Young tableaux and snakes

Yuliy Baryshnikov
joint work with Dan Romik (Hebrew University)

Motivation

- A Young tableaux is a filling of Young diagram consisting of n boxes with numbers $1, \ldots, n$ increasing top-to-down and left-to-right.

1	2	6	8	9
3	5			
4		$n=9$		
7				

Motivation

- A Young tableaux is a filling of Young diagram consisting of n boxes with numbers $1, \ldots, n$ increasing top-to-down and left-to-right.

- The number of YTs with given shape λ has various interpretations (dimension of the representation λ of S_{n}, for example).

Motivation

- A Young tableaux is a filling of Young diagram consisting of n boxes with numbers $1, \ldots, n$ increasing top-to-down and left-to-right.

- The number of YTs with given shape λ has various interpretations (dimension of the representation λ of S_{n}, for example).
- Asymptotic regime is of interest:

Motivation (cont'd)

- Consider a large shape $t \lambda, t \rightarrow \infty$:

Motivation (cont'd)

- Consider a large shape $t \lambda, t \rightarrow \infty$: and a typical Young tableaux filling it:

- The natural question arises:

Motivation (cont'd)

- Consider a large shape $t \lambda, t \rightarrow \infty$: and a typical Young tableaux filling it:

- The natural question arises:

Conjecture A typical YT, considered as a function on the Young diageam $t \lambda$ is close to some deterministic limiting function.

Motivation (cont'd)

- Consider a large shape $t \lambda, t \rightarrow \infty$: and a typical Young tableaux filling it:

- The natural question arises:

Conjecture A typical YT, considered as a function on the Young diageam $t \lambda$ is close to some deterministic limiting function.

- How one would prove it?

Motivation (cont'd)

- By finding the rate function and then solving variational problem.

Motivation (cont'd)

- By finding the rate function and then solving variational problem.
- Rate function will count the (normalized, per unit area) number of YT filling the shapes approximating a strip

Motivation (cont'd)

- Hence we have to compute the number of Young tableaux filling the strips like

Motivation (cont'd)

- Hence we have to compute the number of Young tableaux filling the strips like

Motivation (cont'd)

- Hence we have to compute the number of Young tableaux filling the strips like

- We start with the simplest task: finding the number of YT filling the strip of width 2 and slope 1 .

Up-down permutations

- A permutation $\sigma \in S_{n}$ is called an up-down permutation (also zig-zag permutation, alternating permutation) if it satisfies

$$
\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots
$$

Up-down permutations

- A permutation $\sigma \in S_{n}$ is called an up-down permutation (also zig-zag permutation, alternating permutation) if it satisfies

$$
\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots
$$

Equivalent to "2-strip" tableaux:

Up-down permutations

- A permutation $\sigma \in S_{n}$ is called an up-down permutation (also zig-zag permutation, alternating permutation) if it satisfies

$$
\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots
$$

Equivalent to "2-strip" tableaux:

Up-down permutations

- A permutation $\sigma \in S_{n}$ is called an up-down permutation (also zig-zag permutation, alternating permutation) if it satisfies

$$
\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots
$$

Equivalent to "2-strip" tableaux:

- Theorem (D. André 1881): Let $A_{n}=\#$ of n-element up-down permutations. Then

$$
\sum_{n=0}^{\infty} \frac{A_{n} x^{n}}{n!}=\tan x+\sec x
$$

Up-down permutations

- A permutation $\sigma \in S_{n}$ is called an up-down permutation (also zig-zag permutation, alternating permutation) if it satisfies

$$
\sigma(1)<\sigma(2)>\sigma(3)<\sigma(4)>\ldots
$$

Equivalent to "2-strip" tableaux:

- Theorem (D. André 1881): Let $A_{n}=\#$ of n-element up-down permutations. Then

$$
\sum_{n=0}^{\infty} \frac{A_{n} x^{n}}{n!}=\tan x+\sec x
$$

- Up-down permutations were named snakes and studied by V. Arnold to enumerate morsifications of real singularities.

Up-down permutations (continued)

- Reminder:

$$
\begin{aligned}
& \operatorname{sech} x=\sum_{n=0}^{\infty} \frac{E_{n} x^{n}}{n!}, \quad\left(E_{n}\right)_{n \geq 0}-\text { Euler numbers, } \\
& \tan x=\sum_{n=1}^{\infty} \frac{T_{n} x^{2 n-1}}{(2 n-1)!}, \quad\left(T_{n}\right)_{n \geq 0}-\text { Tangent numbers, } \\
& \frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!}, \quad\left(B_{n}\right)_{n \geq 0}-\text { Bernoulli numbers. }
\end{aligned}
$$

Up-down permutations (continued)

- Reminder:

$$
\begin{aligned}
& \operatorname{sech} x=\sum_{n=0}^{\infty} \frac{E_{n} x^{n}}{n!}, \quad\left(E_{n}\right)_{n \geq 0}-\text { Euler numbers, } \\
& \tan x=\sum_{n=1}^{\infty} \frac{T_{n} x^{2 n-1}}{(2 n-1)!}, \quad\left(T_{n}\right)_{n \geq 0}-\text { Tangent numbers, } \\
& \frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!}, \quad\left(B_{n}\right)_{n \geq 0}-\text { Bernoulli numbers. }
\end{aligned}
$$

- In this notation: $\quad A_{2 n}=\left|E_{2 n}\right|, \quad A_{2 n-1}=T_{n}=\frac{(-1)^{n-1} 4^{n}\left(4^{n}-1\right)}{2 n} B_{2 n}$.

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways:

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\operatorname{vol}\left(P_{n}\right)=
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\operatorname{vol}\left(P_{n}\right)=\int_{0}^{1} d x_{1}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\operatorname{vol}\left(P_{n}\right)=\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

x_{2}	x_{3}
x_{1}	

$$
\operatorname{vol}\left(P_{n}\right)=\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

	x_{4}
x_{2}	x_{3}
x_{1}	

$$
\operatorname{vol}\left(P_{n}\right)=\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3} \int_{x_{3}}^{1} d x_{4}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\begin{aligned}
\operatorname{vol}\left(P_{n}\right) & =\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3} \int_{x_{3}}^{1} d x_{4} \ldots \\
& =
\end{aligned}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\begin{aligned}
\operatorname{vol}\left(P_{n}\right) & =\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3} \int_{x_{3}}^{1} d x_{4} \ldots \\
& =\langle\ldots \circ T \circ S \circ T \circ S \mathbf{1}, \mathbf{1}\rangle_{\mathrm{L}_{2}[0,1]},
\end{aligned}
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\begin{aligned}
\operatorname{vol}\left(P_{n}\right) & =\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3} \int_{x_{3}}^{1} d x_{4} \ldots \\
& =\langle\ldots \circ T \circ S \circ T \circ S \mathbf{1}, \mathbf{1}\rangle_{\mathrm{L}_{2}[0,1]},
\end{aligned}
$$

where

$$
(T f)(x)=\int_{0}^{x} f(y) d y, \quad(S g)(x)=\int_{x}^{1} g(y) d y
$$

Transfer operators

Many proofs of André's theorem, mostly algebraic. Proof using transfer operators (due to N. Elkies, 2003):

- Let $P_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}: x_{1}<x_{2}>x_{3}<x_{4}>\ldots\right\}$.
- Compute vol $\left(P_{n}\right)$ in two ways: First, $\operatorname{vol}\left(P_{n}\right)=\frac{A_{n}}{n!}$;
- Second,

$$
\begin{aligned}
\operatorname{vol}\left(P_{n}\right) & =\int_{0}^{1} d x_{1} \int_{x_{1}}^{1} d x_{2} \int_{0}^{x_{2}} d x_{3} \int_{x_{3}}^{1} d x_{4} \ldots \\
& =\langle\ldots \circ T \circ S \circ T \circ S \mathbf{1}, \mathbf{1}\rangle_{\mathrm{L}_{2}[0,1]},
\end{aligned}
$$

where

$$
(T f)(x)=\int_{0}^{x} f(y) d y, \quad(S g)(x)=\int_{x}^{1} g(y) d y
$$

(continuous analogue of using adjacency matrix to count paths in graphs).

Transfer operators (continued)

- Note that $S=C \circ T \circ C$ where $(C g)(x)=g(1-x)$, so we have shown that $A_{n}=n!\left\langle R^{n-1} \mathbf{1}, \mathbf{1}\right\rangle_{L_{2}[0,1]}$, where

$$
R=C \circ T, \quad(R f)(x)=\int_{0}^{1-x} f(y) d y .
$$

Transfer operators (continued)

- Note that $S=C \circ T \circ C$ where $(C g)(x)=g(1-x)$, so we have shown that $A_{n}=n!\left\langle R^{n-1} \mathbf{1}, \mathbf{1}\right\rangle_{L_{2}[0,1]}$, where

$$
R=C \circ T, \quad(R f)(x)=\int_{0}^{1-x} f(y) d y
$$

- Therefore

$$
A_{n}=n!\sum_{k=1}^{\infty} \lambda_{k}^{n-1}\left\langle\mathbf{1}, \phi_{k}\right\rangle_{L_{2}[0,1]}^{2},
$$

where $\left(\phi_{k}\right)_{k \geq 1}$ is the orthonormal system of eigenfunctions of the self-adjoint operator R, with corresponding eigenvalues $\left(\lambda_{k}\right)_{k \geq 1}$.

Transfer operators (continued)

- Note that $S=C \circ T \circ C$ where $(C g)(x)=g(1-x)$, so we have shown that $A_{n}=n!\left\langle R^{n-1} \mathbf{1}, \mathbf{1}\right\rangle_{L_{2}[0,1]}$, where

$$
R=C \circ T, \quad(R f)(x)=\int_{0}^{1-x} f(y) d y
$$

- Therefore

$$
A_{n}=n!\sum_{k=1}^{\infty} \lambda_{k}^{n-1}\left\langle\mathbf{1}, \phi_{k}\right\rangle_{L_{2}[0,1]}^{2},
$$

where $\left(\phi_{k}\right)_{k \geq 1}$ is the orthonormal system of eigenfunctions of the self-adjoint operator R, with corresponding eigenvalues $\left(\lambda_{k}\right)_{k \geq 1}$.

- It remains to diagonalize the operator R.

Snake calculus

- We can refine the enumeration A_{n} by splitting the number of up-down permutations according to the last number

Snake calculus

- We can refine the enumeration A_{n} by splitting the number of up-down permutations according to the last number
- Then the numbers $A_{n, k}$ form the snake triangle:

Snake calculus

- We can refine the enumeration A_{n} by splitting the number of up-down permutations according to the last number
- Then the numbers $A_{n, k}$ form the snake triangle:

Snake calculus

- We can refine the enumeration A_{n} by splitting the number of up-down permutations according to the last number
- Then the numbers $A_{n, k}$ form the snake triangle:

- Plotting the last line one already can guess the base eigenfunction!

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\lambda f(x)=(R f)(x)=\int_{0}^{1-x} f(y) d y
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x)
\end{aligned}
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x) .
\end{aligned}
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x) .
\end{aligned}
$$

- So f solves the Sturm-Liouville problem:

$$
f^{\prime \prime}(x)=-\frac{1}{\lambda^{2}} f(x)
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x) .
\end{aligned}
$$

- So f solves the Sturm-Liouville problem:

$$
f^{\prime \prime}(x)=-\frac{1}{\lambda^{2}} f(x), \quad f(1)=0
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x) .
\end{aligned}
$$

- So f solves the Sturm-Liouville problem:

$$
f^{\prime \prime}(x)=-\frac{1}{\lambda^{2}} f(x), \quad f(1)=0, \quad f^{\prime}(0)=0
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x) .
\end{aligned}
$$

- So f solves the Sturm-Liouville problem:

$$
f^{\prime \prime}(x)=-\frac{1}{\lambda^{2}} f(x), \quad f(1)=0, \quad f^{\prime}(0)=0
$$

- The (normalized) solutions are

$$
\phi_{k}(x)=\sqrt{2} \cos \left(\frac{(2 k-1) \pi x}{2}\right), \quad \lambda_{k}=\frac{(-1)^{k-1}}{(2 k-1)} \frac{2}{\pi}, \quad k=1,2, \ldots .
$$

Diagonalizing the transfer operator

- Looking for an eigenfunction:

$$
\begin{aligned}
\lambda f(x) & =(R f)(x)=\int_{0}^{1-x} f(y) d y \\
\lambda f^{\prime}(x) & =-f(1-x) \\
\lambda f^{\prime \prime}(x) & =f^{\prime}(1-x)=-\frac{1}{\lambda} f(x)
\end{aligned}
$$

- So f solves the Sturm-Liouville problem:

$$
f^{\prime \prime}(x)=-\frac{1}{\lambda^{2}} f(x), \quad f(1)=0, \quad f^{\prime}(0)=0
$$

- The (normalized) solutions are

$$
\phi_{k}(x)=\sqrt{2} \cos \left(\frac{(2 k-1) \pi x}{2}\right), \quad \lambda_{k}=\frac{(-1)^{k-1}}{(2 k-1)} \frac{2}{\pi}, \quad k=1,2, \ldots .
$$

- So $A_{n}=\frac{2^{n+2} n!}{\pi^{n+1}} \sum_{k=1}^{\infty} \frac{(-1)^{(k-1)(n-1)}}{(2 k-1)^{n+1}}$, which is equivalent to André's theorem. :)

The transfer operator for the $2 m$-strip

Figure: The coordinate filtration for the 4-strip.

The transfer operator for the $2 m$-strip

Figure: The coordinate filtration for the 4-strip.

- (main observation: better to cut tableau along diagonals!)

The transfer operator for the $2 m$-strip, continued

- The transfer operator works on the function space over the m-dimensional simplex

$$
\Omega_{m}=\left\{\left(x_{1}, \ldots, x_{m}\right): 0 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{m} \leq 1\right\},
$$

and is given by

The transfer operator for the $2 m$-strip, continued

- The transfer operator works on the function space over the m-dimensional simplex

$$
\Omega_{m}=\left\{\left(x_{1}, \ldots, x_{m}\right): 0 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{m} \leq 1\right\},
$$

and is given by

$$
\begin{aligned}
& (T f)\left(x_{1}, \ldots, x_{m}\right)= \\
& \quad \int_{0}^{1-x_{m}} \int_{1-x_{m}}^{1-x_{m-1}} \int_{1-x_{m-1}}^{1-x_{m-2}} \ldots \int_{1-x_{2}}^{1-x_{1}} f\left(y_{1}, \ldots, y_{m}\right) d y_{m} \ldots d y_{1} .
\end{aligned}
$$

The transfer operator for the $2 m$-strip, continued

- Diagonalizing leads to boundary value problem:

$$
\begin{aligned}
\frac{\partial^{2 m} f}{\partial^{2} x_{1} \ldots \partial^{2} x_{m}} & =\frac{(-1)^{m}}{\lambda^{2}} f \\
f & \equiv 0 \quad \text { on: } x_{1}=x_{2}, x_{2}=x_{3}, \ldots, x_{m-1}=x_{m}, x_{m}=1 \\
\frac{\partial f}{\partial x_{1}} & \equiv 0 \quad \text { on: } x_{1}=0
\end{aligned}
$$

The transfer operator for the $2 m$-strip, continued

- Diagonalizing leads to boundary value problem:

$$
\begin{aligned}
\frac{\partial^{2 m} f}{\partial^{2} x_{1} \ldots \partial^{2} x_{m}} & =\frac{(-1)^{m}}{\lambda^{2}} f \\
f & \equiv 0 \quad \text { on: } x_{1}=x_{2}, x_{2}=x_{3}, \ldots, x_{m-1}=x_{m}, x_{m}=1, \\
\frac{\partial f}{\partial x_{1}} & \equiv 0 \quad \text { on: } x_{1}=0 .
\end{aligned}
$$

- Solutions are

$$
\begin{aligned}
\phi_{k_{1}, \ldots, k_{m}}\left(x_{1}, \ldots, x_{m}\right) & =2^{m / 2} \operatorname{det}\left(\cos \left(\frac{\pi k_{i} x_{j}}{2}\right)\right)_{i, j=1, \ldots, m}, \\
\lambda_{k_{1}, \ldots, k_{m}} & =\frac{2^{m}(-1)^{\frac{1}{2} \sum\left(k_{j}-1\right)}}{\pi^{m} k_{1} k_{2} \ldots k_{m}},
\end{aligned}
$$

where $0<k_{1}<k_{2}<\ldots<k_{m}$ are odd integers.

The transfer operator for the $2 m$-strip, continued

- Diagonalizing leads to boundary value problem:

$$
\begin{aligned}
\frac{\partial^{2 m} f}{\partial^{2} x_{1} \ldots \partial^{2} x_{m}} & =\frac{(-1)^{m}}{\lambda^{2}} f \\
f & \equiv 0 \quad \text { on: } x_{1}=x_{2}, x_{2}=x_{3}, \ldots, x_{m-1}=x_{m}, x_{m}=1, \\
\frac{\partial f}{\partial x_{1}} & \equiv 0 \quad \text { on: } x_{1}=0 .
\end{aligned}
$$

- Solutions are

$$
\begin{aligned}
\phi_{k_{1}, \ldots, k_{m}}\left(x_{1}, \ldots, x_{m}\right) & =2^{m / 2} \operatorname{det}\left(\cos \left(\frac{\pi k_{i} x_{j}}{2}\right)\right)_{i, j=1, \ldots, m}, \\
\lambda_{k_{1}, \ldots, k_{m}} & =\frac{2^{m}(-1)^{\frac{1}{2} \sum\left(k_{j}-1\right)}}{\pi^{m} k_{1} k_{2} \ldots k_{m}},
\end{aligned}
$$

where $0<k_{1}<k_{2}<\ldots<k_{m}$ are odd integers.

- In physicspeak: m-fermion systems

Other slopes

- The generalizations to other (rational) slopes are straightforward:

Other slopes

- The generalizations to other (rational) slopes are straightforward:
- One considers the "ribbon" shape

(SSTSTTSTTTS) ${ }^{\boldsymbol{n}}$

Other slopes

- The generalizations to other (rational) slopes are straightforward:
- One considers the "ribbon" shape

(SSTSTTSTTTSS) ${ }^{\boldsymbol{n}}$
- Funds the eigenfunctions in the appropriate functional space

Other slopes

- The generalizations to other (rational) slopes are straightforward:
- One considers the "ribbon" shape

(SSTSTTSTTTS) ${ }^{n}$
- Funds the eigenfunctions in the appropriate functional space
- For m-stack of ribbons, the eigenfunctions are m-fermionic states.

Other slopes (cont'd)

- For example, for slope $1 / 2$,

Other slopes (cont'd)

- For example, for slope $1 / 2$,

- One solves the boundary problem:

$$
f^{\prime \prime \prime}(x)=1 / \lambda f(x),
$$

Other slopes (cont'd)

- For example, for slope $1 / 2$,

- One solves the boundary problem:

$$
f^{\prime \prime \prime}(x)=1 / \lambda f(x), \quad f(1)=0,
$$

Other slopes (cont'd)

- For example, for slope $1 / 2$,

- One solves the boundary problem:

$$
f^{\prime \prime \prime}(x)=1 / \lambda f(x), \quad f(1)=0, \quad f^{\prime}(0)=0,
$$

Other slopes (cont'd)

- For example, for slope $1 / 2$,

- One solves the boundary problem:

$$
f^{\prime \prime \prime}(x)=1 / \lambda f(x), \quad f(1)=0, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=0 .
$$

Other slopes (cont'd)

- For example, for slope $1 / 2$,

- One solves the boundary problem:

$$
f^{\prime \prime \prime}(x)=1 / \lambda f(x), \quad f(1)=0, \quad f^{\prime}(0)=0, \quad f^{\prime \prime}(0)=0 .
$$

- For m-stack of ribbons, the eigenfunctions are m-fermionic states.

Finally...

- This leads to the a large deviation principle for Young tableaux: given a continual Young diagram of shape λ, the typical growth profile of a randomly chosen Young tableau of shape λ maximizes the functional

Finally...

- This leads to the a large deviation principle for Young tableaux: given a continual Young diagram of shape λ, the typical growth profile of a randomly chosen Young tableau of shape λ maximizes the functional

$$
J(g)=\int_{0}^{1} \int_{-\infty}^{\infty}\left(\log \left(\frac{2}{\pi} \cos \left(\frac{\pi}{2} \frac{\partial g}{\partial u}\right)\right)-\log \frac{\partial g}{\partial t}\right) \frac{\partial g}{\partial t} d u d t
$$

subject to being a feasible growth profile for the shape λ.

Conclusions

- Strip tableaux (and to a lesser extent their generalizations with arbitrary slope) are an exactly solvable model.

Conclusions

- Strip tableaux (and to a lesser extent their generalizations with arbitrary slope) are an exactly solvable model.
- Interesting determinantal formulas - connection to determinantal point processes, random matrices?

Conclusions

- Strip tableaux (and to a lesser extent their generalizations with arbitrary slope) are an exactly solvable model.
- Interesting determinantal formulas - connection to determinantal point processes, random matrices?
- Connection to Euler and Bernoulli numbers and values of poly-zeta functions.

Conclusions

- Strip tableaux (and to a lesser extent their generalizations with arbitrary slope) are an exactly solvable model.
- Interesting determinantal formulas - connection to determinantal point processes, random matrices?
- Connection to Euler and Bernoulli numbers and values of poly-zeta functions.
- Connection to square ice model

Conclusions

- Strip tableaux (and to a lesser extent their generalizations with arbitrary slope) are an exactly solvable model.
- Interesting determinantal formulas - connection to determinantal point processes, random matrices?
- Connection to Euler and Bernoulli numbers and values of poly-zeta functions.
- Connection to square ice model

Thank you!

