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Introduction

I A DNA sequence is an infinite word

U = u1u2 . . . un . . . ∀i , ui ∈ {A,C ,G ,T}.

I To be seen on a representation:
I repetition of patterns
I missing patterns
I repartition of different possible patterns
I comparison of different sequences

I Can we identify some characteristics
I easy to study on the representation
I different from a species to another species?



Tree representation

U = u1u2 . . . un . . .

Prefixes
u1

u1u2

u1u2u3

. . .

Rev.prefixes
u1

u2u1

u3u2u1

. . .

Suffixes
u1u2u3u4 . . .
u2u3u4 . . .
u3u4 . . .
. . .

I suffix trie

I DST of reversed prefixes

I trie of reversed prefixes

I suffix DST
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The shape of the tree is closely related to the repetitions of
patterns



Where randomness is?

Comes from the production of the letters: {0, 1} or {A,C ,G ,T}
or from any finite alphabet. For a given word U = u1u2 . . . un . . . ,

the tree process (Tn)n≥0 is nonrandom.



Where randomness is?

Comes from the production of the letters: {0, 1} or {A,C ,G ,T}
or an alphabet. For a given word U = u1u2 . . . un . . . ,

the tree process (Tn)n≥0 is nonrandom.

Different kinds of sources:

I Memoryless: Bernoulli or asymmetric i.i.d.

I Markov
I Probabilistic dynamical source on an alphabet A:

I a partition of [0, 1] with open intervals Iα, α ∈ A,
I an encoding mapping σ : [0, 1]→ A, s.t. σ|Iα

≡ α
I a transformation T ,
I an initial density f .



Probabilistic dynamical source on an alphabet A:

I a partition of [0, 1] with open intervals Iα, α ∈ A,

I an encoding mapping σ : [0, 1]→ A, s.t. σ|Iα
≡ α

I a transformation T ,

I an initial density f .

I x1 is chosen on [0, 1] with the density f
I its orbit is x1,T (x1),T 2(x1), . . .
I then U = σ(x1)σ(T (x1))σ(T 2(x1)) · · · = u1u2 . . .

The inserted words (suffixes or reversed prefixes) are NOT
independent.
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Figure: The shift mapping T



What is known

DST
for independent words

Suffix tries

Bernoulli source
• height, insertion depth, profile
cf. Mahmoud (92)

• Hn − log2 n
P→ 0

Aldous-Shields (98)
• Concentration of the height
Drmota (02)

Bernoulli source
• size
Blumer et al. (89)
• height
Devroye, Szpankowski (92)
• mean, distrib. analysis
Jacquet, Szpankowski



What is known

DST
for independent words

Suffix tries

Bernoulli source
• height, insertion depth, profile
cf. Mahmoud (92)

• Hn − log2 n
P→ 0

Aldous-Shields (98)
• Concentration of the height
Drmota (02)

Bernoulli source
• size
Blumer et al. (89)
• height
Devroye, Szpankowski (92)
• mean, distrib. analysis
Jacquet, Szpankowski

iid assymmetric, Markov source
• Pittel (85)
insertion depth, height

strong convergences

from an infinite word
• iid or Markov source
Cénac et al. (07)

iid assym., Markov
• average size and
total path length
Fayolle (06)

dynamical source
• Cénac, Fekete
(in progress)



Two families of methods:

(1) (2)
analytic combinatorics probability
generating functions
Mellin transform

↓ ↓
precise asymptotics on a.s. convergences
- the average of additive characteristics
- distribution of the height



Some notations to write the results

I The probability that the source produces a sequence of
symbols starting with the pattern m is

pm =

∫
Im

f (t)dt.

I s = s1s2 . . . sn . . . denotes an infinite deterministic sequence.

I s(n) = s1s2 . . . sn.



Some notations to write the results

I
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∫
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f (t)dt
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Some notations to write the results

I s = s1s2 . . . sn . . . denotes an infinite deterministic sequence.
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I `n = length shortest branch of the tree = fill-up level
Ln = length of the longest branch of the tree.
Dn = insertion depth
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`n = length shortest branch of the tree = fill-up level
Ln = length of the longest branch of the tree.
Dn = insertion depth

Theorem
For the DST for a memoryless source or a Markovian source

`n
ln n

a.s.−→
n→∞

1

h+
, and

Ln

ln n
a.s.−→

n→∞

1

h−
.

Dn

ln n
P−→

n→∞

1

h

For the suffix trie for a dynamical source with a φ−mixing
condition
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Methods - 1 - Runs well

I s = s1s2 . . . sn . . . denotes an infinite deterministic sequence.

I s(n) = s1s2 . . . sn

Xn(s)
def
= length of the branch corresponding to s in the tree T n

`n = min
s

Xn(s) and Ln = max
s

Xn(s).



Methods - 1 - Runs well

I s = s1s2 . . . sn . . . denotes an infinite deterministic sequence.

I s(n) = s1s2 . . . sn

I Tk(s)
def
= size of the first tree where is inserted s(k),

Xn(s)
def
= length of the branch corresponding to s in T n.

`n = min
s

Xn(s) and Ln = max
s

Xn(s).

I Xn and Tk are in duality
{Xn(s) ≥ k} = {Tk(s) ≤ n}.

P(`n ≤ k − 1) ≤
∑
s(k)

P(Tk(s) > n) =
∑
s(k)

P(t0
s(k) + t1

s(k) > n)
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I Tk(s)
def
= size of the first tree where is inserted s(k),

`n = min
s

Xn(s)

P(`n ≤ k − 1) ≤
∑
s(k)

P(Tk(s) > n) =
∑
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where (for the suffix trie)

t0
m = hitting time of pattern m

t1
m = return time of pattern m.
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s(k)
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s(k) > n/2) is the g.t. of a conv. series∑
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P(t1
s(k) > n/2) is the g.t. of a conv. series
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Methods - 1 - Runs well

t0
m = hitting time of pattern m

t1
m = return time of pattern m.

To prove:∑
s(k)

P(t0
s(k) > n/2) is the g.t. of a conv. series

∑
s(k)

P(t1
s(k) > n/2) is the g.t. of a conv. series

↑ for a pattern m

|P(t1
m > t)− Ce−ξmt | ≤ C ′tβ

∼ Galves-Schmidt (97)



Methods - 2 - Less easy

The more auto-correlated a word is, the more easily it may
reappear and the smaller its return time is.



Methods - 2 - Less easy

The more auto-correlated a word is, the more easily it may
reappear and the smaller its return time is.

To achieve this

(1) (2)
work on the assumptions tools
add independence auto-correlation polynomials

↓
Bernoulli
Markov
dynamical source + mixing assumptions .



Meaning of such mixing conditions:
When two parts of a word

w = . . .w0|w1w2 . . .wn|wn+1 . . .

are far (more than n letters) from each other, then, these two parts
are “almost” independent.



The mixing assumptions

Assumptions on the geometry of the branches of the dynamical system
(T , f ):
- branches of class C 2

- bounded distorsion of the branches

↓

weak φ−mixing condition (Paccaut (99)):
µ stationary measure, ∃C ,∃ξ ∈]0, 1[ s.t. ∀P,Q borelians in [0, 1],

|µ(P ∩ T−nQ)− µ(P)µ(Q)| ≤ Cξnµ(Q)

↑

φ−mixing condition (Galves-Schmidt (97)):
∃φ decreasing, positive, tending to 0 s.t.

sup
P∈Fn,Q

µ(P ∩ T−(n+l)Q)− µ(P)µ(Q)

µ(P)µ(Q)
≤ φ(l)



φ−mixing condition (Galves-Schmidt (97)):
∃φ decreasing, positive, tending to 0 s.t.

sup
P∈Fn,Q

µ(P ∩ T−(n+l)Q)− µ(P)µ(Q)

µ(P)µ(Q)
≤ φ(l)

↓

↓

|P(t1
m > t)− Ce−ξmt | ≤ C ′tβ



Still to do
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Still to do

I convergence rates

I central limit theorem

I mixing conditions

I statistical point of view



to be continued...


