Digital trees for DNA sequences

Brigitte CHAUVIN (Versailles)

in collaboration with Peggy CÉNAC (Univ. Bourgogne), Eric FEKETE, Stéphane GINOUILLAC, Nicolas POUYANNE (Versailles)

AofA08

Outline

- Introduction
- Tree representation
- Where randomness is

- What is known
- Results
- Methods

Introduction

► A DNA sequence is an infinite word

$$U = u_1 u_2 \ldots u_n \ldots \qquad \forall i, u_i \in \{A, C, G, T\}.$$

Introduction

A DNA sequence is an infinite word

$$U = u_1 u_2 \ldots u_n \ldots \qquad \forall i, u_i \in \{A, C, G, T\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ To be seen on a representation:

- repetition of patterns
- missing patterns
- repartition of different possible patterns
- comparison of different sequences

Introduction

A DNA sequence is an infinite word

$$U = u_1 u_2 \ldots u_n \ldots \qquad \forall i, u_i \in \{A, C, G, T\}.$$

To be seen on a representation:

- repetition of patterns
- missing patterns
- repartition of different possible patterns
- comparison of different sequences
- Can we identify some characteristics
 - easy to study on the representation
 - different from a species to another species?

Tree representation

$$U = u_1 u_2 \ldots u_n \ldots$$

Prefixes	Rev.prefixes	Suffixes
<i>u</i> ₁	<i>u</i> ₁	$u_1u_2u_3u_4\ldots$
$u_1 u_2$	$u_2 u_1$	$u_2 u_3 u_4 \dots$
$u_1 u_2 u_3$	$u_3 u_2 u_1$	<i>U</i> ₃ <i>U</i> ₄

- suffix trie
- DST of reversed prefixes
- trie of reversed prefixes
- suffix DST

$$S_1 = U = 1001011001110\dots$$

$$S_1 = U = 1001011001110...$$

 $S_2 = 001011001110...$

$$S_1 = U = 1001011001110...$$

 $S_2 = 001011001110...$
 $S_3 = 01011001110...$

$$\begin{split} S_1 &= U = 1001011001110 \dots \\ S_2 &= 001011001110 \dots \\ S_3 &= 01011001110 \dots \\ S_4 &= 1011001110 \dots \end{split}$$

$$\begin{split} S_1 &= U = 1001011001110\ldots \\ S_2 &= 001011001110\ldots \\ S_3 &= 01011001110\ldots \\ S_4 &= 1011001110\ldots \\ S_5 &= 011001110\ldots \end{split}$$

•

$$\begin{array}{l} S_1 = U = 1001011001110 \dots \\ S_2 = 001011001110 \dots \\ S_3 = 01011001110 \dots \\ S_4 = 1011001110 \dots \\ S_5 = 011001110 \dots \\ S_6 = 11001110 \dots \end{array}$$

$$\begin{split} S_1 &= U = 1001011001110\ldots \\ S_2 &= 001011001110\ldots \\ S_3 &= 01011001110\ldots \\ S_4 &= 1011001110\ldots \\ S_5 &= 011001110\ldots \\ S_6 &= 11001110\ldots \\ S_7 &= 1001110\ldots \end{split}$$

$$\begin{split} S_1 &= U = 1001011001110\ldots \\ S_2 &= 001011001110\ldots \\ S_3 &= 01011001110\ldots \\ S_4 &= 1011001110\ldots \\ S_5 &= 011001110\ldots \\ S_6 &= 11001110\ldots \\ S_7 &= 1001110\ldots \end{split}$$

The shape of the tree is closely related to the repetitions of patterns

Comes from the production of the letters: $\{0, 1\}$ or $\{A, C, G, T\}$ or from any finite alphabet. For a given word $U = u_1 u_2 \dots u_n \dots$,

the tree process $(\mathcal{T}_n)_{n\geq 0}$ is nonrandom.

Where randomness is?

Comes from the production of the letters: $\{0,1\}$ or $\{A, C, G, T\}$ or an alphabet. For a given word $U = u_1 u_2 \dots u_n \dots$,

the tree process $(\mathcal{T}_n)_{n\geq 0}$ is nonrandom.

Different kinds of sources:

- Memoryless: Bernoulli or asymmetric i.i.d.
- Markov
- Probabilistic dynamical source on an alphabet A:
 - ▶ a partition of [0, 1] with open intervals $\mathcal{I}_{\alpha}, \alpha \in \mathcal{A}$,
 - ▶ an encoding mapping $\sigma : [0,1] \rightarrow \mathcal{A}$, s.t. $\sigma_{|\mathcal{I}_{\alpha}} \equiv \alpha$

- a transformation T,
- an initial density f.

Probabilistic dynamical source on an alphabet \mathcal{A} :

- ▶ a partition of [0,1] with open intervals $\mathcal{I}_{\alpha}, \alpha \in \mathcal{A}$,
- ▶ an encoding mapping $\sigma : [0,1] \rightarrow \mathcal{A}$, s.t. $\sigma_{|\mathcal{I}_{\alpha}} \equiv \alpha$
- a transformation T,
- an initial density f.
 - x_1 is chosen on [0, 1] with the density f
 - its orbit is $x_1, T(x_1), T^2(x_1), ...$
 - then $U = \sigma(x_1)\sigma(T(x_1))\sigma(T^2(x_1))\cdots = u_1u_2\ldots$

The inserted words (suffixes or reversed prefixes) are NOT independent.

Figure: The shift mapping T

What is known

DST

for independent words

Bernoulli source

- height, insertion depth, profile *cf. Mahmoud (92)*
- $H_n \log_2 n \xrightarrow{P} 0$ Aldous-Shields (98)
- Concentration of the height *Drmota (02)*

Suffix tries

Bernoulli source

• size

Blumer et al. (89)

- height Devroye, Szpankowski (92)
- mean, distrib. analysis *Jacquet, Szpankowski*

What is known

for independent words

<u>Bernoulli source</u>

• height, insertion depth, profile *cf. Mahmoud (92)*

- $H_n \log_2 n \xrightarrow{P} 0$ Aldous-Shields (98)
- Concentration of the height *Drmota (02)*

iid assymmetric, Markov source

• *Pittel (85)* insertion depth, height strong convergences

from an infinite word

• iid or Markov source *Cénac et al. (07)*

Suffix tries

Bernoulli source size Blumer et al. (89) height Devroye, Szpankowski (92) mean, distrib. analysis Jacquet, Szpankowski iid assym., Markov average size and

• average size and total path length *Fayolle (06)*

dynamical source

Cénac, Fekete
 (in progress)

Two families of methods:

Some notations to write the results

The probability that the source produces a sequence of symbols starting with the pattern m is

$$p_m = \int_{\mathcal{I}_m} f(t) dt.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

s = s₁s₂...s_n... denotes an infinite deterministic sequence.
 s⁽ⁿ⁾ = s₁s₂...s_n.

Some notations to write the results

$$p_m = \int_{\mathcal{I}_m} f(t) dt$$

- s = s₁s₂...s_n... denotes an infinite deterministic sequence.
 s⁽ⁿ⁾ = s₁s₂...s_n.
- Entropies

$$h_{+} = \lim_{n \to +\infty} \frac{1}{n} \max_{s^{(n)}} \left\{ \ln\left(\frac{1}{p_{s^{(n)}}}\right) \right\},$$
$$h_{-} = \lim_{n \to +\infty} \frac{1}{n} \min_{s^{(n)}} \left\{ \ln\left(\frac{1}{p_{s^{(n)}}}\right) \right\},$$
$$h = \lim_{n \to +\infty} \frac{1}{n} E\left[\ln\left(\frac{1}{p(U^{(n)})}\right) \right].$$

Some notations to write the results

► $s = s_1 s_2 \dots s_n \dots$ denotes an infinite deterministic sequence. $s^{(n)} = s_1 s_2 \dots s_n$.

$$h_{+} = \lim_{n \to +\infty} \frac{1}{n} \max_{s^{(n)}} \left\{ \ln\left(\frac{1}{p_{s^{(n)}}}\right) \right\}, h_{-} = \lim_{n \to +\infty} \frac{1}{n} \min_{s^{(n)}} \left\{ \ln\left(\frac{1}{p_{s^{(n)}}}\right) \right\},$$
$$h = \lim_{n \to +\infty} \frac{1}{n} E\left[\ln\left(\frac{1}{p(U^{(n)})}\right) \right].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• ℓ_n = length shortest branch of the tree = fill-up level \mathcal{L}_n = length of the longest branch of the tree. D_n = insertion depth

Results

 ℓ_n = length shortest branch of the tree = fill-up level \mathcal{L}_n = length of the longest branch of the tree. D_n = insertion depth

Theorem

(Cénac et al. (07)) <u>For the DST</u> for a memoryless source or a Markovian source

$$\frac{\ell_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_+}, \quad \text{and} \quad \frac{\mathcal{L}_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_-}$$

Results

 ℓ_n = length shortest branch of the tree = fill-up level \mathcal{L}_n = length of the longest branch of the tree. D_n = insertion depth

Theorem

For the DST for a memoryless source or a Markovian source

$$\frac{\ell_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_+}, \quad \text{and} \quad \frac{\mathcal{L}_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_-}.$$
$$\frac{D_n}{\ln n} \xrightarrow[n \to \infty]{\text{P}} \frac{1}{h}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Results

 ℓ_n = length shortest branch of the tree = fill-up level \mathcal{L}_n = length of the longest branch of the tree. D_n = insertion depth

Theorem

For the DST for a memoryless source or a Markovian source

$$\frac{\ell_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_+}, \quad \text{and} \quad \frac{\mathcal{L}_n}{\ln n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_-}$$

$$\frac{D_n}{\ln n} \xrightarrow[n \to \infty]{P} \frac{1}{h}$$

<u>For the suffix trie</u> for a dynamical source with a ϕ -mixing condition

$$\frac{\ell_n}{|n \ n} \xrightarrow[n \to \infty]{\text{a.s.}} \frac{1}{h_+}.$$

s = s₁s₂...s_n... denotes an infinite deterministic sequence.
 s⁽ⁿ⁾ = s₁s₂...s_n

 $X_n(s) \stackrel{\text{def}}{=}$ length of the branch corresponding to s in the tree \mathcal{T}_n

$$\ell_n = \min_s X_n(s)$$
 and $\mathcal{L}_n = \max_s X_n(s)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- s = s₁s₂...s_n... denotes an infinite deterministic sequence.
 s⁽ⁿ⁾ = s₁s₂...s_n
- T_k(s) ^{def} size of the first tree where is inserted s^(k), X_n(s) ^{def} length of the branch corresponding to s in T_n.

$$\ell_n = \min_s X_n(s)$$
 and $\mathcal{L}_n = \max_s X_n(s)$.

X_n and T_k are in duality

 $\{X_n(s)\geq k\}=\{T_k(s)\leq n\}.$

$$P(\ell_n \le k-1) \le \sum_{s^{(k)}} P(T_k(s) > n) = \sum_{s^{(k)}} P(t^0_{s^{(k)}} + t^1_{s^{(k)}} > n)$$

• $T_k(s) \stackrel{\text{def}}{=}$ size of the first tree where is inserted $s^{(k)}$,

$$\ell_n = \min_s X_n(s)$$

$$P(\ell_n \le k-1) \le \sum_{s^{(k)}} P(T_k(s) > n) = \sum_{s^{(k)}} P(t^0_{s^{(k)}} + t^1_{s^{(k)}} > n)$$

where (for the suffix trie)

 $t_m^0 =$ hitting time of pattern m $t_m^1 =$ return time of pattern m.

sufficient:

$$\sum_{s^{(k)}} P(t^0_{s^{(k)}} > n/2) \text{ is the g.t. of a conv. series}$$
$$\sum_{s^{(k)}} P(t^1_{s^{(k)}} > n/2) \text{ is the g.t. of a conv. series}$$

$$t_m^0$$
 = hitting time of pattern *m*
 t_m^1 = return time of pattern *m*.

It is sufficient to prove

 $\sum_{s^{(k)}} P(t^0_{s^{(k)}} > n/2)$ is the g.t. of a conv. series

 $\sum_{s^{(k)}} P(t^1_{s^{(k)}} > n/2)$ is the g.t. of a conv. series

 t_m^0 = hitting time of pattern m t_m^1 = return time of pattern m. To prove:

$$\sum_{s^{(k)}} P(t^0_{s^{(k)}} > n/2)$$
 is the g.t. of a conv. series

$$\sum_{s^{(k)}} P(t^1_{s^{(k)}} > n/2)$$
 is the g.t. of a conv. series

 \uparrow for a pattern *m*

$$|P(t_m^1 > t) - Ce^{-\xi_m t}| \leq C' t^eta$$

 \sim Galves-Schmidt (97)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The more auto-correlated a word is, the more easily it may reappear and the smaller its return time is.

Methods - 2 - Less easy

The more auto-correlated a word is, the more easily it may reappear and the smaller its return time is.

To achieve this

Meaning of such mixing conditions: When two parts of a word

$$w = \ldots w_0 | w_1 w_2 \ldots w_n | w_{n+1} \ldots$$

are far (more than n letters) from each other, then, these two parts are "almost" independent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The mixing assumptions

Assumptions on the geometry of the branches of the dynamical system (T, f):

- branches of class C^2
- bounded distorsion of the branches

weak ϕ -mixing condition (*Paccaut (99)*): μ stationary measure, $\exists C, \exists \xi \in]0, 1[$ s.t. $\forall P, Q$ borelians in [0, 1],

$$|\mu(P\cap T^{-n}Q)-\mu(P)\mu(Q)|\leq C\xi^n\mu(Q)$$

,

$$\begin{split} \phi-\text{mixing condition } & (\textit{Galves-Schmidt (97)}):\\ \exists \phi \text{ decreasing, positive, tending to 0 s.t.}\\ & \sup_{P \in \mathcal{F}_n, Q} \frac{\mu(P \cap T^{-(n+l)}Q) - \mu(P)\mu(Q)}{\mu(P)\mu(Q)} \leq \phi(l) \end{split}$$

$$|P(t_m^1 > t) - Ce^{-\xi_m t}| \le C' t^\beta$$

◆□→ ◆圖→ ◆薑→ ◆薑→ □ = −のへで

- convergence rates
- central limit theorem

- convergence rates
- central limit theorem

(ロ)、(型)、(E)、(E)、 E) の(の)

mixing conditions

- convergence rates
- central limit theorem
- mixing conditions
- statistical point of view

to be continued...