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Pattern Matching

Let W and T be (set of) strings generated over a �nite alphabet A.

We callW the pattern and T the text. The text T is of length n and is generated
by a probabilistic source.

The pattern W can be a single string

W = w1 . . . wm, wi ∈ A

or a set of strings
W = {W1, . . . ,Wd}

with Wi ∈ Ami being a set of strings of length mi.

Questions

• How many times does W occur in T ?
• What is the probability that W occurs exactly r times in T ?
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Constrained Pattern Matching

There are constraints on the text T . (e.g., (d, k) sequences, regular expression)

A (d, k) sequence is a binary sequence in which any run of zeros must be of
length at least d and at most k.

Example: (2, 4) sequence - 0010001001000100001000100100001000

(d, k) sequences are useful for digital recording and biology.

Questions

• How many times does W occur in a (d, k) sequence, T ?
• What is the conditional probability thatW occurs exactly r times in a (d, k)

sequence, T ?
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Combinatorial Approach

We use a combinatorial approach, based on [M. Régnier & W. Szpankowski,
Algorithmica, 1998], [P. Jacquet & W. Szpankowski, ISIT, 2006].

• Construct languages and their relationships
• Translate the language relationships into generating functions

A language, say L, is a collection of words, and its probability generating
function is de�ned as

L(z) =
X
u∈L

P (u)z
|u|

=
X
n≥0

z
n
Ln, [z

n
]L(z) = Ln

where P (u) is the probability of u.

De�ne
Ad,k = {0 . . . 0| {z }

d

, . . . , 0 . . . 0| {z }
k

},

that is, a set of runs of zeros of length between d and k.
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Combinatorial Approach

De�ne
Bd,k = Ad,k · {1} = {0 . . . 0| {z }

d

1, . . . , 0 . . . 0| {z }
k

1}

as an extended alphabet.

The probability generating function of Bd,k is

B(z) = p
d
qz

d+1
+ p

d+1
qz

d+2
+ · · ·+ p

k
qz

k+1
= zq

(zp)
d − (zp)

k+1

1− zp
,

where p is the probability of emitting a '0' and q = 1− p.

We consider only restricted (d, k) sequences, which are (d, k) sequences that
start with '0' and end with '1'.

Observe that the set of all restricted (d, k) sequences is

B
∗
d,k = {ε}+ Bd,k + B2

d,k + B3
d,k + · · · , and B

∗
(z) =

1

1− B(z)
.

Note: We only consider occurrences of the pattern w over Bd,k, not over the
binary alphabet.

Example: w = 01 occurs only once in a sequence 001010001.

AofA 2008 6



Autocorrelation Set

Let w = β1 . . . βm, where βi ∈ Bd,k.

We de�ne the autocorrelation set of w over Bd,k as

S = {βm
l+1 : β

l
1 = β

m
m−l+1}, 1 ≤ l ≤ m

where βj
i = βi · · · βj. Its probability generating function S(z) is called the

autocorrelation polynomial. (as in L. Guibas & A.M. Odlyzko, 1981)

Example: Let w = 0100101 over B = {01, 001, 0001}.
Then

S = {ε, 00101}
since

01 001 01
01 001 01.

Note that S(z) = 1 + P (00101)z5.
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Language Tr

Tr � the set of all restricted (d, k) sequences containing exactly r occurrences
of w. [M. Régnier and W. Szpankowski, 1998]

We de�ne some languages: R, U , and M

(i) We de�ne R as the set of all restricted (d, k) sequences containing only
one occurrence of w, located at the right end.

(ii) We also de�ne U as
U = {u : w · u ∈ T1},

that is, a word u ∈ U if u is a restricted (d, k) sequence and w ·u has exactly
one occurrence of w at the left end of w · u.

(iii) M is de�ned as

M = {u : w · u ∈ T2 and w occurs at the right of w · u},

that is, M is a language such that any word in {w} · M has exactly two
occurrences of w at the left and right ends.

Example: Let w = 0100101. Notice 010100101 ∈ R, and 01 ∈ U .
Observe 00101 /∈ U , but 00101 ∈ M because 010010100101 ∈ T2.
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Language Relationships and Generating Functions

The following holds:

Tr = R ·Mr−1 · U M∗ = B∗d,k · {w}+ S
T0 · {w} = R · S U · Bd,k = M+ U − {ε}

{w} ·M = Bd,k · R − (R− {w})

Then, the above language relationships translate into

1

1−M(z)
=

1

1− B(z)
· zm

P (w) + S(z),

U(z) =
M(z)− 1

B(z)− 1
, R(z) = z

m
P (w) · U(z)

where P (w) is the probability of w, and m is the length of w.

In particular, we �nd

T0(z) =
S(z)

D(z)
, Tr(z) =

zmP (w)(D(z) + B(z)− 1)
r−1

D(z)r+1
,

where S(z) is the autocorrelation polynomial for w and

D(z) = S(z)(1− B(z)) + z
m

P (w).
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Number of Occurrences

Let On be a random variable representing the number of occurrences of w in
a (regular) binary sequence of length n.

The probability generating function of Tr,

Tr(z) =
X
n≥0

P (On = r,Dn)z
n
,

where

Dn =
the event that a randomly generated binary sequence
of length n is a (d, k) sequence.

De�ne the bivariate generating function as

T (z, u) =
X
r≥0

Tr(z)u
r
=
X
r≥0

X
n≥0

P (On = r,Dn)z
n
u

r
.

The probability that a randomly generated sequence of length n is a (d, k)
sequence is

P (Dn) = [z
n
]T (z, 1).
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Number of Occurrences

Introduce a short-hand notation On(Dn) for the
conditional number of occurrences of w in a (d, k)
sequence,

P (On(Dn) = r) = P (On = r | Dn).

The probability generating function of On(Dn),

E[u
On(Dn)

] =
[zn]T (z, u)

[zn]T (z, 1)
.

The mean and second factorial moment of On(Dn) can
be computed by

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
, E[On(Dn)(On(Dn)− 1)] =

[zn]Tuu(z, 1)

[zn]T (z, 1)
.
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Main Results

Theorem 1. Let ρ := ρ(p) = 1/λ be the unique positive real root of

1− B(z) = 0.

Then
P (Dn) =

1

B′(ρ)
λ

n+1
+ O(ω

n
)

is the probability of generating a (d, k) sequence for some ω < λ.
Furthermore, the mean is

E[On(Dn)] =
(n−m + 1)P (w)

B′(ρ)
λ
−m+1

+ O(1),

and the variance becomes

Var[On(Dn)] = (n−m + 1)P (w)

"
(1− 2m)P (w)

B′(ρ)
2

λ
−2m+2

+
P (w)B′′(ρ)

B′(ρ)
3

λ
−2m+1

+
2S(ρ)− 1

B′(ρ)
λ
−m+1

#
+ O(1).
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Main Results

Theorem 2. Let τ := τ(p, w) be the smallest real root of

D(z) = 0, [cf. D(z) = S(z)(1− B(z)) + zmP (w)]

and ρ := ρ(p) be the unique positive real root of B(z) = 1.

(i) For r = O(1),

P (On(Dn) = r) ∼ P (w)B′(ρ)(1− B(τ))
r−1

D′(τ)
r+1

τ r−m

�n−m + r

r

��ρ

τ

�n+1

for large n and r ≥ 1.

(ii) [Central limit] For r = E[On(Dn)] + x
p

Var[On(Dn)] with x = O(1),

On(Dn)− E[On(Dn)]p
Var[On(Dn)]

d→N(0, 1)

where N(0, 1) is the standard normal distribution.
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Main Results

(iii) [Large deviations] For r = (1 + δ)E[On(Dn)] with δ > 0, let a be a real
constant such that

na = (1 + δ)E[On(Dn)]

and let
ha(z) = a log M(z)− log z.

Let also za be the unique real root of the equation h′a(z) = 0 such that za ∈
(0, ρ). Then,

P (On(Dn) = na) =
c1 · e−nI(a)

√
2πn

�
1 +

c2

n
+ O

�
1

n2

��
and

P (On(Dn) ≥ na) =
c1 · e−nI(a)

√
2πn(1−M(za))

�
1 + O

�
1

n

��
where

I(a) = − log ρ− ha(za),

and the constants c1 and c2 are explicitly computable.
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Experimental Results

Spike trains of neuronal data satisfy structural constraints that exactly match
the framework of (d, k) binary sequences.

spike train : 0  10 20 30 40 50 60 70 80 90 100
−40

−30

−20

−10

0

10

20

30

40

50

mV

ms

(d, k) sequence : 0100010000001000010001000000100010000010000 · · ·

Question: How can we classify a pattern as signi�cant?

We use the large deviations results to detect under- and over-represented
patterns.

The threshold, Oth, above which pattern occurrences will be classi�ed as
statistically signi�cant, is de�ned as the minimum Oth such that

P (On(Dn) ≥ Oth) ≤ αth

where αth is a given probability threshold (e.g. αth = 10−6, 10−8).
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Experimental Results

Number of occurrences of w within a window of size 500; here [i] = 0 · · · 0| {z }
i−1

1.
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(a) w=[4][4][4] (b) w=[5][3][5]
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(c) w=[4][5][3] (d) w=[5][5][5]
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Analysis : Large Deviation Result

Theorem For r = (1 + δ)E[On(Dn)] with δ > 0, let a be a real constant such
that

na = (1 + δ)E[On(Dn)]

and let
ha(z) = a log M(z)− log z.

Let also za be the unique real root of the equation h′a(z) = 0 such that za ∈
(0, ρ). Then,

P (On(Dn) = na) =
c1 · e−nI(a)

√
2πn

�
1 +

c2

n
+ O

�
1

n2

��
where

I(a) = − log ρ− ha(za),

and the constants c1 and c2 are explicitly computable.
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Analysis : Sketch of the Proof

1. Generating functions and Cauchy coef�cient formula

P (On(Dn) = na) = [u
na

]Tn(u) =
[zn][una]T (z, u)

[zn]T (z, 1)
=

[zn][una]T (z, u)

P (Dn)

[u
na

]T (z, u) =
P (w)zm

D(z)
2

M(z)
na−1

[z
n
][u

na
]T (z, u) =

1

2πi

I
P (w)zm

D(z)
2

M(z)
na−1 1

zn+1
dz

=
1

2πi

I
e

nha(z)
g(z)dz

where
ha(z) = a log M(z)− log z and g(z) =

P (w)zm−1

D(z)
2
M(z)

.
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Analysis : Sketch of the Proof

2. Saddle point contour

Let za a unique real root of the equation h′a(z) = 0. We evaluate the
integral on C = {z : |z| = za}

3. Contour split

We split C into C0 and C1 where

C0 = {z ∈ C : |arg(z)| ≤ θ0}

and
C1 = {z ∈ C : |arg(z)| ≥ θ0}

for θ0 = n−2/5.

[z
n
][u

na
]T (z, u)

= I0 + I1

=
1

2πi

Z
C0

e
nha(z)

g(z)dz +
1

2πi

Z
C1

e
nha(z)

g(z)dz.
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Analysis : Sketch of the Proof

4. Approximation of I0

Using change of variables and Taylor series expansion, we get

I0 =
1

2πi

Z
C0

e
nha(z)

g(z)dz =
1

2π

Z +θ0

−θ0

e
nha(zaeiθ)

g(zae
iθ
)zae

iθ
dθ

∼ enha(za)

2πτa
√

n

Z +∞

−∞
exp

 
−ω2

2

!
F (w)dω =

g(za)e
nha(za)

τa

√
2πn

�
1 +

c2

n
+ O

�
1

n2

��
5. Elimination of I1

We show that I1 is exponentially smaller than I0.

M(z) is the probability generating function of language M. By its non-
negativity of coef�cients and aperiodicity, |M(zae

iθ)| is uniquely maximum at
θ = 0. For θ ∈ [θ0, π],����enha(zaeiθ)

���� =

��M(zae
iθ)
��na

zn
a

≤
��M(zae

iθ0)
��na

zn
a

=

����enha(zaeiθ0)

���� .
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Analysis : Sketch of the Proof

6. Putting together

P (On(Dn) = na) =
[zn][una]T (z, u)

[zn]T (z, 1)
=

I0 + I1

P (Dn)
=

I0

�
1 + O

�
e−cn1/5

��
P (Dn)

=
c1 · e−nI(a)

√
2πn

�
1 +

c2

n
+ O

�
1

n2

��
where

I(a) = − log ρ− ha(za).

AofA 2008 24


