Minicourse 3:
 Limiting Distributions in Combinatorics

Michael Drmota

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
www.dmg.tuwien.ac.at/drmota/

International Conference on Analysis of Algorithms
Maresias, Brazil, April 12-18, 2008

Contents

- Sums of independent random variables and powers of generating functions
- A central limit theorem
- Bivariate generating functions
- Functions equations
- Non-normal limit laws
- Method of moments
- Admissible functions and central limit theorems

Standard Reference

Philippe Flajolet and Robert Sedgewick,
Analytic Combinatorics,
Cambridge University Press, to appear 2008.
(http://algo.inria.fr/flajolet/Publications/books.html)

+ special reference for last part:
M. Drmota, B. Gittenberger and T. Klausner, Extended admissible functions and Gaussian limiting distributions, Math. Comput. 74 (2005), 1953-1966.

Sums of independent random variables and powers of generating functions

Coin tossing

- $\mathbb{P}\{c t=$ head $\}=\mathbb{P}\{c t=$ tail $\}=\frac{1}{2}$.
- random variable $\xi=\mathbb{I}_{\{c t=\text { tail }\}}= \begin{cases}1 & \text { if tail } \\ 0 & \text { if head }\end{cases}$
- n independent runs: $\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \mathbb{P}\left\{\xi_{j}=1\right\}=\mathbb{P}\left\{\xi_{j}=0\right\}=\frac{1}{2}$.
- $X_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n} \ldots$ the number of tails within n runs

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{\binom{n}{k}}{2^{n}}
$$

Sums of independent random variables and powers of generating functions

Counting generating function
$a_{n}=2^{n} \ldots$ total number of possible n-runs
$a_{n, k}=\binom{n}{k} \ldots$ the number of n-runs with k tails
$A_{n}(u)=\sum_{k \geq 0} a_{n, k} u^{k}=\sum_{k \geq 0}\binom{n}{k} u^{k}=(1+u)^{n} \ldots$ counting gen. func.
$A_{n}(1)=\sum_{k \geq 0} a_{n, k}=a_{n}=(1+1)^{n}=2^{n}$

Sums of independent random variables and powers of generating functions

Probability generating function

$$
\begin{aligned}
\mathbb{E} u^{X_{n}} & =\sum_{k \geq 0} \mathbb{P}\left\{X_{n}=k\right\} \cdot u^{k} \\
& =\sum_{k \geq 0} \frac{1}{2^{n}}\binom{n}{k} \cdot u^{k} \\
& =\frac{(1+u)^{n}}{2^{n}}=\frac{A_{n}(u)}{A_{n}(1)}
\end{aligned}
$$

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n, k}}{a_{n}} \Longrightarrow \mathbb{E} u^{X_{n}}=\frac{A_{n}(u)}{A_{n}(1)}
$$

Sums of independent random variables and powers of generating functions

Powers of probability generating functions

$$
\mathbb{E} u^{\xi}=\frac{1}{2}+\frac{1}{2} u=\frac{1+u}{2}
$$

$$
\begin{aligned}
\Longrightarrow \mathbb{E} u^{X_{n}} & =\mathbb{E} u^{\xi_{1}+\cdots+\xi_{n}} \\
& =\mathbb{E}\left(u^{\xi_{1}} \cdots u^{\xi_{n}}\right) \\
& =\mathbb{E}\left(u^{\xi_{1}}\right) \cdots \mathbb{E}\left(u^{\xi_{n}}\right) \quad \xi_{j} \text { independent !!! } \\
& =\left(\frac{1+u}{2}\right)^{n}
\end{aligned}
$$

Sums of independent random variables and powers of generating functions

General fact
$X_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where the r.v.'s ξ_{j} are iid ${ }^{*}$

$$
\Longrightarrow \quad \mathbb{E} u^{X_{n}}=\left(\mathbb{E} u^{\xi_{1}}\right)^{n}
$$

* Notation. "iid" ... independently and identically distributed

Sums of independent random variables and powers of generating functions

Relation to moment generating function $m_{Z}(v)=\mathbb{E} e^{v Z}$
$\mathbb{E}\left(Z^{r}\right) \ldots r$-th moment of Z

$$
\Longrightarrow \quad \sum_{r \geq 0} \mathbb{E}\left(Z^{r}\right) \frac{v^{r}}{r!}=\mathbb{E}\left(\sum_{r \geq 0} \frac{Z^{r} v^{r}}{r!}\right)=\mathbb{E} e^{v Z}=\mathbb{E} u^{Z} \quad \text { with } u=e^{v} .
$$

A central limit theorem

Binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{2^{n}}{\sqrt{\pi n / 2}} \exp \left(-\frac{\left(k-\frac{n}{2}\right)^{2}}{n / 2}\right)+O\left(2^{n} / n\right)
$$

A central limit theorem

Standard normal distribution

density: $f(t)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}}$.

normal distribution function: $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^{2}} d t$

A central limit theorem

Normally distributed random variable

Definition
A random variable Z has standard nomal distribution $N(0,1)$ if

$$
\mathbb{P}\{Z \leq x\}=\Phi(x)
$$

A random variable Z is normally distributed (or Gaussian) with mean μ and variance σ^{2} if its distribution function is given by

$$
\mathbb{P}\{Z \leq x\}=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Notation. $\mathcal{L}(Z)=N\left(\mu, \sigma^{2}\right)$.

A central limit theorem

Moment generating function of $N\left(\mu, \sigma^{2}\right)$:

$$
m_{Z}(v)=\mathbb{E} e^{v Z}=e^{\mu v-\frac{1}{2} \sigma^{2} v^{2}}
$$

Characteristic function of $N\left(\mu, \sigma^{2}\right)$:

$$
\varphi_{Z}(t)=\mathbb{E} e^{i t Z}=e^{i \mu t-\frac{1}{2} \sigma^{2} t^{2}}
$$

Standard normal distribution: $\mu=0, \sigma^{2}=1$

$$
\mathbb{E} e^{v Z}=e^{\frac{1}{2} v^{2}}, \quad \mathbb{E} e^{i t Z}=e^{-\frac{1}{2} t^{2}}
$$

A central limit theorem

Definition We say, that a sequence of random variables X_{n} satisfies a central limit theorem with (scaling) mean μ_{n} and (scaling) variance σ_{n}^{2} if

$$
\mathbb{P}\left\{X_{n} \leq \mu_{n}+x \cdot \sigma_{n}\right\}=\Phi(x)+o(1)
$$

as $n \rightarrow \infty$.

Example. $X_{n}=$ number of tails in n runs of coin tossing:

$$
\begin{aligned}
\mathbb{P}\left\{X_{n} \leq n / 2+x \cdot \sqrt{n / 4}\right\} & =\sum_{k \leq n / 2+x \cdot \sqrt{n / 4}} \frac{1}{2^{n}}\binom{n}{k} \\
& \sim \sum_{k \leq n / 2+x \cdot \sqrt{n / 4}} \frac{1}{\sqrt{\pi n / 2}} \exp \left(-\frac{\left(k-\frac{n}{2}\right)^{2}}{n / 2}\right) \sim \Phi(x) .
\end{aligned}
$$

X_{n} satisfies a central limit theorem with mean $\frac{n}{2}$ and variance $\frac{n}{4}$.

Central Limit Theorem

Definition Weak convergence:

$$
\begin{aligned}
\boxed{X_{n} \xrightarrow{\mathrm{~d}} X}: \Longleftrightarrow & \lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n} \leq x\right\}=\mathbb{P}\{X \leq x\} \\
& \text { for all points of continuity } \\
& \text { of } F_{X}(x)=\mathbb{P}\{X \leq x\}
\end{aligned}
$$

Reformulation:

X_{n} satisfies a central limit theorem with (scaling) mean μ_{n} and (scaling) variance σ_{n}^{2} is the same as

$$
\frac{X_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{\mathrm{~d}} N(0,1) .
$$

A central limit theorem

Weak convergence via moment generating functions

$$
\lim _{n \rightarrow \infty} \mathbb{E} e^{v X_{n}}=\mathbb{E} e^{v X} \quad(v \in \mathbb{R}) \quad \Longrightarrow \quad X_{n} \xrightarrow{\mathrm{~d}} X
$$

Moreover, we have convergence of all moments: $\mathbb{E}\left(X_{n}^{r}\right) \rightarrow \mathbb{E}\left(X^{r}\right)$.
Recall: $\mathbb{E} e^{v X_{n}}=\mathbb{E}\left(\left(e^{v}\right)^{X_{n}}\right)=\mathbb{E} u^{X_{n}}$ for $u=e^{v}$.

A central limit theorem

Weak convergence via characteristic functions (Levy's Criterion)

$$
\lim _{n \rightarrow \infty} \mathbb{E} e^{i t X_{n}}=\mathbb{E} e^{i t X} \quad(t \in \mathbb{R}) \quad \Longleftrightarrow \quad X_{n} \xrightarrow{\mathrm{~d}} X
$$

Moreover, if for all $t \in \mathbb{R}$

$$
\psi(t):=\lim _{n \rightarrow \infty} \mathbb{E} e^{i t X_{n}}
$$

exists and $\psi(t)$ is continous at $t=0$ then $\psi(t)$ is the characteristic function of a random variable X for which we have $X_{n} \xrightarrow{d} X$.

Central Limit Theorem

Theorem

$\xi_{1}, \xi_{2}, \ldots \mathrm{iid}, \mathbb{E} \xi_{i}^{2}<\infty, X_{n}=\xi_{1}+\xi_{2}+\ldots+\xi_{n}$

$$
\Longrightarrow \frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\mathbb{V} X_{n}}} \xrightarrow{\mathrm{~d}} N(0,1)
$$

Remark. $\Longleftrightarrow \mathbb{P}\left\{X_{n} \leq \mathbb{E} X_{n}+x \sqrt{\mathbb{V} X_{n}}\right\}=\Phi(x)+o(1)$.

Proof
$\mu=\mathbb{E} \xi_{i}, \sigma^{2}=\mathbb{V} \xi_{i}=\mathbb{E}\left(\xi_{i}^{2}\right)-\left(\mathbb{E} \xi_{i}\right)^{2} \Longrightarrow \mathbb{E} X_{n}=n \mu, \mathbb{V} X_{n}=n \sigma^{2}$.

Central Limit Theorem

$$
\begin{aligned}
\varphi_{\xi_{i}}(t)= & \mathbb{E} e^{i t \xi_{i}}=e^{i t \mu-\frac{1}{2} \sigma^{2} t^{2}(1+o(1))} \quad(t \rightarrow 0) \\
\varphi_{X_{n}}(t)= & \varphi_{\xi_{i}}(t)^{n} \\
Z_{n}:= & \left(X_{n}-\mu n\right) / \sqrt{\sigma^{2} n} \\
\Longrightarrow \varphi_{Z_{n}}(t) & =\mathbb{E} e^{i t Z_{n}} \\
& =e^{-i t \sqrt{n} \mu / \sigma} \cdot \mathbb{E}\left(e^{(i t /(\sqrt{n} \sigma))\left(\xi_{1}+\cdots+\xi_{n}\right)}\right) \\
& =e^{-i t \sqrt{n} \mu / \sigma} \cdot\left(\mathbb{E} e^{\left(i t /(\sqrt{n} \sigma) \xi_{1}\right)^{n}}\right. \\
& =e^{-i t \sqrt{n} \mu / \sigma} \cdot e^{i t \sqrt{n} \mu / \sigma-\frac{1}{2} t^{2}(1+o(1))} \\
& =e^{-\frac{1}{2} t^{2}(1+o(1))} \rightarrow e^{-\frac{1}{2} t^{2}}
\end{aligned}
$$

+ Levy's criterion.

A central limit theorem

Quasi-Power Theorem (Hwang)

Let X_{n} be a sequence of random variables with the property that

$$
\mathbb{E} u^{X_{n}}=A(u) \cdot B(u)^{\lambda_{n}} \cdot\left(1+O\left(\frac{1}{\phi_{n}}\right)\right)
$$

holds uniformly in a complex neighborhood of $u=1, \lambda_{n} \rightarrow \infty$ and $\phi_{n} \rightarrow \infty$, and $A(u)$ and $B(u)$ are analytic functions in a neighborhood of $u=1$ with $A(1)=B(1)=1$. Set

$$
\begin{gathered}
\mu=B^{\prime}(1) \quad \text { and } \quad \sigma^{2}=B^{\prime \prime}(1)+B^{\prime}(1)-B^{\prime}(1)^{2} . \\
\Longrightarrow \\
\mathbb{E} X_{n}=\mu \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right), \quad \mathbb{V} X_{n}=\sigma^{2} \lambda_{n}+O\left(1+\lambda_{n} / \phi_{n}\right),
\end{gathered}
$$

$$
\frac{X_{n}-\mathbb{E} X_{n}}{\sqrt{\mathbb{V} X_{n}}} \xrightarrow{\mathrm{~d}} N(0,1) \quad\left(\sigma^{2} \neq 0\right) .
$$

Bivariate generating functions

Bivariate counting generating function

$$
A(x, u)=\sum_{n, k \geq 0}\binom{n}{k} u^{k} x^{n}=\sum_{n \geq 0}(1+u)^{n} x^{n}=\frac{1}{1-x(1+u)}
$$

Observation: this is a rational function!

Bivariate generating functions

Rational functions

$P(x, u), Q(x, u)$ polynomials:

$$
A(x, u)=\sum_{n, k \geq 0} a_{n, k} u^{k} x^{n}=\frac{P(x, u)}{Q(x, u)}
$$

Assumption: factorization of denominator

$$
Q(x, u)=\prod_{j=1}^{r}\left(1-\frac{x}{\rho_{j}(u)}\right)
$$

with

$$
\left|\rho_{1}(u)\right|<\max _{2 \leq j \leq r}\left|\rho_{j}(u)\right| \quad \text { for }|u-1|<\varepsilon
$$

Bivariate generating functions

Central limit theorem for rational functions

Suppose that $A(x, u)=\sum a_{n, k} u^{k} x^{n}$ with $a_{n, k} \geq 0$ is rational and satisfies the assumptions from above.

Let X_{n} be a sequence of random variables with

$$
\mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n, k}}{a_{n}}
$$

with $a_{n}=\sum_{k} a_{n, k}$.

Then X_{n} satisfies a central limit theorem with

$$
\mu_{n}=-n \frac{\rho_{1}^{\prime}(1)}{\rho_{1}(1)} \quad \text { and } \quad \sigma_{n}^{2}=n\left(-\frac{\rho_{1}^{\prime \prime}(1)}{\rho_{1}(1)}-\frac{\rho_{1}^{\prime}(1)}{\rho_{1}(1)}+\frac{\rho_{1}^{\prime}(1)^{2}}{\rho_{1}(1)^{2}}\right)
$$

Bivariate generating functions

Proof

Partial fraction decomposition:

$$
\begin{aligned}
& A(x, u)=\frac{C_{1}(u)}{1-x / \rho_{1}(u)}+\cdots+\frac{C_{r}(u)}{1-x / \rho_{r}(u)} \\
\Longrightarrow \quad A_{n}(u)= & \sum_{k \geq 0} a_{n, k} u^{k}=C_{1}(u) \rho_{1}(u)^{-n}+\cdots+C_{r}(u) \rho_{r}(u)^{-n} \sim C_{1}(u) \rho_{1}(u)^{-n} \\
\Longrightarrow & \mathbb{E} u^{X_{n}}=\frac{A_{n}(u)}{A_{n}(1)} \sim \frac{C_{1}(u)}{C_{1}(1)}\left(\frac{\rho_{1}(1)}{\rho_{1}(u)}\right)^{n}
\end{aligned}
$$

\Longrightarrow central limit theorem.

Bivariate generating functions

Integer compositions

$3=1+1+1=2+1=1+2=3 \ldots 4$ compositions of 3.
$a_{n}=$ number of compositions of $n, A(x)=\sum a_{n} x^{n}$:

$$
\begin{gathered}
A(x)=1+A(x)\left(x+x^{2}+x^{3}+\cdots\right)=1+A(x) \frac{x}{1-x} \\
\Longrightarrow \quad A(x)=\frac{1}{1-\frac{x}{1-x}}=\frac{1-x}{1-2 x} \\
\Longrightarrow \quad a_{n}=2^{n-1}
\end{gathered}
$$

Bivariate generating functions

Integer compositions

$a_{n, k}=$ number of integer composition of n with k summands
$A(x, u)=\sum a_{n, k} u^{k} x^{n}$.

$$
A(x, u)=1+u A(x, u)\left(x+x^{2}+x^{3}+\cdots\right)=1+A(x, u) \frac{x u}{1-x}
$$

$$
\Longrightarrow \quad A(x, u)=\frac{1}{1-\frac{x u}{1-x}}=\frac{1-x}{1-x(1+u)}
$$

\Longrightarrow central limit theorem with $\mu_{n}=\frac{n}{2}$ and $\sigma^{2}=\frac{n}{4}$.

Bivariate generating functions

Systems of linear equations

Suppose, that several generating functions

$$
A_{1}(x, u)=\sum_{n, k} a_{1 ; n, k} u^{k} x^{n}, \ldots, A_{r}(x, u)=\sum_{n, k} a_{r ; n, k} u^{k} x^{n}
$$

satisfy a linear system of equations.

Then all generating functions $A_{j}(x, u)$ are rational and a central limit theorem for corresponding random variables is expected.

Bivariate generating functions

Meromorphic functions

The function $A(x, u)$ is meromorphic in x when u is considered as a parameter and there exists a dominant root $\rho_{1}(u)$ such that (locally)

$$
\begin{aligned}
& A(x, u)=\frac{C(x, u)}{1-\frac{x}{\rho_{1}(u)}} \\
\Longrightarrow & A_{n}(u) \sim C\left(\rho_{1}(u), u\right) \cdot \rho_{1}(u)^{-n} \\
\Longrightarrow & \mathbb{E} u^{X_{n}} \sim \frac{C\left(\rho_{1}(u), u\right)}{C\left(\rho_{1}(1), 1\right)}\left(\frac{\rho_{1}(1)}{\rho_{1}(u)}\right)^{n}
\end{aligned}
$$

\Longrightarrow central limit theorem.

Bivariate generating functions

Number of cycles in permutations
$p_{n, k}=$ number of permutations of $\{1,2, \ldots, n\}$ with k cycles

$$
\widehat{P}(x, u)=\sum_{n, k \geq 0} p_{n, k} \cdot u^{k} \cdot \frac{x^{n}}{n!}=e^{u \cdot \log \frac{1}{1-x}}=\frac{1}{(1-x)^{u}}
$$

Remark: $p_{n, k}=(-1)^{n-k} s_{n, k}$, where $s_{n, k}$ are the Stirling number of the first kind.

Excursion: Singularity Analysis

Lemma 1 Suppose that

$$
y(x)=\left(1-x / x_{0}\right)^{-\alpha} \text {. }
$$

Then

$$
y_{n}=(-1)^{n}\binom{-\alpha}{n} x_{0}^{-n}=\frac{n^{\alpha-1}}{\Gamma(\alpha)} x_{0}^{-n}+\mathcal{O}\left(n^{\alpha-2}\right) x_{0}^{-n}
$$

Remark: This asymptotic expansion is uniform in α if α varies in a compact region of the complex plane.

Excursion: Singularity Analysis

Lemma 2 (Flajolet and Odlyzko) Let

$$
y(x)=\sum_{n \geq 0} y_{n} x^{n}
$$

be analytic in a region

$$
\Delta=\left\{x:|x|<x_{0}+\eta,\left|\arg \left(x-x_{0}\right)\right|>\delta\right\}
$$

$x_{0}>0, \eta>0,0<\delta<\pi / 2$.

Suppose that for some real α

$$
y(x)=\mathcal{O}\left(\left(1-x / x_{0}\right)^{-\alpha}\right) \quad(x \in \Delta)
$$

Then

$$
y_{n}=\mathcal{O}\left(x_{0}^{-n} n^{\alpha-1}\right)
$$

Excursion: Singularity Analysis

Δ-region

Bivariate generating functions

Number of cycles in permutations (continued)

$$
\begin{aligned}
& \widehat{P}(x, u)=e^{u \log \frac{1}{1-x}}=\frac{1}{(1-x)^{u}} \\
& \Longrightarrow \quad p_{n}(u)=\sum_{k \geq 0} p_{n, k} u^{k} \\
& \sim n!\frac{n^{u-1}}{\Gamma(u)} \\
&=n!\frac{e^{(u-1) \log n}}{\Gamma(u)}
\end{aligned}
$$

$$
\Longrightarrow \mathbb{E} u^{X_{n}} \sim \frac{1}{\Gamma(u)}\left(e^{u-1}\right)^{\log n}
$$

\Longrightarrow central limit theorem with $\mu_{n}=\log n$ and $\sigma_{n}^{2}=\log n$.
Generalization: Exp-Log-Schemes: $F(x, u)=e^{h(u) \log \frac{1}{1-x}+R(x, u)}$.

Bivariate generating functions

Catalan trees $g_{n}=$ number of Catalan trees of size n.

$$
G(x)=x\left(1+G(x)+G(x)^{2}+\cdots\right)=\frac{x}{1-G(x)}
$$

$$
G(x)=\frac{1-\sqrt{1-4 x}}{2} \Longrightarrow g_{n}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

Bivariate generating functions

Catalan trees with singularity analysis

$$
\begin{aligned}
& G(x)=\frac{1-\sqrt{1-4 x}}{2}=\frac{1}{2}-\frac{1}{2} \sqrt{1-4 x} \\
& \Longrightarrow \quad g_{n} \sim-\frac{1}{2} \cdot \frac{4^{n} n^{-3 / 2}}{\Gamma\left(-\frac{1}{2}\right)}=\frac{4^{n-1}}{\sqrt{\pi} \cdot n^{3 / 2}}
\end{aligned}
$$

Bivariate generating functions

Number of leaves of Catalan trees
$g_{n, k}=$ number of Catalan trees of size n with k leaves.

$$
\begin{gathered}
G(x, u)=x u+x\left(G(x, u)+G(x, u)^{2}+\cdots=x u+\frac{x G(x, u)}{1-G(x, u)}\right. \\
\Longrightarrow G(x, u)=\frac{1}{2}\left(1+(u-1) x-\sqrt{1-2(u+1) x+(u-1)^{2} x^{2}}\right) \\
\Longrightarrow G(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
\end{gathered}
$$

for certain analytic function $g(x, u), h(x, u)$, and $\rho(u)$.

Bivariate generating functions

Application of singularity analysis

Considering u as a parameter we get

$$
\begin{aligned}
G_{n}(u) & =\sum_{k \geq 0} g_{n, k} u^{k} \sim \frac{h(\rho(u), u) \cdot \rho(u)^{-n} \cdot n^{-3 / 2}}{2 \sqrt{\pi}} \\
& \Longrightarrow \mathbb{E} u^{X_{n}}=\frac{G_{n}(u)}{G_{n}(1)} \sim \frac{h(\rho(u), u)}{h(\rho(1), 1)}\left(\frac{\rho(1)}{\rho(u)}\right)^{n}
\end{aligned}
$$

\Longrightarrow central limit theorem with $\mu_{n}=\frac{n}{2}$ and $\sigma_{n}^{2}=\frac{n}{8}$

Bivariate generating functions

Cayley trees
$T_{n, k}=$ number of Cayley trees of size n with k leaves
$T(x, u)=\sum_{n, k \geq 0} T_{n, k} u^{k} \frac{x^{n}}{n!}$

$$
\Longrightarrow \quad T(x, u)=x e^{T(x, u)}+x(u-1)
$$

\Longrightarrow ?????

Functional equations

Catalan trees: $G(x, u)=x u+x G(x, u) /(1-G(x, u))$
Cayley trees: $T(x, u)=x e^{T(x, u)}+x(u-1)$

Recursive structure leads to functional equation for gen. func.:

$$
A(x, u)=\Phi(x, u, A(x, u))
$$

Functional equations

Linear functional equation: $\Phi(x, u, a)=\Phi_{0}(x, u)+a \Phi_{1}(x, u)$

$$
\Longrightarrow \quad A(x, u)=\frac{\Phi_{0}(x, u)}{1-\Phi_{1}(x, u)}
$$

Usually techniques similar to those used for rational resp. meromorphic functions work and prove a central limit theorem.

Functional equations

Non-linear functional equations: $\Phi_{a a}(x, u, a) \neq 0$.

Suppose that $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at ($0,0,0$) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right)
$$

Then there exists analytic function $g(x, u), h(x, u)$, and $\rho(u)$ such that locally

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} .
$$

Functional equations

Idea of the Proof.

Set $F(x, u, a)=\Phi(x, u, a)-a$. Then we have

$$
\begin{aligned}
F\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{a}\left(x_{0}, 1, a_{0}\right) & =0 \\
F_{x}\left(x_{0}, 1, a_{0}\right) & \neq 0 \\
F_{a a}\left(x_{0}, 1, a_{0}\right) & \neq 0
\end{aligned}
$$

Weierstrass preparation theorem implies that there exist analytic functions $H(x, u, a), p(x, u), q(x, u)$ with $H\left(x_{0}, 1, a_{0}\right) \neq 0, p\left(x_{0}, 1\right)=q\left(x_{0}, 1\right)=$ 0 and

$$
F(x, u, a)=H(x, u, a)\left(\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)\right)
$$

Functional equations

$$
F(x, u, a)=0 \quad \Longleftrightarrow \quad\left(a-a_{0}\right)^{2}+p(x, u)\left(a-a_{0}\right)+q(x, u)=0
$$

Consequently

$$
\begin{aligned}
A(x, u) & =a_{0}-\frac{p(x, u)}{2} \pm \sqrt{\frac{p(x, u)^{2}}{4}-q(x, u)} \\
& =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}
\end{aligned}
$$

where we write

$$
\frac{p(x, u)^{2}}{4}-q(x, u)=K(x, u)(x-\rho(u))
$$

which is again granted by the Weierstrass preparation theorem and we set

$$
g(x, u)=a_{0}-\frac{p(x, u)}{2} \quad \text { and } \quad h(x, u)=\sqrt{-K(x, u) \rho(u)}
$$

Functional equations

A central limit theorem for functional equations

Suppose that $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at $(0,0,0)$ with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq$ 0 (+ minor technical conditions). Set

$$
\mu=\frac{x_{0} \Phi_{x}\left(x_{0}, 1, a_{0}\right)}{\Phi\left(x_{0}, 1, a_{0}\right)} \quad \text { and } \quad \sigma^{2}=\text { "long formula". }
$$

Then then random variable X_{n} defined by $\mathbb{P}\left\{X_{n}=k\right\}=a_{n, k} / a_{n}$ satisfies
a central limit theorem with

$$
\mu_{n}=n \mu \quad \text { and } \quad \sigma_{n}^{2}=n \sigma^{2}
$$

Functional equations

Number of leaves in Cayley trees $\left(T(x)=x e^{T(x)}\right)$

$$
\begin{gathered}
T(x, u)=x e^{T(x, u)}+x(u-1) \\
x_{0}=\frac{1}{e}, \quad t_{0}=T\left(x_{0}\right)=1
\end{gathered}
$$

\Longrightarrow central limit theorem with $\mu_{n}=\frac{1}{e} n$ and $\sigma^{2}=\frac{e-2}{e^{2}} n$.

Functional equations

Systems of functional equations

Suppose, that several generating functions

$$
A_{1}(x, u)=\sum_{n, k} a_{1 ; n, k} u^{k} x^{n}, \ldots, A_{r}(x, u)=\sum_{n, k} a_{r ; n, k} u^{k} x^{n}
$$

satisfy a system of non-linear equations.

Then (under suitable conditions) all generating functions $A_{j}(x, u)$ (usually) have a squareroot singularity and a central limit theorem for corresponding random variables is expected.

Non-normal limit theorems

Example 1

$a_{n, k}=$ number of words " $a a \cdots a b b \cdots b$ " of length n with k letters b.

$$
=1 \text { for } 0 \leq k \leq n
$$

$$
A(x, u)=\frac{1}{1-x} \cdot \frac{1}{1-x u}
$$

and

$$
\frac{X_{n}}{n+1} \xrightarrow{\mathrm{~d}} U
$$

($U \ldots$ uniform distribution on $[0,1]$)

Non-normal limit theorems

Why is there NO central limit theorem?
$A(x, u)$ is a rational function BUT there is no single root $\rho_{1}(u)$ that dominates for u in a neighbourhood of 1 .

Furthermore, for $u=1$ there is a double pole, for $u \neq 1$ two single poles.

Non-normal limit theorems

Example 2

$f_{n, k}=$ number of forests with n nodes of k Cayley trees
$X_{n}=$ number of trees in a random forest with n nodes.

$$
F(x, u)=e^{u T(x)}=\sum_{k \geq 0} u^{k} \frac{T(x)^{k}}{k!}
$$

Discrete limit distribution: $\lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n}=k\right\}=\frac{e^{-1}}{(k-1)!}$.

Non-normal limit theorems

Expected value (Ex 2)

$$
\begin{gathered}
\left.\frac{\partial}{\partial u} F(x, u)\right|_{u=1}=T(x) e^{T(x)} \\
T(x)=x e^{T(x)}, \quad T(x)=1-\sqrt{2} \sqrt{1-e x}+\cdots, \quad\left[x^{n}\right] e^{T(x)}=(n+1)^{n} \\
\Longrightarrow T(x) e^{T(x)}=e-2 e \sqrt{2} \sqrt{1-e x}+\ldots \\
\Longrightarrow \mathbb{E} X_{n} \sim \frac{2 e n!e^{n} n^{-3 / 2}(2 \pi)^{-1 / 2}}{(n+1)^{n}}=2
\end{gathered}
$$

Non-normal limit theorems

Limiting probabilities (Ex 2)

Similarly

$$
\begin{gathered}
\mathbb{P}\left\{X_{n}=k\right\}=\frac{n!\left[x^{n}\right] \frac{T(x)^{k}}{k!}}{n^{n-1}} . \\
\frac{T(x)^{k}}{k!}=\frac{1}{k!}-\frac{\sqrt{2}}{(k-1)!} \sqrt{1-e x}+\ldots \\
\Longrightarrow \quad \lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n}=k\right\}=\frac{e^{-1}}{(k-1)!} \quad(k \geq 1) .
\end{gathered}
$$

Non-normal limit theorems

Example 3

$r_{n, k}=$ number of mappings on $\{1, \ldots n\}$ with k cyclic points; $r_{n}=n^{n}$.
$X_{n}=$ number of cyclic points in random mappings on $\{1,2 \ldots n\}$.

$$
R(x, u)=\sum_{n, k \geq 0} r_{n, k} u^{k} \frac{x^{n}}{n!}=\frac{1}{1-u T(x)}
$$

Rayleigh limiting distribution

$$
\frac{X_{n}}{\sqrt{n}} \xrightarrow{\mathrm{~d}} \mathcal{R}
$$

Non-normal limit theorems

Rayleigh distribution

density: $f(x)=x e^{-\frac{1}{2} x^{2}}, x \geq 0$.
distribution function $F(x)=1-e^{-\frac{1}{2} x^{2}}, x \geq 0$.

moments: $\mathbb{E}\left(\mathcal{R}^{r}\right)=2^{r / 2} \Gamma\left(\frac{r}{2}+1\right)$.

Method of moments

Theorem

Z_{n} and Z random variables such that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(Z_{n}^{r}\right)=\mathbb{E}\left(Z^{r}\right)
$$

for all r and the moments $\mathbb{E}\left(Z^{r}\right)$ uniquely define the distribution of Z (for example the moment generating function $\mathbb{E} e^{v Z}$ exists around $v=0$) then

$$
Z_{n} \xrightarrow{\mathrm{~d}} Z .
$$

Method of moments

Moments and generating functions

$$
\begin{aligned}
A_{n}(u) & =\sum_{k \geq 0} a_{n, k} u^{k}, \quad \mathbb{P}\left\{X_{n}=k\right\}=\frac{a_{n, k}}{A_{n}(1)} \\
& \Longrightarrow \mathbb{E}\left(X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-r+1\right)\right)=\left.\frac{1}{A_{n}(1)} \frac{\partial^{r} A_{n}(u)}{\partial u^{r}}\right|_{u=1}
\end{aligned}
$$

Remark:

$$
\left.\frac{\partial^{r}}{\partial u^{r}} A(x, u)\right|_{u=1}=\sum_{n \geq 1} A_{n}(1) \cdot \mathbb{E}\left(X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-r+1\right)\right) \cdot x^{n}
$$

Method of moments

Example 3 (continued)

$$
\begin{aligned}
& R(x, u)=\frac{1}{1-u T(x)} \\
& T(x)=1-\sqrt{2} \sqrt{1-e x}+\cdots \\
&\left.\Longrightarrow \quad \frac{\partial^{r}}{\partial u^{r}} R(x, u)\right|_{u=1}=\frac{r!T(x)^{r}}{(1-T(x))^{r+1}} \sim \frac{r!}{2^{\frac{r+1}{2}}(1-e x)^{\frac{r+1}{2}}} \\
& \Longrightarrow \frac{n!}{n^{n}} \cdot \mathbb{E}\left(X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-r+1\right)\right) \sim \frac{r!}{2^{\frac{r+1}{2}} \frac{n^{\frac{r-1}{2}} e^{n}}{\Gamma \frac{r+1}{2}}} \\
& \Longrightarrow \mathbb{E}\left(X_{n}\left(X_{n}-1\right) \cdots\left(X_{n}-r+1\right)\right) \sim n^{r / 2} 2^{r / 2} \Gamma\left(\frac{r}{2}+1\right) \\
& \Longrightarrow \frac{X_{n}}{\sqrt{n}} \xrightarrow{d} \mathcal{R} .
\end{aligned}
$$

Admissible functions and centr. limit ths.

Hayman admissible functions

$$
\begin{gathered}
f(z)=\sum_{n \geq 0} f_{n} z^{n} \\
a(z):=\frac{z f^{\prime}(z)}{f(z)} \quad b(z):=z a^{\prime}(z) .
\end{gathered}
$$

If $f(z)$ is Hayman-admissible and r_{n} is defined by $a\left(r_{n}\right)=n$ then

$$
f_{n} \sim \frac{f\left(r_{n}\right) r_{n}^{-n}}{\sqrt{2 \pi b\left(r_{n}\right)}}
$$

Admissible functions and centr. limit ths.

A recursively defined class of admissible functions

- $P(z)$ polynomial $\Longrightarrow e^{P(z)}$ is admissible (if is has only non-negative coefficients).
- $f(z)$ admissible $\Longrightarrow e^{f(z)}$ is admissible
- $P(z)$ non-negative polynomial, $f(z), g(z)$ admissible $\Longrightarrow P(z) f(z), P(f(z)), f(z) g(z)$ admissible.

Examples: $f(z)=e^{z+\frac{z^{2}}{2}}, f(z)=e^{e^{z}-1}, \ldots$

Admissible functions and centr. limit ths.

Recursively defined EXTENDED admissible functions

RULE 1

- $P(z, u)$ polynomial $\Longrightarrow f(z, u)=e^{P(z, u)}$ is e-admissible (if is has only non-negative coefficients and positive coefficients at least in a cone)
- $f(z)$ admissible, $g(u)$ analytic for $|u|<1+\varepsilon, g(1)>0, g^{\prime}(1)+$ $g^{\prime \prime}(1)-g^{\prime}(1)^{2} / g(1)>0 \Longrightarrow e^{f(z) g(u)}$ is e-admissible.

Admissible functions and centr. limit ths.

RULE 2

Suppose that $f(z, u)$ and $g(z, u)$ are e-admissible, $h(z)$ is admissible and $P(z, u)$ is a polynomial with non-negative coefficients. \Longrightarrow

- $f(z, u) g(z, u)$ is e-admissible
- $h(z) f(z, u)$ is e-admissible
- $P(z, u) f(z, u)$ is e-admissible
- $e^{f(z, u)}$ is e-admissible
- $e^{P(z, u) h(z)}$ is e-admissible if P depends at least on u.
- $e^{P(z, u)+h(z)}$ is e-admissible if P depends on u and if h is entire
- $P(z, u)+f(z, u)$ is e-admissible

Admissible functions and centr. limit ths.

Theorem

$$
\begin{aligned}
f(z, u)= & \sum_{n, k \geq 0} f_{n, k} u^{k} z^{n} \quad \text { e-admissible, } \quad \mathbb{P}\left\{X_{n}=k\right\}=\frac{f_{n k}}{f_{n}} . \\
& \Longrightarrow \sqrt{\frac{X_{n}-\bar{a}\left(r_{n}, 1\right)}{\sqrt{\left|B\left(r_{n}, 1\right)\right| / b\left(r_{n}, 1\right)}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,1)}
\end{aligned}
$$

where $a(z, u)=z f_{z}(z, u) / f(z, u), a\left(r_{n}, 1\right)=n, \bar{a}(z, u)=u f_{u}(z, u) / f(z, u)$,
$b(z, u)=z a_{z}(z, u), c(z, u)=u a_{u}(z, u)=z \bar{a}_{z}(z, u), \bar{b}(z, u)=u \bar{a}_{u}(z, u)$, and

$$
|B(z, u)|=\operatorname{det}\left(\begin{array}{ll}
b(z, u) & c(z, u) \\
c(z, u) & \bar{b}(z, u)
\end{array}\right) .
$$

Admissible functions and centr. limit ths.

Example 1: Stirling numbers of the second kind

$$
\begin{gathered}
S(z, u)=\sum_{n, k \geq 0} S_{n, k} \cdot u^{k} \cdot \frac{x^{n}}{n!}=e^{u\left(e^{z}-1\right)} \\
{\left[e^{z}-1 \text { admissible } \Longrightarrow S(z, u) \text { e-admissible }\right]}
\end{gathered}
$$

Stirling numbers of the second kind satisfy a central limit theorem with $\mu_{n}=n / \log n$ and $\sigma_{n}^{2}=n /(\log n)^{2}$.

Admissible functions and centr. limit ths.

Example 2: Permutations with bounded cycle length
$p_{\ell ; n, k}=$ number of permutation of $\{1, \ldots, n\}$ with k cycles $\leq \ell$.

$$
P_{\ell}(z, u)=\sum_{n, k \geq 0} p_{\ell, n, k} \cdot u^{k} \cdot \frac{x^{n}}{n!}=e^{u\left(x+\frac{x^{2}}{2}+\cdots+\frac{x^{\ell}}{\ell}\right)}
$$

We get a central limit theorem with $\mu_{n}=\frac{n}{\ell}$ and $\sigma_{n}^{2}=\frac{n^{1-\frac{1}{\ell}}}{\ell^{2}(\ell-1)}$. $(\ell \geq 2)$

Thanks for your attention!

