Optimal stopping under mixed constraints

F. Thomas Bruss

Département de Mathématique Université libre de Bruxelles

April 2008, Maresias, Brazil

イロト イポト イヨト イヨト

Present optimal stopping with two kinds of constraints

・ロン ・ 一 レ ・ 日 と ・ 日 と

ъ

Present optimal stopping with two kinds of constraints

Problem:

- *n* fixed;
- X_1, X_2, \cdots, X_n , i.i.d. random variables ≥ 0 .
- Sequential observation (no recall)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

Present optimal stopping with two kinds of constraints

Problem:

- *n* fixed;
- $-X_1, X_2, \cdots, X_n$, i.i.d. random variables ≥ 0 .
- Sequential observation (no recall)

F. Thomas Bruss Optimal stopping under mixed constraints

・ロト・「日・・日・・日・・日・

Goal:

We want to select online **at least** *r* and **in expectation** at least $\mu \ge r$ items with minimal cost!

イロト イポト イヨト イヨト

ъ

Goal:

We want to select online **at least** *r* and **in expectation** at least $\mu \ge r$ items with minimal cost!

- Interest of the problem

Surfing!!!

Sales contracts

Online knappsack problems

・過 と く ヨ と く ヨ と

э

Goal:

We want to select online **at least** *r* and **in expectation** at least $\mu \ge r$ items with minimal cost!

- Interest of the problem

Surfing!!!

Sales contracts

Online knappsack problems

Origin

.

(画) (目) (目)

э

- Probabilistic setting

イロト イヨト イヨト イヨト

æ

- Probabilistic setting
- The hierarchy of constraints

イロト 不得 とくほとくほとう

ъ

- Probabilistic setting
- The hierarchy of constraints
- Recurrence

イロト 不得 トイヨト イヨト

ъ

- Probabilistic setting
- The hierarchy of constraints
- Recurrence
- Precise solution for total selection cost

・ 同 ト ・ ヨ ト ・ ヨ ト

- Probabilistic setting
- The hierarchy of constraints
- Recurrence
- Precise solution for total selection cost
- Asymptotic behaviour of total selection cost

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

2. Problem formulation.

• *n* fixed; X_1, X_2, \dots, X_n i.i.d. U[0, 1] random variables.

(ロ) (同) (目) (日) (日) (日) (の)

2. Problem formulation.

- *n* fixed; X_1, X_2, \dots, X_n i.i.d. U[0, 1] random variables.
- Define indicators

If $I_k = 1$ then X_k is selected

If $I_k = 0$ then X_k is refused.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

2. Problem formulation.

- *n* fixed; X_1, X_2, \dots, X_n i.i.d. U[0, 1] random variables.
- Define indicators

If $I_k = 1$ then X_k is selected

If $I_k = 0$ then X_k is *refused*.

 $\{I_k = 1\} \in \sigma$ -field \mathcal{F}_k generated by X_k 's and I_k 's together.

Selection rules $T = \{\tau := \tau_n = (I_1, I_2, \cdots, I_n)\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

Objective:

Find

$$v_{r,\mu}(n) = \min_{\tau \in T} E\left(\sum_{k=1}^n I_k X_k\right), \ n \ge \mu \ge r$$

and

$$au^* = rg\min_{ au \in T} E\left(\sum_{k=1}^n I_k X_k\right)$$

イロト イヨト イヨト イヨト

■ _ _ のへ(?)

Objective:

Find

$$v_{r,\mu}(n) = \min_{\tau \in T} E\left(\sum_{k=1}^n I_k X_k\right), \ n \ge \mu \ge r$$

and

$$au^* = \arg\min_{ au \in T} \operatorname{E}\left(\sum_{k=1}^n I_k X_k\right)$$

subject to

$$\sum_{k=1}^{n} I_k \ge r, \ 1 \le r \le n$$
 (D-constraint)

and

$$\operatorname{E}\left(\sum_{k=1}^{n} I_{k}\right) = \mu, \ \mu \in \mathbf{R}, \ \mu \geq r.$$
 (E-constraint)

ヘロト 人間 とくほとく ほとう

∃ 𝒫𝔄𝔄

• $v_{r,\mu}(n) :=$ optimal value for *n* with (r,μ) -constraints.

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 … 釣んで

- $v_{r,\mu}(n) :=$ optimal value for *n* with (r, μ) -constraints.
- $V_{r,\mu}(n|\mathcal{F}_k) := E(\text{min total cost expectation} | \mathcal{F}_k).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recurrence

- $v_{r,\mu}(n) :=$ optimal value for *n* with (r, μ) -constraints.
- $V_{r,\mu}(n|\mathcal{F}_k) := \mathrm{E}(\min \text{ total cost expectation } | \mathcal{F}_k).$
- $N_k := I_1 + \cdots + I_k$ = # selections up to k under optimal rule.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- $v_{r,\mu}(n) :=$ optimal value for *n* with (r, μ) -constraints.
- $V_{r,\mu}(n|\mathcal{F}_k) := \mathrm{E}(\min \text{ total cost expectation } | \mathcal{F}_k).$
- $N_k := I_1 + \cdots + I_k$ = # selections up to k under optimal rule.

Lemma 1 For all (stopping) times $0 \le \tau \le n$:

$$V(n|\mathcal{F}_{\tau}) = v_{r-N_{\tau},\mu-N_{\tau}}(n-\tau) + \sum_{j=1}^{\tau} I_j X_j \text{ a.s.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

$$V_{\delta}(n) = v_{0,\mu-r}(n-\delta) + \sum_{j=1}^{\delta} I_j X_j a.s.$$

with

$$v_{0,\mu-r}(k) = \frac{(\mu-r)^2}{2k}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

・ロト・日本・日本・日本・日本・日本

- Conditioned on $\delta = d$, ... clear.
- Future variables $X_{\delta+1}, \cdots, X_n$ are \mathcal{F}_{δ} independent.

(ロ) (同) (目) (日) (日) (日) (の)

- Conditioned on $\delta = d$, ... clear.
- Future variables $X_{\delta+1}, \cdots, X_n$ are \mathcal{F}_{δ} independent.
- Conditional expectation.

.....

- Conditioned on $\delta = d$, ... clear.
- Future variables $X_{\delta+1}, \cdots, X_n$ are \mathcal{F}_{δ} independent .
- Conditional expectation.

Statement holds unconditionally.

Remains to be shown :

$$v_{0,\mu-r}(k) = (\mu-r)^2/2k.$$

At time δ +, we must design a rule which selects in expectation μ - *r* from $K = n - \delta$ i.i.d *U*[0, 1]-random variables.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

— If it is optimal to select $X_j = x$, say, then it is optimal to accept $X'_j < x$.

<ロト <回 > < 回 > < 回 > < 回 > <

— If it is optimal to select $X_j = x$, say, then it is optimal to accept $X'_j < x$.

— If optimal to refuse $X_i = x$, optimal to refuse $X'_i > x$.

・ロト ・ 同ト ・ ヨト ・ ヨト

— If it is optimal to select $X_j = x$, say, then it is optimal to accept $X'_i < x$.

— If optimal to refuse $X_j = x$, optimal to refuse $X'_j > x$.

 \implies Each opt. decision is based on a unique threshold!

・ロト ・ 同ト ・ ヨト ・ ヨト

 $t_1, t_2, \cdots, t_K :=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_n$

F. Thomas Bruss Optimal stopping under mixed constraints

 $t_1, t_2, \cdots, t_K :=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_n$ Then

$$\mathrm{E}(I_{\delta+j}X_{\delta+j})=t_{j}\mathrm{E}(X|X\leq t_{j})=t_{j}^{2}/2.$$

(ロ) (同) (目) (日) (日) (日) (の)

 $t_1, t_2, \cdots, t_K :=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_n$ Then

$$\mathrm{E}(I_{\delta+j}X_{\delta+j})=t_{j}\mathrm{E}(X|X\leq t_{j})=t_{j}^{2}/2.$$

$$\sum_{j=1}^{K} t_j^2$$

subject to

$$\sum_{j=1}^{K} \mathrm{E}(I_{\delta+j}) = \sum_{j=1}^{K} t_j = \mu - r.$$

(ロ) (同) (目) (日) (日) (日) (の)

Optimization (e.g. Lagrange multiplyer method) yields

F. Thomas Bruss Optimal stopping under mixed constraints

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Optimization (e.g. Lagrange multiplyer method) yields

$$t_j \equiv (\mu - r)/K, \ j > \delta.$$

Hence

$$v_{0,\mu-r}(K)=K\frac{\mu-r}{K}\times\frac{\mu-r}{2K}=\frac{(\mu-r)^2}{2K}.$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Optimal rule.

Theorem 3.1

$$v_{r,\mu}(n) = v_{r,\mu}(n-1) - \frac{1}{2} \left[v_{r,\mu}(n-1) - v_{r-1,\mu-1}(n-1) \right]^2$$

for $n = [\mu]^+, [\mu]^+ + 1, \cdots$, with initial conditions

$$v_{r,\mu}([\mu]^+) = \frac{\mu}{2};$$
 $v_{0,\mu-r}(n) = \frac{(\mu-r)^2}{2n}, n = 1, 2, \cdots$

Optimal rule.

Theorem 3.1

$$v_{r,\mu}(n) = v_{r,\mu}(n-1) - \frac{1}{2} \left[v_{r,\mu}(n-1) - v_{r-1,\mu-1}(n-1) \right]^2$$

for $n=[\mu]^+, [\mu]^++1, \cdots$, with initial conditions

$$v_{r,\mu}([\mu]^+) = \frac{\mu}{2};$$
 $v_{0,\mu-r}(n) = \frac{(\mu-r)^2}{2n}, n = 1, 2, \cdots$

Proof. Suppose it is optimal to select X_1 iff $X_1 \leq t$. Then

$$\tilde{v}_{r,\mu}(n,t) = t [E(X|X \le t) + v_{r-1,\mu-1}(n-1)] + (1-t)v_{r,\mu}(n-1).$$

 $E(X|X \le t) = t/2$, differentiable in *t* for all
 $t \in]0, 1[\partial \tilde{v}_{r,\mu}(n,t)/\partial t = 0$ with $\partial^2 \tilde{v}_{r,\mu}(n,t)/\partial t^2 > 0$ minimizes
 $v_{r,\mu}(n,t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

solution

$$t^* = v_{r,\mu}(n-1) - v_{r-1,\mu-1}(n-1).$$

We must have

$$\tilde{v}_{r,\mu}(n,t^*)=v_{r,\mu}(n).$$

....insert ... elementary steps....

イロト 不得 トイヨト イヨト

æ

Initial conditions:

Suppose $\mu \in \mathbb{N}$ and $n = \mu$. The optimal policy must select all observations.... value $\mu/2$. The second initial condition stems from (4), and thus the Theorem is proved.

伺 とく ヨ とく ヨ と

Initial conditions:

Suppose $\mu \in \mathbb{N}$ and $n = \mu$. The optimal policy must select all observations.... value $\mu/2$. The second initial condition stems from (4), and thus the Theorem is proved.

For all *r* and μ , $v_{r,\mu}(n) \ge 0$. Hence $(v_{r,\mu}(n))$ decreases in *n*, whenever the sequence $(v_{r-1,\mu-1}(n))$ decreases in *n*. $(v_{0,\mu-r}(n))$ decreases in *n*

Hence must converge (to the only possible limit 0.)

▲ 課 ▶ ▲ 理 ▶ ▲ 理 ▶

Corollary For $\mu \ge 1$ and $n \ge \mu \ge r$ $(v_{r,\mu}(n))_{n \ge \mu}$ is monotone decreasing with limit 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

Lemma

For *n* fixed with $n \ge [\mu]^+$ and $\mu \ge r$

(i)
$$v_{r,\mu}(n) \ge v_{r-1,\mu-1}(n)$$

(ii)
$$v_{r,\mu}(n) \ge v_{r,\mu-1}(n)$$

Proof: $\tilde{v}_{\mu,r}(n) :=$ minimal expected total cost of the optimal strategy for the (r, μ) -constraints under the additional hypothesis, that the *r*th selection for free. Then $\tilde{v}_{\mu,r}(n) \le v_{\mu,r}(n)$. However if we play right away optimally under the weaker $(r - 1, \mu - 1)$ -constraints,

$$v_{r-1,\mu-1}(n) \leq \tilde{v}_{r,\mu}(n).$$

Hence $v_{r,\mu}(n) \ge v_{r-1,\mu-1}$.

Inequality (ii) follows from $v_{0,\mu-r}(.) > v_{0,\mu-1-r}(.)$ uniformly.

Definition For $s \in \{0, 1, \dots, r\}$ and $k \in \{0, 1, \dots, n\}$ we say we are in *state* (s, k), if *s* selections have been made until time n - k included.

(Note that the current E-constraint is implicit for $0 \le s \le r$.)

Since the continuation thereafter is, by hypothesis, a fixed selection rule, it becomes irrelevant once the D-constraint is satisfied. Hence we need not list it as a separate state-coordinate.

Recall: Optyimal thresholds are all unique.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The optimal thresholds for each state can be computed recursively.

We have to start with two independent lines of initial conditions, namely for $v_{0,\mu-r}(k)$ with $k \ge \mu - r$ and for $v_{s,k}(k)$ with $k \ge s$.

(画) (目) (目)

Optimal values

(A1)
$$v_{0,\mu-r}(k) = (\mu-r)^2/(2k), \ k = \mu-r, \cdots, n-r.$$

(A2)
$$v_{s,k}(k) = k/2, \ k = \mu - r, \cdots, n - r; s = 1, \cdots r.$$

イロン イ団と イヨン イヨン

æ

Optimal values

(A1)
$$v_{0,\mu-r}(k) = (\mu-r)^2/(2k), \ k = \mu - r, \cdots, n-r.$$

(A2)
$$v_{s,k}(k) = k/2, \ k = \mu - r, \cdots, n - r; s = 1, \cdots r.$$

(A3) For $s = 1, \dots, r$ and init. cond. (A1), (A2) compute

$$v_{s,\mu-r+s}(k) = v_{s,\mu-r+s}(k-1) - \frac{1}{2} \left[v_{s,\mu-r+s}(k-1) - v_{s-1,\mu-r+(s-1)}(k-1) \right]^2,$$

 $k = \mu - r + s, \cdots, n - r; s = 1, \cdots r.$

・ロト・日本・モート モーシック

Optimal thresholds

(B1)
$$t_{r,k} = v_{0,\mu-r}(k) = (\mu-r)^2/2, \ k = \mu - r, \cdots n - r.$$

(B2)
$$t_{s,k} = v_{r-s,\mu-s}(k-1) - v_{r-s-1,\mu-s-1}(k-1),$$

 $s = 0, \cdots, r-1$

イロト イヨト イヨト イヨト

∃ ∽ へ (~

5.2 Bounds of $v_{r,\mu}(n)$ for general r and μ .

Motivation ...

くぼう くほう くほう

э

Motivation ...

Lemma For all $0 \le s \le r, s \le m \le \mu$ and $\max\{s, m\} \le k \le n$

$$v_{r,\mu}(n) \leq v_{s,m}(k) + v_{r-s,\mu-m}(n-k).$$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Fix indices *s*, *m* and *k* such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and (0, 0, 0) are possible (by definition.)

イロト 不同 トイヨト イヨト

3

Fix indices *s*, *m* and *k* such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and (0, 0, 0) are possible (by definition.)

Consider a two-legged strategy.

— Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.

イロト 不得 とくほ とくほ とう

-

Fix indices *s*, *m* and *k* such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and (0, 0, 0) are possible (by definition.)

Consider a two-legged strategy.

— Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.

— Leg 2 remembers the occured cost at time k and then minimizes (independently) the additional cost of accepting further items under the constraints r - s, mu - m.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Fix indices *s*, *m* and *k* such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and (0, 0, 0) are possible (by definition.)

Consider a two-legged strategy.

— Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.

— Leg 2 remembers the occured cost at time k and then minimizes (independently) the additional cost of accepting further items under the constraints r - s, mu - m.

This composed strategy is admissable since it fulfills the original constraints, and since $X_{k+1}, X_{k+2} \cdots X_n$ are independent of the past, its value is $v_{s,m}(k) + v_{r-s,\mu-m}(n-k)$. The inequality follows then by sub-optimality.

For the special case s = r = m we obtain

Corollary For $1 \le r \le \mu \le n$: $v_{r,\mu}(2n) \le v_{r,r}(n) + \frac{1}{2n}(\mu - r)^2$.

(ロ) (同) (目) (日) (日) (日) (の)

Lemma For all $1 \le r \le \mu$ there exist constants $\alpha = \alpha(r, \mu)$ and $\beta = \beta(r, \mu)$ such that $\alpha/n \le v_{r,\mu}(n) \le \beta/n$ for all $n \ge \mu$, with *n* sufficiently large.

Proof. We first prove that the existence of a lower bound $\alpha(r, \mu)/n$.

イロト 不得 とくほ とくほ とう

-

By definition of the D-constraint and E-constraint we have $\mu \ge r$. Since $v_{r,\mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r,r}(n) \ge \alpha/n$ for some constant α .

・ 同 ト ・ ヨ ト ・ ヨ ト

-

By definition of the D-constraint and E-constraint we have $\mu \ge r$. Since $v_{r,\mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r,r}(n) \ge \alpha/n$ for some constant α .

The optimal strategy for the (r, r)-constraints cannot do better than selecting the *r* smallest order statistics.

(画) (目) (目)

By definition of the D-constraint and E-constraint we have $\mu \ge r$. Since $v_{r,\mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r,r}(n) \ge \alpha/n$ for some constant α .

The optimal strategy for the (r, r)-constraints cannot do better than selecting the *r* smallest order statistics.

The expectation of the sum of these is $r(r+1)/(2(n+1)) \ge r^2/(2n)$. Hence $v_{r,\mu}(n) \ge v_{r,r}(n) \ge \alpha/n$ for $\alpha = r^2/2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Concerning the upper bound β we see that the statement is true, if it is true for $v_{r,r}(n)$.

Now, $v_{r,r}(rn) \le v_{r-1,r-1}((r-1)n) + v_{1,1}(n)$, and hence by induction $v_{r,r}(rn) \le rv_{1,1}(n)$. The sequence $(v_{1,1}(n))$ coincides with Moser's sequence, which is known to satisfy $v_{1,1}(n) \le c/n$ for all *n*.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Therefore $v_{r,r}(rn) \le (cr)/n$. But then, for general *n* we have $v_{r,r}(n) \le v_{r,r}([n/r]r)$, where [*x*] denotes the floor of *x*. Hence $v_{r,r}(n) \le cr/[n/r] \le (cr^2 + \epsilon)/n$ for all $\epsilon > 0$ and *n* sufficiently large, and the proof is complete.

通 と く ヨ と く ヨ と

Therefore $v_{r,r}(rn) \le (cr)/n$. But then, for general *n* we have $v_{r,r}(n) \le v_{r,r}([n/r]r)$, where [*x*] denotes the floor of *x*. Hence $v_{r,r}(n) \le cr/[n/r] \le (cr^2 + \epsilon)/n$ for all $\epsilon > 0$ and *n* sufficiently large, and the proof is complete.

通 と く ヨ と く ヨ と

Aldous' problem (2006). What is $v_{1,2}(n)$ and what is the behaviour of $nv_{1,2}(n)$?

We have $\mu - r = 1$, $v_{0,1}(k) = (\mu - r)^2/(2k)$. Initial condition: $v_{1,2}(2) = 1$.

Recurrence:

$$v_{1,2}(k) = v_{1,2}(k-1) - \frac{1}{2}\left(v_{1,2}(k-1) - \frac{1}{2(k-1)}\right)^2, k = 2, 3, \cdots n.$$

~

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

 $-(v_{1,2}(n))$ is decreasing and bounded below by 0. $v_{1,2} = \lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2} = 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $-(v_{1,2}(n))$ is decreasing and bounded below by 0. $v_{1,2} = \lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2} = 0$.

What is the asymptotic behaviour of (nv(n))?

・ロト ・四ト ・ヨト ・ヨト 三日

 $-(v_{1,2}(n))$ is decreasing and bounded below by 0. $v_{1,2} = \lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2} = 0$.

What is the asymptotic behaviour of (nv(n))?

Answer: We will see $(nv_{1,2}(n)) \rightarrow 3/2 + \sqrt{2}$.

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Asymptotic behaviour

・ロン ・ 一 レ ・ 日 と ・ 日 と

э

Asymptotic behaviour

We rewrite for $t \in \mathbb{N}$ and $\epsilon = 1$ as

$$\frac{1}{\epsilon}\Big(v_{r,\mu}(t)-v_{r,\mu}(t-\epsilon)\Big)=-\frac{1}{2}\Big(v_{r,\mu}(t-\epsilon)-v_{r-1,\mu-1}(t-\epsilon)\Big)^2$$

with initial condition (6). We fix r and μ and can then simplify the notation by writing $v_{r-1,\mu-1}(t) =: v(t)$ and $v_{r,\mu}(t) =: w(t)$, say. Let $\tilde{v}(t)$ and $\tilde{w}(t)$ be differitable functions which coincide with v(t) and w(t) for $t \in \mathbb{N}$ with $t \ge \mu$.

伺き くほき くほう

It follows from Lemma 5.3 and the mean value theorem that the differential equation

$$\tilde{w}'(t) = -\frac{1}{2} \left(\tilde{w}(t) - \tilde{v}(t) \right)^2$$

defined for $t \in [\mu, \infty]$ must catch the asymptotic behaviour of w(t) for $t \in \mathbb{N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

It follows from Lemma 5.3 and the mean value theorem that the differential equation

$$\tilde{w}'(t) = -\frac{1}{2} \left(\tilde{w}(t) - \tilde{v}(t) \right)^2$$

defined for $t \in [\mu, \infty]$ must catch the asymptotic behaviour of w(t) for $t \in \mathbb{N}$.

Note that this is a general Riccati differential equation, and the idea is now to show that only exactly one solution of equation (12) is compatible with (11).

伺下 くほう くほう

Theorem 6.1

If $\tilde{v}(t) = c/t$ for some constant $c \ge 2$ then the unique solution $\tilde{w}(t)$ satisfying $\lim_{t\to\infty} v_{r,\mu}(t)/\tilde{w}(t) = 1$ is the function

$$\tilde{w}(t) := \tilde{w}_1(t) = \frac{1}{t} \left(1 + c + \sqrt{1 + 2c}\right).$$

Proof: We first prove that $\tilde{w}_1(t) = (1 + c + \sqrt{1 + 2c})/t$ is a particular solution of equation (12). Indeed, there must be a constant, c_1 say, such that c_1/t is a particular solution, because plugging in yields the equation

$$\frac{-c_1}{t^2} = \frac{-1}{2t^2}(c_1^2 - 2cc_1 + c^2)$$

with solutions in $\{1 + c + -\sqrt{1 + 2c}\}$.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Only the solution $c_1 = (1 + c + \sqrt{1 + 2c})$ is meaningful because with c > 0 we would have $(1 + c - \sqrt{1 + 2c}) < c$ contradicting $\tilde{w}(t) \ge \tilde{v}(t)$. Hence $\tilde{w}_1(t)$ is a particular solution.

・ 同 ト ・ ヨ ト ・ ヨ ト …

From the general theory of Riccati differential equations (see e.g. Grauert und Fischer (1967), 109-112) we know that we can generate a general solution $\{\tilde{w}_2\}$ from a particular solution by solving (substitution $u(t) = 1/(w_2(t) - w_1(t))$ the first order linear equation

$$u'(t) = -(Q(t) + 2R(t)\tilde{w}_1(t))u(t) - R(t)$$

where, in our case, R(t) = -1/2 and Q(t) = c/t. The set $\{\tilde{w}_2\}$ of solutions is then the set $\{\tilde{w}_2(t) = \tilde{w}_1(t) + u(t)^{-1}\}$ with a single undetermined constant.

イロン 不得 とくほ とくほ とう

Plugging our particular solution $\tilde{w}_1(t)$ into the first order equation yields, after straightforward simplification, the equation $u'(t) = u(t) \left(1 + \sqrt{1 + 2c}\right) / t + 1/2$. We solve its associated homogeneous equation and then apply the method of the variation of constants. This yields

・ 同 ト ・ ヨ ト ・ ヨ ト …

Plugging our particular solution $\tilde{w}_1(t)$ into the first order equation yields, after straightforward simplification, the equation $u'(t) = u(t) (1 + \sqrt{1 + 2c}) / t + 1/2$. We solve its associated homogeneous equation and then apply the method of the variation of constants. This yields

Finally wee see that all other solutions are **incompatible** with at least one of the precedingly proved properties of $v_{\Sigma\mu}(n)$ and $v_{0,\mu-r}(n)$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $nv_{r,\mu}(n) \rightarrow c_r$

F. Thomas Bruss Optimal stopping under mixed constraints

$$\mathit{nv}_{r,\mu}(\mathit{n})
ightarrow \mathit{c}_r$$

where

$$c_0:=\frac{(\mu-r)^2}{2}$$

F. Thomas Bruss Optimal stopping under mixed constraints

æ

イロト イヨト イヨト イヨト

$$\mathit{nv}_{r,\mu}(\mathit{n})
ightarrow \mathit{c}_r$$

where

$$c_0:=\frac{(\mu-r)^2}{2}$$

$$c_k := c_{k-1} + 1 + \sqrt{2c_{k-1} + 1}$$

ヘロト 人間 とくほとくほとう

æ

$$\mathit{nv}_{r,\mu}(\mathit{n})
ightarrow \mathit{c}_r$$

$$c_0:=\frac{(\mu-r)^2}{2}$$

$$c_k := c_{k-1} + 1 + \sqrt{2c_{k-1} + 1}.$$

Outlook.

ヘロト 人間 とくほとくほとう

3

(Aldous, D., private communication)

Bruss, F. T. and Ferguson T. S. (1997). Mutiple buying and selling with vector offers. *J. Appl. Prob.*, **34**, 959-973.

Grauwert und Fischer (1967)

Moser, L. (1956). On a problem of Cayley. *Scripta Math.* **22**, 289-292.

イロト 不同 トイヨト イヨト

-