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Pattern Matching

Let VW and T be (set of) strings generated over a finite alphabet A.

We call VW the pattern and T the text. The text T'is of length n and is generated
by a probabilistic source.

The pattern ¥V can be a single string
W=wi...wp,, w; €A

or a set of strings
W: {Wl,...,Wd}

with W, € A™i being a set of strings of length m;.

Questions

e How many fimes does VW occurin T ?
e What is the probability that VvV occurs exactly » timesin 17" ?



Constrained Pattern Matching

There are constraints on the text T'. (e.g., (d, k) sequences, regular expression)

A (d, k) sequence is a binary sequence in which any run of zeros must be of
length at least d and at most k.

Example: (2, 4) sequence - 0010001001000100001000100100001000

(d, k) sequences are useful for digital recording and biology.

SPIKES

Questions

e How many fimes does W occurin a (d, k) sequence, T' ?

e What is the conditional probability that W occurs exactly » timesin a (d, k)
sequence, T ?
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Combinatorial Approach

We use a combinatorial approach, based on (M. Régnier & W. Szpankowski,
Algorithmica, 1998), (P Jacquet & W. Szpankowski, ISIT, 2006).

e Construct languages and their relationships
e Translate the language relationships info generating functions

A language, say L, is a collection of words, and its probability generating
function is defined as

L(z) = Z Pu)z" = Z 2" Ly, [2"|L(z) = L,

ueLl n>0
where P(u) is the probability of w.

Define
Air=40...0,...,0...0},
d k
that is, a set of runs of zeros of length between d and k.



Combinatorial Approach

Define

Bd,k:Ad,k°{1} — {,O...O,l,...,O...Ol}
d k
as an extended alphabet.

The probability generating function of 3, is

d+1 d+2

d d+1 k  k+1 (ZIU)d—(ZﬁU)k+1
B(z) = pigz"  +p gz "+ ---+pqz " =2zq

1 —2zp

Y

where p is the probability of emittinga ‘0’ and g = 1 — p.

We consider only restricted (d, k) sequences, which are (d, k) sequences that
start with ‘0" and end with "1°.

Observe that the set of all restricted (d, k) sequences is

1
1 — B(z)

By, ={e} + Baxr+ By, + Bf;,k + ..., and B'(z) =

Note: We only consider occurrences of the paftern w over B, ;, not over the
binary alphabet.

Example: w = 01 occurs only once in a sequence 001010001.



Autocorrelation Set

Llet w = B1 ... Bm. Wwhere 8; € Bi.

We define the aufocorrelation setf of w over B, i as

S:{Blﬂ}rl: ﬁi :Bnrz—l—kl}? 1<l <m

where ﬁ{ = B;--- 3, Its probability generafing function S(z) is called the
autocorrelation polynomial. (as in L. Guibas & A.M. Odlyzko, 1981)

Example: Let w = 0100101 over B = {01,001, 0001}.
Then

S = {e,00101}
since

01T 001 01
01T 001 Ol.

Note that S(z) = 1 + P(00101)z°.



Language 7.

7, —the set of all restricted (d, k) sequences containing exactly » occurrences
of w. (M. Régnier and W. Szpankowski, 1998)

We define some languages: R, U, and M

() We define R as the set of all restricted (d, k) sequences containing only
one occurrence of w, located at the right end.

(i) We also define U/ as
U={u: w-u€ T},

thatis, aword u € U if uis arestricted (d, k) sequence and w -« has exactly
one occurrence of w at the leff end of w - w.

(ii) M is defined as
M ={u: w-u € 75 and w occurs at the right of w - u},

that is, M is a language such that any word in {w} - M has exactly two
occurrences of w at the left and right ends.

Example: Let w = 0100101. Notice 010100101 € R,and 01 € U.
Observe 00101 &€ U, buf 00101 € M because 010010100101 € 7».



Language Relationships and Generating Functions

The following holds:

7, = R-M1.U M = B {w}+ S
To-{w} = R-S U-Bipy = M+U-—{e}
{w}- M = Bar-R—-(R—-A{w})

Then, the above language relationships translate info

1 1

M) 1-BG) ° Fw+SG),

M(z)—1
B(z) — 1’
where P(w) is the probability of w, and m is the length of w.

U(z) = R(z) = 2"P(w) - U(z2)

In particular, we find

52 _ P@)(DE) + BE) 1
pey T D™ |

T()(Z) =

where S(z) is the autocorrelation polynomial for w and

D(z) =8(2)(1 — B(2)) + 2" P(w).
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Number of Occurrences

Let O,, be a random variable representing the number of occurrences of w in
a (regular) binary sequence of length n.

The probability generating function of 7.,

T.(z) = > P(On=r,Dy)z",

n>0

where

the event that a randomly generated binary sequence
of length n is a (d, k) sequence.

n —

Define the bivariate generafing function as

T(z,u) = Z T.(z)u" = Z Z P(O, =r,D,)z"u.

r>0 r>0 n>0

The probability that a randomly generated sequence of length n is a (d, k)
sequence is
P(D,) = [z"]T(z,1).



Number of Occurrences

Infroduce a short-hand notation O,(D,) for the
condifional number of occurrences of w in a (d, k) Binary sequences
sequence, . Y

(d,k) sequences

P(O,(D,)=r1)= P(O, =1|D,).

The probability generating function of O,,(D,,),

"IT(z,u)
g0 P0] = F 1Tz
S P AENY -
The mean and second factorial moment of O,,(D,,) can
be computed by
(2" Tu(z,1) 2" Tyu(z, 1)

E[On(Dn)] — ) E[On(Dn)(On(Dn) - 1)] —

(27| T (2, 1) [27]T(2,1)



Main Results

Theorem 1. Let p := p(p) = 1/ be the unique positive real root of

1 — B(z) =0.
Then .
P(D,) = —X"" + O(w")
) =B

is the probability of generating a (d, k) sequence for some w < A.
Furthermore, the mean is

BON(D,)] = V'~ ”;jpl))”w)xm“ o),

and the variaonce becomes

(1 =2m)P(w) | _gmo
Var|O,,(D,))| = (n —m + 1)P(w 5 A
[On(Dy)] = ( + 1) P(w) [ 5(p)

P(w)B"(p) \ 2t 25(p) — 1

T B B'(p)

/\‘m“] + O(1).



Main Results

Theorem 2. Let 7 := 7(p, w) be the smallest real root of
D(z) =0, (cf. D(z)=S(z)(1—-DB(z))+ z"P(w))
and p := p(p) be the unique positive real root of B(z) = 1.

(i) Forr = O(1),

T

o0 =~ P B 1100 o)

forlargen andr > 1.

(ii) (Central limit) Forr = E[O,,(D,,)] + x+/Var[O,,(D,,)] withz = O(1),

On(D) = BIOWD] 4 (s
V/Var[0,(D.)] |

where N (0, 1) is the standard normal distribution.




Main Results

(iii) (Large deviations) For » = (1 4+ §)E[O,(D,,)] with § > 0, let a be a readl
constant such that
na = (1 + 9)E[O,(D,)]
and lef
he(z) = alog M(z) — log .
Let also z, be the unique real root of the equation k! (z) = 0 such that z, €
(0, p). Then,

P(Ou(Dy) = na) = == - (1 +FO <i>>

27N n n?
and o)
ci-e "M\ 1
P(O,(Dy) 2 na) = 1+O<—>>
(On(Dn) ) V2rn(l — M(z,)) ( n
where

I(a) = —log p — ha(za),
and the constants ¢; and ¢, are explicitly computable.
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Experimental Results

Spike trains of neuronal data satisfy structural constraints that exactly match
the framework of (d, k) binary sequences.

so

ao
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(d, k) sequence : 0100010000001000010001000000100010000010000 - - -
Question; How can we classify a pattern as significant?

We use the large deviations results fo detect under- and over-represented
patterns.

The threshold, Oy, above which pattern occurrences will be classified as
statistically significant, is defined as the minimum Oy, such that

P(On(Dn) 2 Oth) S Qth

where a4, is a given probability threshold (e.g. au, = 107°,1079).



Number of occurrences of w within a window of size 500; here [i] =

257

201

Experimental Results
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Analysis : Large Deviation Result

Theorem For » = (1 + §)E[O,,(D,,)] with § > 0, let a be a real constant such
that

na = (14 6)E[0,(D,)]
and let

he(z) = alog M(z) — log .
Let also z, be the unique real root of the equation k! (z) = 0 such that z, €

(0, p). Then,
e—n[(a) Co 1
1+—4+0 | —
21Tn n n2

I(a) = —logp — ha(za),
and the constants ¢; and ¢y are explicitly computable.

C1 -

P(On(Dy) = na) =

where



Analysis : Sketch of the Proof

1. Generating functions and Cauchy coefficient formula

P(Ou(D) = na) = [u™|Tu(u) = = [E:]T](Z(T)U) =7 ][Q;(;)ng, .
WUT () = M ()
L L O v RUC Rt

1
= — e"ha(z)g(z)dz

271

where
P(w)z™1

D(2)*M(z)

he(z) = alog M(z) —logz and g(z) =



Analysis : Sketch of the Proof

2. Saddle point contour

Let z, a unique real root of the equation k! (z) = 0. We evaluate the
infegralon C = {z : |z| = z,}

3. Contour split

We split C info Cyp and C; where

Co=4{z€C :larg(z)| < 6Oy} fﬁ_’,ﬁﬁ,%ﬁ%&%[\Cl
Ond ;ff SH \ / CO

Ci={ze€C:larg(z)| > 0y} \ e
for 90 == n_2/5. \K‘x «,,,,»fj:f

[2"][w™]T' (2, u)

= Iop+ I

1 1
= — enha(z)g(z)dz—i——./ e" () g(2)dz.
2 )

21 Je, T



Analysis : Sketch of the Proof

4. Approximation of I

Using change of variables and Taylor series expansion, we get

1 1 +6o i0 . ,
I, = — [ e"¥g(2)dz = —/ e ) g (2,e) 24 db
271 Co 2T —0p
nha(za) +o00 2 nha(za)
e w g(zq)e C2 1
~N  — —— | F dw = 1+—+0 | —
2T/ J — oo =P ( 2 > (w)dw TaV 27N ( i n T (n2>>

5. Elimination of I
We show that I is exponentially smaller than 1.
M (z) is the probability generating function of language M. By its non-

negativity of coefficients and aperiodicity, | M (z.e™)| is uniquely maximum at
60 = 0. For 6 € [0, 7.

iG)

_ |M(zaew)|na < |M(zaei90)|na _

n n
ZCL ZCI,

enha(zae enha(ZanQO)

.




Analysis : Sketch of the Proof

6. Putting together

kﬂwmn%au>_Iw+h__“<1+C)G’mwﬁ>

P(O,(D,) = na) (2T (z,1)  P(D,) P(Dy)

—nl(a)

ci1: € Co 1

_ 1+2 40 <_)>
V2mn ( n n?

I(a) = —logp — ha(za)-

where



