Non-normal limit theorems

Limiting probabilities (Ex 2)

Similarly

P{Xn = k} =
n![xn]T (x)k

k!

nn−1
.

T (x)k

k!
=

1

k!
−

√
2

(k − 1)!

√
1− ex+ ...

=⇒ lim
n→∞P{Xn = k} =

e−1

(k − 1)!
(k ≥ 1).



Non-normal limit theorems

Example 3

rn,k = number of mappings on {1, . . . n} with k cyclic points; rn = nn.

Xn = number of cyclic points in random mappings on {1,2 . . . n}.

R(x, u) =
∑

n,k≥0

rn,k u
k x

n

n!
=

1

1− uT (x)
.

Rayleigh limiting distribution

Xn√
n

d−→ R



Non-normal limit theorems

Rayleigh distribution

density: f(x) = xe−
1
2x

2
, x ≥ 0.

distribution function F (x) = 1− e−
1
2x

2
, x ≥ 0.

moments: E (Rr) = 2r/2Γ
(
r
2 + 1

)
.



Method of moments

Theorem

Zn and Z random variables such that

lim
n→∞E (Zrn) = E (Zr)

for all r and the moments E (Zr) uniquely define the distribution of

Z (for example the moment generating function EevZ exists around

v = 0) then

Zn
d−→ Z .



Method of moments

Moments and generating functions

An(u) =
∑
k≥0

an,ku
k, P{Xn = k} =

an,k

An(1)

=⇒ E
(
Xn(Xn − 1) · · · (Xn − r+ 1)

)
=

1

An(1)

∂rAn(u)

∂ur

∣∣∣∣∣
u=1

.

Remark:

∂r

∂ur
A(x, u)

∣∣∣∣∣
u=1

=
∑
n≥1

An(1) · E
(
Xn(Xn − 1) · · · (Xn − r+ 1)

)
· xn.



Method of moments

Example 3 (continued)

R(x, u) =
1

1− uT (x)

T (x) = 1−
√

2
√

1− ex+ · · ·

=⇒ ∂r

∂ur
R(x, u)

∣∣∣∣∣
u=1

=
r!T (x)r

(1− T (x))r+1
∼

r!

2
r+1
2 (1− ex)

r+1
2

=⇒ n!

nn
· E
(
Xn(Xn − 1) · · · (Xn − r+ 1)

)
∼

r!

2
r+1
2

n
r−1
2 en

Γr+1
2

=⇒ E
(
Xn(Xn − 1) · · · (Xn − r+ 1)

)
∼ nr/22r/2Γ

(
r

2
+ 1

)

=⇒ Xn√
n

d−→ R.
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Hayman admissible functions

f(z) =
∑
n≥0

fnz
n

a(z) :=
z f ′(z)

f(z)
b(z) := z a′(z).

If f(z) is Hayman-admissible and rn is defined by a(rn) = n then

fn ∼
f(rn)r−nn√
2πb(rn)

.
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A recursively defined class of admissible functions

• P (z) polynomial =⇒ eP (z) is admissible (if is has only non-negative

coefficients).

• f(z) admissible =⇒ ef(z) is admissible

• P (z) non-negative polynomial, f(z), g(z) admissible

=⇒ P (z)f(z) , P (f(z)) , f(z)g(z) admissible.

Examples: f(z) = ez+
z2
2 , f(z) = ee

z−1, ...
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Recursively defined EXTENDED admissible functions

RULE 1

• P (z, u) polynomial =⇒ f(z, u) = eP (z,u) is e-admissible (if is has

only non-negative coefficients and positive coefficients at least in

a cone)

• f(z) admissible, g(u) analytic for |u| < 1 + ε, g(1) > 0, g′(1) +

g′′(1)− g′(1)2/g(1) > 0 =⇒ ef(z)g(u) is e-admissible.
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RULE 2

Suppose that f(z, u) and g(z, u) are e-admissible, h(z) is admissible and

P (z, u) is a polynomial with non-negative coefficients. =⇒

• f(z, u)g(z, u) is e-admissible

• h(z)f(z, u) is e-admissible

• P (z, u)f(z, u) is e-admissible

• ef(z,u) is e-admissible

• eP (z,u)h(z) is e-admissible if P depends at least on u.

• eP (z,u)+h(z) is e-admissible if P depends on u and if h is entire

• P (z, u) + f(z, u) is e-admissible
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Theorem

f(z, u) =
∑

n,k≥0

fn,ku
kzn e-admissible, P{Xn = k} =

fnk
fn
.

=⇒ Xn − ā(rn,1)√
|B(rn,1)|/b(rn,1)

d−→ N (0,1) ,

where a(z, u) = zfz(z, u)/f(z, u), a(rn,1) = n , ā(z, u) = ufu(z, u)/f(z, u),

b(z, u) = zaz(z, u), c(z, u) = uau(z, u) = zāz(z, u), b̄(z, u) = uāu(z, u),

and

|B(z, u)| = det

(
b(z, u) c(z, u)
c(z, u) b̄(z, u)

)
.
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Example 1: Stirling numbers of the second kind

S(z, u) =
∑

n,k≥0

Sn,k · uk ·
xn

n!
= eu(e

z−1)

[ez − 1 admissible =⇒ S(z, u) e-admissible]

Stirling numbers of the second kind satisfy a central limit theorem

with µn = n/ logn and σ2
n = n/(logn)2.
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Example 2: Permutations with bounded cycle length

p`;n,k = number of permutation of {1, . . . , n} with k cycles ≤ `.

P`(z, u) =
∑

n,k≥0

p`,n,k · uk ·
xn

n!
= e

u
(
x+x2

2 +···+x`

`

)
.

We get a central limit theorem with µn =
n

`
and σ2

n =
n1−1

`

`2(`− 1)
.

(` ≥ 2)



Thanks for your attention!


