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• The number of YTs with given shape λ has various interpretations
(dimension of the representation λ of Sn, for example).

• Asymptotic regime is of interest:
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Motivation (cont’d)

• Consider a large shape tλ, t → ∞: and a typical Young tableaux
filling it:

• The natural question arises:
Conjecture A typical YT, considered as a function on the Young
diageam tλ is close to some deterministic limiting function.

• How one would prove it?
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• Rate function will count the (normalized, per unit area) number of
YT filling the shapes approximating a strip
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Motivation (cont’d)

• Hence we have to compute the number of Young tableaux filling the
strips like

• We start with the simplest task: finding the number of YT filling the
strip of width 2 and slope 1.
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• Theorem (D. André 1881): Let An = # of n-element up-down
permutations. Then

∞
∑

n=0

Anx
n

n!
= tan x + sec x .

• Up-down permutations were named snakes and studied by V. Arnold
to enumerate morsifications of real singularities.
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• Reminder:

sechx =

∞
∑

n=0

Enx
n

n!
, (En)n≥0 – Euler numbers,

tan x =
∞
∑

n=1

Tnx
2n−1

(2n − 1)!
, (Tn)n≥0 – Tangent numbers,

x

ex − 1
=

∞
∑

n=0

Bnx
n

n!
, (Bn)n≥0 – Bernoulli numbers.

• In this notation: A2n = |E2n|, A2n−1 = Tn = (−1)n−14n(4n−1)
2n

B2n.
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(Tf )(x) =

∫ x

0

f (y)dy , (Sg)(x) =
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x
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(continuous analogue of using adjacency matrix to
count paths in graphs).
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Transfer operators (continued)

• Note that S = C ◦ T ◦ C where (Cg)(x) = g(1 − x), so we have
shown that An = n!〈Rn−11, 1〉L2[0,1], where

R = C ◦ T , (Rf )(x) =

∫ 1−x

0

f (y)dy .

• Therefore

An = n!

∞
∑

k=1

λn−1
k 〈1, φk〉2L2[0,1],

where (φk )k≥1 is the orthonormal system of eigenfunctions of the
self-adjoint operator R , with corresponding eigenvalues (λk )k≥1.

• It remains to diagonalize the operator R .
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Snake calculus

• We can refine the enumeration An by splitting the number of
up-down permutations according to the last number

• Then the numbers An,k form the snake triangle:

1
0 1

1 1 0
0 1 2 2

5 5 4 2 0
0 5 10 14 16 16

. . .

• Plotting the last line one already can guess the base eigenfunction!
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• Looking for an eigenfunction:

λf (x) = (Rf )(x) =

∫ 1−x

0

f (y)dy ,

λf ′(x) = −f (1 − x),

λf ′′(x) = f ′(1 − x) = − 1

λ
f (x).

• So f solves the Sturm-Liouville problem:

f ′′(x) = − 1

λ2
f (x), f (1) = 0, f ′(0) = 0.

• The (normalized) solutions are

φk (x) =
√

2 cos

(

(2k − 1)πx

2

)

, λk =
(−1)k−1

(2k − 1)

2

π
, k = 1, 2, . . . .

• So An = 2n+2n!
πn+1

∑∞

k=1
(−1)(k−1)(n−1)

(2k−1)n+1 , which is equivalent to André’s

theorem. :)
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Figure: The coordinate filtration for the 4-strip.

• (main observation: better to cut tableau along diagonals!)
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The transfer operator for the 2m-strip, continued

• The transfer operator works on the function space over the
m-dimensional simplex

Ωm =
{

(x1, . . . , xm) : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xm ≤ 1
}

,

and is given by

(Tf )(x1, . . . , xm) =
∫ 1−xm

0

∫ 1−xm−1

1−xm

∫ 1−xm−2

1−xm−1

. . .

∫ 1−x1

1−x2

f (y1, . . . , ym)dym . . . dy1.
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• Diagonalizing leads to boundary value problem:
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f ,

f ≡ 0 on: x1 = x2, x2 = x3, . . . , xm−1 = xm, xm = 1,

∂f
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≡ 0 on: x1 = 0.

• Solutions are
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(
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)

)

i ,j=1,...,m

,
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=

2m(−1)
1
2
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• Diagonalizing leads to boundary value problem:

∂2mf

∂2x1 . . . ∂2xm

=
(−1)m

λ2
f ,

f ≡ 0 on: x1 = x2, x2 = x3, . . . , xm−1 = xm, xm = 1,

∂f

∂x1
≡ 0 on: x1 = 0.

• Solutions are

φk1,...,km
(x1, . . . , xm) = 2m/2 det

(

cos

(

πkixj

2

)

)

i ,j=1,...,m

,

λk1,...,km
=

2m(−1)
1
2

P

(kj−1)

πmk1k2 . . . km

,

where 0 < k1 < k2 < . . . < km are odd integers.

• In physicspeak: m-fermion systems
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• One considers the “ribbon” shape

(SSTSTTSTTTS)
n

• Funds the eigenfunctions in the appropriate functional space

• For m-stack of ribbons, the eigenfunctions are m-fermionic states.
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Finally...

• This leads to the a large deviation principle for Young tableaux:
given a continual Young diagram of shape λ, the typical growth

profile of a randomly chosen Young tableau of shape λ maximizes
the functional

J(g) =

∫ 1

0

∫ ∞

−∞

(

log

(

2

π
cos

(

π

2

∂g

∂u

))

− log
∂g

∂t

)

∂g

∂t
du dt

subject to being a feasible growth profile for the shape λ.
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Conclusions

• Strip tableaux (and to a lesser extent their generalizations with
arbitrary slope) are an exactly solvable model.

• Interesting determinantal formulas - connection to determinantal
point processes, random matrices?

• Connection to Euler and Bernoulli numbers and values of poly-zeta
functions.

• Connection to square ice model

Thank you!


