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Introduction

» A DNA sequence is an infinite word

U=wu...u,... Viyui € {A,C,G, T}.
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Introduction

» A DNA sequence is an infinite word
U=uwu...up... Viyui € {A,C,G, T}.

» To be seen on a representation:

repetition of patterns

missing patterns

repartition of different possible patterns
comparison of different sequences

v vy VvYy

» Can we identify some characteristics

> easy to study on the representation
» different from a species to another species?



Tree representation

U=uwuu...u,...

Prefixes Rev.prefixes Suffixes

uy uq ujupusly . ..
ULy Uty upusly . . .
ujuus uz up uy usug . ..

> suffix trie

» DST of reversed prefixes
> trie of reversed prefixes
» suffix DST



Example. Suffix trie. U = 1001011001110...

(=)

S; = U = 1001011001110 ... /
1



Example. Suffix trie. U = 1001011001110...

Sy = U =1001011001110. .. (=)
S, = 001011001110. .. T~
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Example. Suffix trie. U = 1001011001110...

51 = U =1001011001110... @

S» =001011001110... 0 !
S3 =01011001110...
0 1



Example. Suffix trie. U = 1001011001110...

S, = U = 1001011001110 .. @\
S, =001011001110... @ :

S3 = 01011001110... : 0
S, =1011001110...
0 o
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S1 = U =1001011001110. .. (% ;5 @K
S, = 001011001110. .. NV o\ /i
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S4 = 1011001110. .. \& )
Ss = 011001110... T
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Example. Suffix trie. U = 1001011001110...

S$1 = U =1001011001110...

S» = 001011001110...
S3 =01011001110...
S, =1011001110...
S5 = 011001110...

S¢ = 11001110...

S; =1001110...



Example. Suffix trie. U = 1001011001110...

S; = U =1001011001110. .. 0 /®
S, = 001011001110. .. e
S; = 01011001110. .. @
S, = 1011001110. .. q @ . ’
Ss = 011001110. .. ©) ‘ &)

S¢ = 11001110... N4 o }
S; =1001110...
0 o) 1

The shape of the tree is closely related to the repetitions of
patterns



Where randomness is?

Comes from the production of the letters: {0,1} or {A,C,G, T}
or from any finite alphabet. For a given word U = uyup ... up. ..,

the tree process (7,)n>0 is nonrandom.



Where randomness is?

Comes from the production of the letters: {0,1} or {A,C, G, T}
or an alphabet. For a given word U = tqup ... up. ..,

the tree process (7,)n>0 is nonrandom.

Different kinds of sources:
» Memoryless: Bernoulli or asymmetric i.i.d.

» Markov

» Probabilistic dynamical source on an alphabet A:
> a partition of [0, 1] with open intervals Z,, o € A,
» an encoding mapping 0 : [0,1] — A, s.t. 017, =«
» a transformation T,
> an initial density f.



Probabilistic dynamical source on an alphabet A:
> a partition of [0, 1] with open intervals Z,, o € A,
> an encoding mapping o : [0,1] — A, s.t. 017, =«
» a transformation T,
» an initial density f.

» Xxp is chosen on [0, 1] with the density f
> its orbit is x1, T(x1), T?(x1), ...
» then U = o(x)o(T(x1))o(T?(x1)) -+ = wyus. ..

The inserted words (suffixes or reversed prefixes) are NOT
independent.



00 1

Figure: The shift mapping T



What is known

DST
for independent words

Bernoulli source

e height, insertion depth, profile
cf. Mahmoud (92)

o H, —logy n 2o
Aldous-Shields (98)

e Concentration of the height
Drmota (02)

Bernoulli source

® size

Blumer et al. (89)

e height

Devroye, Szpankowski (92)
e mean, distrib. analysis
Jacquet, Szpankowski



What is known

DST
for independent words

Bernoulli source

e height, insertion depth, profile
cf. Mahmoud (92)

e H,—logy n 2o
Aldous-Shields (98)

e Concentration of the height
Drmota (02)

iild assymmetric, Markov source
e Pittel (85)

insertion depth, height

strong convergences

from an infinite word
e iid or Markov source
Cénac et al. (07)

Bernoulli source

® size

Blumer et al. (89)

e height

Devroye, Szpankowski (92)
e mean, distrib. analysis
Jacquet, Szpankowski

iid assym., Markov
® average size and
total path length
Fayolle (06)

dynamical source
e Cénac, Fekete
(in progress)




Two families of methods:

(1) (2)
analytic combinatorics probability
generating functions
Mellin transform

l !
precise asymptotics on a.s. convergences
- the average of additive characteristics
- distribution of the height



Some notations to write the results

» The probability that the source produces a sequence of
symbols starting with the pattern m is

Pm = /m f(t)dt.

» S=515...5,... denotes an infinite deterministic sequence.

> s(n) = 5150 ...5p.



Some notations to write the results

pm:/ f(t)dt

> S =515 ...5,... denotes an infinite deterministic sequence.

> (0 = g5 ... 5,

. 1 1
hy = lim — max{ln },
n—-+4oo n s(n) ps(")

1
h_ = lim —min{l

n—-+oo n 5(")

h=tm flyE['”<p(Ul(n>) )

» Entropies
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Some notations to write the results

» S =515...5,... denotes an infinite deterministic sequence.
s =g15...5,.

.1 1 R 1
hy = lim —max{ln },h, = lim fmln{ln },
n—+oo N s(n) Ps(n) n—+oo N g(n) Ps(n)

h=lim 1E[In<;>].
n—4o00 n p(U("))
» /, = length shortest branch of the tree = fill-up level

L, = length of the longest branch of the tree.
D, = insertion depth




Results

£, = length shortest branch of the tree = fill-up level
L, = length of the longest branch of the tree.
D, = insertion depth

Theorem

(Cénac et al. (07))

For the DST for a memoryless source or a Markovian source
gn a.s. 1 Ln a.s. ]-

and — /& —.
Inn n—oo h_

a8, -
Inn n—oo hy



Results
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For the DST for a memoryless source or a Markovian source
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Results

£, = length shortest branch of the tree = fill-up level
L, = length of the longest branch of the tree.
D, = insertion depth

Theorem
For the DST for a memoryless source or a Markovian source

én a.s. 1 En a.s. 1
— —, and - —.
Inn n—oo hy Inn n—oo h_
D, p 1

L,z
Inn n—oo h

For the suffix trie for a dynamical source with a ¢p—mixing
condition

en a.s. ]-
a8 -
Inn n—oco hy




Methods - 1 - Runs well

> S =515 ...5,... denotes an infinite deterministic sequence.

> s(n) = $15...S,
Xn(s) gt length of the branch corresponding to s in the tree 7,

lp =min Xp(s) and L, = max X,(s).
S S



Methods - 1 - Runs well

> S =515 ...5,... denotes an infinite deterministic sequence.
> (N =g5...5,
> Ti(s) < size of the first tree where is inserted s(¥),

X,(s) £ length of the branch corresponding to s in 7.

lp=min X,(s) and L, = maxXy(s).
s S

» X, and Ty are in duality

{Xa(s) = k} = {Ti(s) < n}.

P(ln < k—1) <> P(Ti(s) > n) = > P(td + tiw > n)
s(k)

s(k) k




Methods - 1 - Runs well

> Ti(s) = size of the first tree where is inserted s(¥),

£ = min X,(s)

s(k) s(k)

P(ln < k=1) <D P(Tu(s) > n) =D P(t% + thy > n)

where (for the suffix trie)
t9 = hitting time of pattern m
tl = return time of pattern m.

» sufficient:

Z P(tg(k) > n/2) is the g.t. of a conv. series
s(k)
Z P(tsl(k) > n/2) is the g.t. of a conv. series

s(k)



Methods - 1 - Runs well

t9 = hitting time of pattern m

tl = return time of pattern m.
It is sufficient to prove

Z P(tg(k) > n/2) is the g.t. of a conv. series

s(k)

Z P(tsl(k) > n/2) is the g.t. of a conv. series

s(k)



Methods - 1 - Runs well

t9 = hitting time of pattern m
tl = return time of pattern m.

To prove:

Z P(tg(k) > n/2) is the g.t. of a conv. series

s(k)

Z P(tsl(k) > n/2) is the g.t. of a conv. series

s(k)

T for a pattern m

|P(t}, > t) — Ce=%mt| < C'tP

~ Galves-Schmidt (97)



Methods - 2 - Less easy

The more auto-correlated a word is, the more easily it may
reappear and the smaller its return time is.



Methods - 2 - Less easy

The more auto-correlated a word is, the more easily it may
reappear and the smaller its return time is.

To achieve this

(1) (2)

work on the assumptions tools

add independence auto-correlation polynomials
l

Bernoulli

Markov

dynamical source + mixing assumptions .



Meaning of such mixing conditions:
When two parts of a word
W= ... wolwiwp ... wh|lwpy1...

are far (more than n letters) from each other, then, these two parts
are “almost” independent.



The mixing assumptions

Assumptions on the geometry of the branches of the dynamical system
(T,f):

- branches of class C2

- bounded distorsion of the branches

!

weak ¢—mixing condition (Paccaut (99)):
p stationary measure, 3C, 3¢ €]0, 1] s.t. VP, Q borelians in [0, 1],

(PN T7"Q) — (P)u(Q)] < C&"u(Q)

|

¢—mixing condition (Galves-Schmidt (97)):
J¢ decreasing, positive, tending to 0 s.t.

oy MPOT Q) — pu(P)u(Q)
PerhQ u(P)u(Q)

< o(/)




¢—mixing condition (Galves-Schmidt (97)):
J¢ decreasing, positive, tending to 0 s.t.

p(PN T-("NQ) — u(P)u(Q)

P W(P)u(Q) <o)
!
!

|P(tk > t) — Ce Smt| < C'tP




Still to do



Still to do

» convergence rates

» central limit theorem



Still to do

> convergence rates
» central limit theorem

» mixing conditions



Still to do

> convergence rates
» central limit theorem

» mixing conditions

> statistical point of view



to be continued...



