Optimal stopping under mixed constraints

F. Thomas Bruss

Département de Mathématique
Université libre de Bruxelles

April 2008, Maresias, Brazil

Objectives

Present optimal stopping with two kinds of constraints

Objectives

Present optimal stopping with two kinds of constraints

Problem:

- n fixed;
- $X_{1}, X_{2}, \cdots, X_{n}$, i.i.d. random variables ≥ 0.
- Sequential observation (no recall)

Objectives

Present optimal stopping with two kinds of constraints

Problem:

- n fixed;
$-X_{1}, X_{2}, \cdots, X_{n}$, i.i.d. random variables ≥ 0.
- Sequential observation (no recall)

$$
\begin{gathered}
\left(1, X_{1}\right) \ldots \ldots \ldots\left(k, X_{k}\right) \bullet \\
C o s t \\
=\text { sum of selected } X_{k} \text { 's. }
\end{gathered}
$$

Goal:

We want to select online at least r and in expectation at least $\mu \geq r$ items with minimal cost!

Goal:

We want to select online at least r and in expectation at least $\mu \geq r$ items with minimal cost!

- Interest of the problem

Surfing!!!
Sales contracts
Online knappsack problems

Goal:

We want to select online at least r and in expectation at least $\mu \geq r$ items with minimal cost!

- Interest of the problem

Surfing!!!
Sales contracts
Online knappsack problems

Origin

Preview

- Probabilistic setting

Preview

- Probabilistic setting
- The hierarchy of constraints

Preview

- Probabilistic setting
- The hierarchy of constraints
- Recurrence

Preview

- Probabilistic setting
- The hierarchy of constraints
- Recurrence
- Precise solution for total selection cost

Preview

- Probabilistic setting
- The hierarchy of constraints
- Recurrence
- Precise solution for total selection cost
- Asymptotic behaviour of total selection cost

2. Problem formulation.

- n fixed; $X_{1}, X_{2}, \ldots ., X_{n}$ i.i.d. $U[0,1]$ random variables.

2. Problem formulation.

- n fixed; $X_{1}, X_{2}, \ldots ., X_{n}$ i.i.d. $U[0,1]$ random variables.
- Define indicators

If $I_{k}=1$ then X_{k} is selected
If $I_{k}=0$ then X_{k} is refused.

2. Problem formulation.

- n fixed; $X_{1}, X_{2}, \ldots ., X_{n}$ i.i.d. $U[0,1]$ random variables.
- Define indicators

If $I_{k}=1$ then X_{k} is selected
If $I_{k}=0$ then X_{k} is refused.
$\left\{I_{k}=1\right\} \in \sigma$-field \mathcal{F}_{k} generated by X_{k} 's and I_{k} 's together.
Selection rules $T=\left\{\tau:=\tau_{n}=\left(I_{1}, I_{2}, \cdots, I_{n}\right)\right\}$.

Objective:

Find

$$
v_{r, \mu}(n)=\min _{\tau \in T} \mathrm{E}\left(\sum_{k=1}^{n} I_{k} X_{k}\right), n \geq \mu \geq r
$$

and

$$
\tau^{*}=\arg \min _{\tau \in T} \mathrm{E}\left(\sum_{k=1}^{n} I_{k} X_{k}\right)
$$

Objective:

Find

$$
v_{r, \mu}(n)=\min _{\tau \in T} \mathrm{E}\left(\sum_{k=1}^{n} I_{k} X_{k}\right), n \geq \mu \geq r
$$

and

$$
\tau^{*}=\arg \min _{\tau \in T} \mathrm{E}\left(\sum_{k=1}^{n} I_{k} X_{k}\right)
$$

subject to

$$
\sum_{k=1}^{n} I_{k} \geq r, \quad 1 \leq r \leq n \quad \text { (D-constraint) }
$$

and

$$
\mathrm{E}\left(\sum_{k=1}^{n} I_{k}\right)=\mu, \mu \in \mathbf{R}, \mu \geq r . \quad \text { (E-constraint) }
$$

Recurrence

- $v_{r, \mu}(n):=$ optimal value for n with (r, μ)-constraints.
- $v_{r, \mu}(n):=$ optimal value for n with (r, μ)-constraints.
- $V_{r, \mu}\left(n \mid \mathcal{F}_{k}\right):=\mathrm{E}\left(\min\right.$ total cost expectation $\left.\mid \mathcal{F}_{k}\right)$.
- $v_{r, \mu}(n):=$ optimal value for n with (r, μ)-constraints.
- $V_{r, \mu}\left(n \mid \mathcal{F}_{k}\right):=\mathrm{E}\left(\min\right.$ total cost expectation $\left.\mid \mathcal{F}_{k}\right)$.
- $N_{k}:=I_{1}+\cdots+I_{k}=\#$ selections up to k under optimal rule.
- $v_{r, \mu}(n):=$ optimal value for n with (r, μ)-constraints.
- $V_{r, \mu}\left(n \mid \mathcal{F}_{k}\right):=\mathrm{E}\left(\min\right.$ total cost expectation $\left.\mid \mathcal{F}_{k}\right)$.
- $N_{k}:=I_{1}+\cdots+I_{k}=\#$ selections up to k under optimal rule.

Lemma 1 For all (stopping) times $0 \leq \tau \leq n$:

$$
V\left(n \mid \mathcal{F}_{\tau}\right)=v_{r-N_{\tau}, \mu-N_{\tau}}(n-\tau)+\sum_{j=1}^{\tau} I_{j} X_{j} \text { a.s. }
$$

Lemma

$$
V_{\delta}(n)=v_{0, \mu-r}(n-\delta)+\sum_{j=1}^{\delta} I_{j} X_{j} \text { a.s. }
$$

with

$$
v_{0, \mu-r}(k)=\frac{(\mu-r)^{2}}{2 k}
$$

Sketch of Proof.

- Conditioned on $\delta=d, \ldots$ clear.
- Future variables $X_{\delta+1}, \cdots, X_{n}$ are $\mathcal{F}_{\delta}-$ independent .

Sketch of Proof.

- Conditioned on $\delta=d, \ldots$ clear.
— Future variables $X_{\delta+1}, \cdots, X_{n}$ are $\mathcal{F}_{\delta}-$ independent .
- Conditional expectation.

Sketch of Proof.

— Conditioned on $\delta=d, \ldots$ clear.
— Future variables $X_{\delta+1}, \cdots, X_{n}$ are $\mathcal{F}_{\delta}-$ independent .

- Conditional expectation.

Statement holds unconditionally.

Remains to be shown :

$$
v_{0, \mu-r}(k)=(\mu-r)^{2} / 2 k
$$

At time $\delta+$, we must design a rule which selects in expectation $\mu-r$ from $K=n-\delta$ i.i.d $U[0,1]$-random variables.

Threshold rules

- If it is optimal to select $X_{j}=x$, say, then it is optimal to accept $X_{j}^{\prime}<x$.

Threshold rules

- If it is optimal to select $X_{j}=x$, say, then it is optimal to accept $X_{j}^{\prime}<x$.
- If optimal to refuse $X_{j}=x, \ldots$ optimal to refuse $X_{j}^{\prime}>x$.

Threshold rules

— If it is optimal to select $X_{j}=x$, say, then it is optimal to accept $X_{j}^{\prime}<x$.

- If optimal to refuse $X_{j}=x, \ldots$ optimal to refuse $X_{j}^{\prime}>x$.
\Longrightarrow Each opt. decision is based on a unique threshold!
$t_{1}, t_{2}, \cdots, t_{K}:=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_{n}$
$t_{1}, t_{2}, \cdots, t_{K}:=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_{n}$ Then

$$
\mathrm{E}\left(I_{\delta+j} X_{\delta+j}\right)=t_{j} \mathrm{E}\left(X \mid X \leq t_{j}\right)=t_{j}^{2} / 2
$$

$t_{1}, t_{2}, \cdots, t_{K}:=$ selection thresholds for $X_{\delta+1}, X_{\delta+2}, \cdots, X_{n}$ Then

$$
\mathrm{E}\left(I_{\delta+j} X_{\delta+j}\right)=t_{j} \mathrm{E}\left(X \mid X \leq t_{j}\right)=t_{j}^{2} / 2
$$

Minimize

$$
\sum_{j=1}^{K} t_{j}^{2}
$$

subject to

$$
\sum_{j=1}^{K} \mathrm{E}\left(I_{\delta+j}\right)=\sum_{j=1}^{K} t_{j}=\mu-r
$$

Optimization (e.g. Lagrange multiplyer method) yields

Optimization (e.g. Lagrange multiplyer method) yields

$$
t_{j} \equiv(\mu-r) / K, \quad j>\delta .
$$

Hence

$$
v_{0, \mu-r}(K)=K \frac{\mu-r}{K} \times \frac{\mu-r}{2 K}=\frac{(\mu-r)^{2}}{2 K}
$$

Optimal rule.

Theorem 3.1

$$
v_{r, \mu}(n)=v_{r, \mu}(n-1)-\frac{1}{2}\left[v_{r, \mu}(n-1)-v_{r-1, \mu-1}(n-1)\right]^{2}
$$

for $n=[\mu]^{+},[\mu]^{+}+1, \cdots$, with initial conditions

$$
v_{r, \mu}\left([\mu]^{+}\right)=\frac{\mu}{2} ; \quad v_{0, \mu-r}(n)=\frac{(\mu-r)^{2}}{2 n}, n=1,2, \cdots
$$

Optimal rule.

Theorem 3.1

$$
v_{r, \mu}(n)=v_{r, \mu}(n-1)-\frac{1}{2}\left[v_{r, \mu}(n-1)-v_{r-1, \mu-1}(n-1)\right]^{2}
$$

for $n=[\mu]^{+},[\mu]^{+}+1, \cdots$, with initial conditions

$$
v_{r, \mu}\left([\mu]^{+}\right)=\frac{\mu}{2} ; \quad v_{0, \mu-r}(n)=\frac{(\mu-r)^{2}}{2 n}, n=1,2, \cdots
$$

Proof. Suppose it is optimal to select X_{1} iff $X_{1} \leq t$. Then
$\tilde{v}_{r, \mu}(n, t)=t\left[\mathrm{E}(X \mid X \leq t)+v_{r-1, \mu-1}(n-1)\right]+(1-t) v_{r, \mu}(n-1)$.
$\mathrm{E}(X \mid X \leq t)=t / 2$, differentiable in t for all
$t \in] 0,1\left[\partial \tilde{v}_{r, \mu}(n, t) / \partial t=0\right.$ with $\partial^{2} \tilde{v}_{r, \mu}(n, t) / \partial t^{2}>0$ minimizes $v_{r, \mu}(n, t)$.

Unique

solution

$$
t^{*}=v_{r, \mu}(n-1)-v_{r-1, \mu-1}(n-1) .
$$

We must have

$$
\tilde{v}_{r, \mu}\left(n, t^{*}\right)=v_{r, \mu}(n) .
$$

....insert ... elementary steps....

Initial conditions:
Suppose $\mu \in \mathbf{N}$ and $n=\mu$. The optimal policy must select all observations.... value $\mu / 2$. The second initial condition stems from (4), and thus the Theorem is proved.

Initial conditions:
Suppose $\mu \in \mathbf{N}$ and $n=\mu$. The optimal policy must select all observations.... value $\mu / 2$. The second initial condition stems from (4), and thus the Theorem is proved.

For all r and $\mu, v_{r, \mu}(n) \geq 0$. Hence $\left(v_{r, \mu}(n)\right)$ decreases in n, whenever the sequence $\left(v_{r-1, \mu-1}(n)\right)$ decreases in n. ($v_{0, \mu-r}(n)$) decreases in n

Hence must converge (to the only possible limit 0.)

Corollary For $\mu \geq 1$ and $n \geq \mu \geq r\left(v_{r, \mu}(n)\right)_{n \geq \mu}$ is monotone decreasing with limit 0.

Lemma

For n fixed with $n \geq[\mu]^{+}$and $\mu \geq r$
(i) $\quad v_{r, \mu}(n) \geq v_{r-1, \mu-1}(n)$
(ii) $\quad v_{r, \mu}(n) \geq v_{r, \mu-1}(n)$

Proof: $\tilde{v}_{\mu, r}(n):=$ minimal expected total cost of the optimal strategy for the (r, μ)-constraints under the additional hypothesis, that the r th selection for free. Then
$\tilde{v}_{\mu, r}(n) \leq v_{\mu, r}(n)$. However if we play right away optimally under the weaker $(r-1, \mu-1)$-constraints, \ldots.
$v_{r-1, \mu-1}(n) \leq \tilde{v}_{r, \mu}(n)$.
Hence $v_{r, \mu}(n) \geq v_{r-1, \mu-1}$.
Inequality (ii) follows from $v_{0, \mu-r}()>.v_{0, \mu-1-r}($.$) uniformly.$

4. The optimal rule.

Definition For $s \in\{0,1, \cdots, r\}$ and $k \in\{0,1, \cdots, n\}$ we say we are in state (s, k), if s selections have been made until time $n-k$ included.
(Note that the current E-constraint is implicit for $0 \leq s \leq r$.)
Since the continuation thereafter is, by hypothesis, a fixed selection rule, it becomes irrelevant once the D-constraint is satisfied. Hence we need not list it as a separate state-coordinate.

Recall: Optyimal thresholds are all unique.

Computing optimal thresholds and values

The optimal thresholds for each state can be computed recursively.

We have to start with two independent lines of initial conditions, namely for $v_{0, \mu-r}(k)$ with $k \geq \mu-r$ and for $v_{s, k}(k)$ with $k \geq s$.

5.1 Algorithm:
 A

Optimal values
(A1)

$$
v_{0, \mu-r}(k)=(\mu-r)^{2} /(2 k), k=\mu-r, \cdots, n-r
$$

(A2)

$$
v_{s, k}(k)=k / 2, \quad k=\mu-r, \cdots, n-r ; s=1, \cdots r .
$$

5.1 Algorithm:

Optimal values
(A1)

$$
v_{0, \mu-r}(k)=(\mu-r)^{2} /(2 k), k=\mu-r, \cdots, n-r .
$$

(A2) $\quad v_{s, k}(k)=k / 2, k=\mu-r, \cdots, n-r ; s=1, \cdots r$.
(A3) For $s=1, \cdots, r$ and init. cond. (A1), (A2) compute
$v_{s, \mu-r+s}(k)$
$=v_{s, \mu-r+s}(k-1)-\frac{1}{2}\left[v_{s, \mu-r+s}(k-1)-v_{s-1, \mu-r+(s-1)}(k-1)\right]^{2}$,
$k=\mu-r+s, \cdots, n-r ; s=1, \cdots r$.

Optimal thresholds

(B1) $\quad t_{r, k}=v_{0, \mu-r}(k)=(\mu-r)^{2} / 2, k=\mu-r, \cdots n-r$.
(B2) $\quad t_{s, k}=v_{r-s, \mu-s}(k-1)-v_{r-s-1, \mu-s-1}(k-1)$, $s=0, \cdots, r-1$

5.2 Bounds of $\nu_{r, \mu}(n)$ for general r and μ.

Motivation ...

5.2 Bounds of $\nu_{r, \mu}(n)$ for general r and μ.

Motivation ...

Lemma For all $0 \leq s \leq r, s \leq m \leq \mu$ and $\max \{s, m\} \leq k \leq n$

$$
v_{r, \mu}(n) \leq v_{s, m}(k)+v_{r-s, \mu-m}(n-k)
$$

Fix indices s, m and k such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and $(0,0,0)$ are possible (by definition.)

Fix indices s, m and k such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and $(0,0,0)$ are possible (by definition.)

Consider a two-legged strategy.

- Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.

Fix indices s, m and k such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and $(0,0,0)$ are possible (by definition.)

Consider a two-legged strategy.

- Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.
- Leg 2 remembers the occured cost at time k and then minimizes (independently) the additional cost of accepting further items under the constraints $r-s, m u-m$.

Proof.

Fix indices s, m and k such that the conditions for the Lemma are fufilled. This is always possible ...at least (r, μ, n) and $(0,0,0)$ are possible (by definition.)

Consider a two-legged strategy.

- Leg 1 minimizes the expected total cost of accepting items until time k under the (s, m) constraint.
- Leg 2 remembers the occured cost at time k and then minimizes (independently) the additional cost of accepting further items under the constraints $r-s, m u-m$.

This composed strategy is admissable since it fulfills the original constraints, and since $X_{k+1}, X_{k+2} \cdots X_{n}$ are independent of the past, its value is $v_{s, m}(k)+v_{r-s, \mu-m}(n-k)$. The inequality follows then by sub-optimality.

For the special case $s=r=m$ we obtain
Corollary For $1 \leq r \leq \mu \leq n: \quad v_{r, \mu}(2 n) \leq v_{r, r}(n)+\frac{1}{2 n}(\mu-r)^{2}$.

Lemma For all $1 \leq r \leq \mu$ there exist constants $\alpha=\alpha(r, \mu)$ and $\beta=\beta(r, \mu)$ such that $\alpha / n \leq v_{r, \mu}(n) \leq \beta / n$ for all $n \geq \mu$, with n sufficiently large.

Proof. We first prove that the existence of a lower bound $\alpha(r, \mu) / n$.

By definition of the D-constraint and E-constraint we have $\mu \geq r$. Since $v_{r, \mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r, r}(n) \geq \alpha / n$ for some constant α.

By definition of the D-constraint and E-constraint we have $\mu \geq r$. Since $v_{r, \mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r, r}(n) \geq \alpha / n$ for some constant α.

The optimal strategy for the (r, r)-constraints cannot do better than selecting the r smallest order statistics.

By definition of the D-constraint and E-constraint we have $\mu \geq r$. Since $v_{r, \mu}(\cdot)$ is increasing in μ for fixed r and n, it suffices to show $v_{r, r}(n) \geq \alpha / n$ for some constant α.

The optimal strategy for the (r, r)-constraints cannot do better than selecting the r smallest order statistics.

The expectation of the sum of these is $r(r+1) /(2(n+1)) \geq r^{2} /(2 n)$. Hence $v_{r, \mu}(n) \geq v_{r, r}(n) \geq \alpha / n$ for $\alpha=r^{2} / 2$.

Concerning the upper bound β we see that the statement is true, if it is true for $v_{r, r}(n)$.

Now, $v_{r, r}(r n) \leq v_{r-1, r-1}((r-1) n)+v_{1,1}(n)$, and hence by induction $\left.v_{r, r}(r n)\right) \leq r v_{1,1}(n)$. The sequence $\left(v_{1,1}(n)\right)$ coincides with Moser's sequence, which is known to satisfy $v_{1,1}(n) \leq c / n$ for all n.

Therefore $\left.v_{r, r}(r n)\right) \leq(c r) / n$. But then, for general n we have $v_{r, r}(n) \leq v_{r, r}([n / r] r)$, where $[x]$ denotes the floor of x. Hence $v_{r, r}(n) \leq c r /[n / r] \leq\left(c r^{2}+\epsilon\right) / n$ for all $\epsilon>0$ and n sufficiently large, and the proof is complete.

Therefore $\left.v_{r, r}(r n)\right) \leq(c r) / n$. But then, for general n we have $v_{r, r}(n) \leq v_{r, r}([n / r] r)$, where $[x]$ denotes the floor of x. Hence $v_{r, r}(n) \leq c r /[n / r] \leq\left(c r^{2}+\epsilon\right) / n$ for all $\epsilon>0$ and n sufficiently large, and the proof is complete.

Example:

Aldous' problem (2006). What is $v_{1,2}(n)$ and what is the behaviour of $n v_{1,2}(n)$?

We have $\mu-r=1, v_{0,1}(k)=(\mu-r)^{2} /(2 k)$. Initial condition:
$v_{1,2}(2)=1$.
Recurrence:

$$
v_{1,2}(k)=v_{1,2}(k-1)-\frac{1}{2}\left(v_{1,2}(k-1)-\frac{1}{2(k-1)}\right)^{2}, k=2,3, \cdots n
$$

- $\left(v_{1,2}(n)\right)$ is decreasing and bounded below by 0 . $v_{1,2}=\lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2}=0$.
- $\left(v_{1,2}(n)\right)$ is decreasing and bounded below by 0 .
$v_{1,2}=\lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2}=0$.
What is the asymptotic behaviour of $(n v(n))$?
- $\left(v_{1,2}(n)\right)$ is decreasing and bounded below by 0 .
$v_{1,2}=\lim v_{1,2}(n)$ exists and taking limits shows $v_{1,2}=0$.
What is the asymptotic behaviour of $(n v(n))$?
Answer: We will see $\left(n v_{1,2}(n)\right) \rightarrow 3 / 2+\sqrt{2}$.

Approximation of general solution.

Asymptotic behaviour

Approximation of general solution.

Asymptotic behaviour
We rewrite for $t \in \mathbf{N}$ and $\epsilon=1$ as

$$
\frac{1}{\epsilon}\left(v_{r, \mu}(t)-v_{r, \mu}(t-\epsilon)\right)=-\frac{1}{2}\left(v_{r, \mu}(t-\epsilon)-v_{r-1, \mu-1}(t-\epsilon)\right)^{2}
$$

with initial condition (6). We fix r and μ and can then simplify the notation by writing $v_{r-1, \mu-1}(t)=: v(t)$ and $v_{r, \mu}(t)=: w(t)$, say. Let $\tilde{v}(t)$ and $\tilde{w}(t)$ be diffentiable functions which coincide with $v(t)$ and $w(t)$ for $t \in \mathbf{N}$ with $t \geq \mu$.

It follows from Lemma 5.3 and the mean value theorem that the differential equation

$$
\tilde{w}^{\prime}(t)=-\frac{1}{2}(\tilde{w}(t)-\tilde{v}(t))^{2}
$$

defined for $t \in[\mu, \infty]$ must catch the asymptotic behaviour of $w(t)$ for $t \in \mathbf{N}$.

It follows from Lemma 5.3 and the mean value theorem that the differential equation

$$
\tilde{w}^{\prime}(t)=-\frac{1}{2}(\tilde{w}(t)-\tilde{v}(t))^{2}
$$

defined for $t \in[\mu, \infty]$ must catch the asymptotic behaviour of $w(t)$ for $t \in \mathbf{N}$.

Note that this is a general Riccati differential equation, and the idea is now to show that only exactly one solution of equation (12) is compatible with (11).

Theorem 6.1

If $\tilde{v}(t)=c / t$ for some constant $c \geq 2$ then the unique solution $\tilde{w}(t)$ satisfying $\lim _{t \rightarrow \infty} v_{r, \mu}(t) / \tilde{w}(t)=1$ is the function

$$
\tilde{w}(t):=\tilde{w}_{1}(t)=\frac{1}{t}(1+c+\sqrt{1+2 c}) .
$$

Proof: We first prove that $\tilde{w}_{1}(t)=(1+c+\sqrt{1+2 c}) / t$ is a particular solution of equation (12). Indeed, there must be a constant, c_{1} say, such that c_{1} / t is a particular solution, because plugging in yields the equation

$$
\frac{-c_{1}}{t^{2}}=\frac{-1}{2 t^{2}}\left(c_{1}^{2}-2 c c_{1}+c^{2}\right)
$$

with solutions in $\{1+c+-\sqrt{1+2 c}\}$.

Only the solution $c_{1}=(1+c+\sqrt{1+2 c})$ is meaningful because with $c>0$ we would have $(1+c-\sqrt{1+2 c})<c$ contradicting $\tilde{w}(t) \geq \tilde{v}(t)$. Hence $\tilde{w}_{1}(t)$ is a particular solution.

From the general theory of Riccati differential equations (see e.g. Grauert und Fischer (1967), 109-112) we know that we can generate a general solution $\left\{\tilde{w}_{2}\right\}$ from a particular solution by solving (substitution $u(t)=1 /\left(w_{2}(t)-w_{1}(t)\right)$ the first order linear equation

$$
u^{\prime}(t)=-\left(Q(t)+2 R(t) \tilde{w}_{1}(t)\right) u(t)-R(t)
$$

where, in our case, $R(t)=-1 / 2$ and $Q(t)=c / t$. The set $\left\{\tilde{w}_{2}\right\}$ of solutions is then the set $\left\{\tilde{w}_{2}(t)=\tilde{w}_{1}(t)+u(t)^{-1}\right\}$ with a single undetermined constant.

Plugging our particular solution $\tilde{w}_{1}(t)$ into the first order equation yields, after straightforward simplification, the equation $u^{\prime}(t)=u(t)(1+\sqrt{1+2 c}) / t+1 / 2$. We solve its associated homogeneous equation and then apply the method of the variation of constants. This yields

Plugging our particular solution $\tilde{w}_{1}(t)$ into the first order equation yields, after straightforward simplification, the equation $u^{\prime}(t)=u(t)(1+\sqrt{1+2 c}) / t+1 / 2$. We solve its associated homogeneous equation and then apply the method of the variation of constants. This yields

Finally wee see that all other solutions are incompatible with at least one of the precedingly proved properties of $v_{\mu}(n)$ and $v_{0, \mu-r}(n)$

Limiting behaviour:

$$
n v_{r, \mu}(n) \rightarrow c_{r}
$$

Limiting behaviour:

$$
n v_{r, \mu}(n) \rightarrow c_{r}
$$

where

$$
c_{0}:=\frac{(\mu-r)^{2}}{2}
$$

Limiting behaviour:

$$
n v_{r, \mu}(n) \rightarrow c_{r}
$$

where

$$
\begin{gathered}
c_{0}:=\frac{(\mu-r)^{2}}{2} \\
c_{k}:=c_{k-1}+1+\sqrt{2 c_{k-1}+1}
\end{gathered}
$$

Limiting behaviour:

$$
n v_{r, \mu}(n) \rightarrow c_{r}
$$

where

$$
\begin{gathered}
c_{0}:=\frac{(\mu-r)^{2}}{2} \\
c_{k}:=c_{k-1}+1+\sqrt{2 c_{k-1}+1}
\end{gathered}
$$

Outlook.

References

(Aldous, D. , private communication)
Bruss, F. T. and Ferguson T. S. (1997). Mutiple buying and selling with vector offers. J. Appl. Prob., 34, 959-973.

Grauwert und Fischer (1967)
Moser, L. (1956). On a problem of Cayley. Scripta Math. 22, 289-292.

