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Motivation

e A Young tableaux is a filling of Young diagram consisting of n boxes
with numbers 1,..., n increasing top-to-down and left-to-right.
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e The number of YTs with given shape A has various interpretations
(dimension of the representation A of S,,, for example).

e Asymptotic regime is of interest:
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Motivation (cont'd)

o Consider a large shape t\, t — oco: and a typical Young tableaux
filling it:

e The natural question arises:

Conjecture A typical YT, considered as a function on the Young
diageam t\ is close to some deterministic limiting function.

e How one would prove it?
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e By finding the rate function and then solving variational problem.

¢ Rate function will count the (normalized, per unit area) number of
YT filling the shapes approximating a strip
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Motivation (cont'd)

e Hence we have to compute the number of Young tableaux filling the
strips like

e We start with the simplest task: finding the number of YT filling the
strip of width 2 and slope 1.
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e Theorem (D. André 1881): Let A, = # of n-element up-down
permutations. Then
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Up-down permutations
e A permutation o € S, is called an up-down permutation (also
zig-zag permutation, alternating permutation) if it satisfies
o(1)<o(2)>0(3) <o(4)>...
Equivalent to "2-strip” tableaux:
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e Theorem (D. André 1881): Let A, = # of n-element up-down
permutations. Then

L Ax"
Z = tan x + sec x.

n!
n=0

e Up-down permutations were named snakes and studied by V. Arnold
to enumerate morsifications of real singularities.



e Reminder:

sechx

tan x

ex—1

Up-down permutations (continued)

, (En)n>o0 — Euler numbers,
(T»)n>0 — Tangent numbers,

; (Bn)n>0 — Bernoulli numbers.



e Reminder:

sechx =

tanx =

X
ex—1

e |n this notation:

Up-down permutations (continued)
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> )|( ’ (En)n>0 — Euler numbers,
—0 n!
© TnX2n—1
On— 1\ Tn n - T t b ,
HZ:; (2n - 1)!’ ( ) >0 angent numbers

>, B,x"
"l , (B,)n>0 — Bernoulli numbers.
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Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):



Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.



Transfer operators
Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):
o Let P, = {(X]_,XQ,...,Xn) €f0,1]":x1 < x2 > x3 < xa >}

e Compute vol(P,) in two ways:



Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):
o Let P, = {(xl,xz,...,x,,) €f0,1]":x1 < x2 > x3 < xa >}

o Compute vol(P,) in two ways: First, vol(P,) = 2;



Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):
o Let P, = {(xl,xz,...,x,,) €f0,1]":x1 < x2 > x3 < xa >}

o Compute vol(P,) in two ways: First, vol(P,) = 2;

e Second,

vol(P,) =



Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P, = {(xl,xz,...,x,,) €f0,1]":x1 < x2 > x3 < xa >}
A

nl?’

e Compute vol(P,) in two ways: First, vol(P,) =

vol(P, / dxy

e Second,




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xz,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,
1 1
vol(P,) = / dxl/ dxo
X 0 X1




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,

vol(P, / dxy / dxo / dxs
XZ X3




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,

X

4 vol(P, / dxy / dxo / dxs / dxy
XZ X3




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,
. 1 1 X0 1
Xl e vol(P,) = / dxl/ dx2/ dX3/ dxg . ..
0 Xi 0 x:
X, | X, _ 1 3
Xl




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,
X | vol(Py) / dx1/ de/ dX3/ dxs . .
X | X X
2 3 = OTOSOTOS]. 1>L2[01]7
X
1




Transfer operators

Many proofs of André’s theorem, mostly algebraic. Proof using transfer
operators (due to N. Elkies, 2003):

o Let P,,:{(xl,xQ,...,x,,)6[0,1]”:x1 <X2>X3<X4>...}.

o Compute vol(P,) in two ways: First, vol(P,) = 2;
e Second,
X | vol(Py) / dx1/ de/ dX3/ dxs . .
X | X X
2 3 = OTOSOTOS]. 1>L2[01]7
X
1




Transfer operators
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where

(116 = | s (S0 = [ sy

(continuous analogue of using adjacency matrix to
count paths in graphs).
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e Note that S = Co T o C where (Cg)(x) = g(1 — x), so we have
shown that A, = nl(R"'1,1),,(0.1), where

1—x
R=CoT, (Rf)(x):/ f(y)dy.
0
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self-adjoint operator R, with corresponding eigenvalues (A )x>1.



Transfer operators (continued)

Note that S = C o T o C where (Cg)(x) = g(1 — x), so we have
shown that A, = nl(R"'1,1),,(0.1), where

R=CoT, (Rf)(x):/o ).

Therefore

An _”'ZAH N1, ) L0,

where (¢x)k>1 is the orthonormal system of eigenfunctions of the
self-adjoint operator R, with corresponding eigenvalues (A )x>1.

It remains to diagonalize the operator R.
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Snake calculus

e We can refine the enumeration A, by splitting the number of
up-down permutations according to the last number

e Then the numbers A, x form the snake triangle:

1
0 1
1 1 0
0 1 2 2
5 5 4 2 0
0 5 10 14 16 16

e Plotting the last line one already can guess the base eigenfunction!
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Diagonalizing the transfer operator

e Looking for an eigenfunction:

M(x) = (RF() = /0 T fy)dy.
/\f/(x) = —f(1-x),
)\f”(x) = f’(l—x) = —%f(x).

e So f solves the Sturm-Liouville problem:

F(x) = —%f(x), f1)=0, f(0)=0.

e The (normalized) solutions are

dr(x) = V2 cos <M> , Ak = (-1 2 k=1,2

(2/(_1);7 gLy e

2

na2 _1)(k=1)(n—1) . . . I
e So A, = 27Tn+’1” o1 ( (23(71)#1 , which is equivalent to André’s

theorem. :)



The transfer operator for the 2m-strip
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Figure: The coordinate filtration for the 4-strip.

e (main observation: better to cut tableau along diagonals!)



The transfer operator for the 2m-strip, continued

e The transfer operator works on the function space over the
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The transfer operator for the 2m-strip, continued

e The transfer operator works on the function space over the
m-dimensional simplex

Qm:{(xl,...,xm):nglgng...gxmgl},

and is given by

(Tf X1y

I—xm 1=Xm—1 1—Xm—2 1—x1
/ / / / f(Yh»}/m)dymdyl
1 1—xm—1 1—x



The transfer operator for the 2m-strip, continued

e Diagonalizing leads to boundary value problem:

anf 7 (_1)mf
0?x1 ...0%Xm, A2
f = 0 onixg=x,X=X3,...,Xm-1= Xm,Xm = 1,
of

8_x1 = 0 on:x=0.



The transfer operator for the 2m-strip, continued

e Diagonalizing leads to boundary value problem:

anf 7 (_1)mf
Pxy ...0%m A2
f = 0 onixg=x,X=X3,...,Xm-1= Xm,Xm = 1,
f
Ga_xl = 0 on:x=0.

e Solutions are

kixg
Ohgrrokm (Xt ooy Xm) = 2M/2 det <cos (%) ) ,

ij=1,....m
. 2m(_1)%2(kﬁ1)
koeokn = T ko ko

where 0 < k1 < ko < ... < kp, are odd integers.



The transfer operator for the 2m-strip, continued

e Diagonalizing leads to boundary value problem:

82mf 7 (_1)mf
Pxy ...0%m A2
f = 0 onixg=x,X=X3,...,Xm-1= Xm,Xm = 1,
f
aa_xl = 0 on:x=0.

e Solutions are

kixg
Ohgrrokm (Xt ooy Xm) = 2M/2 det <cos (%) ) ,

ij=1,...m
2m(—1)z Z(k—1)

1k Tmkiks . Ky

where 0 < k1 < ko < ... < kp, are odd integers.
e In physicspeak: m-fermion systems
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The generalizations to other (rational) slopes are straightforward:
One considers the “ribbon” shape

(SSTSTTSTTTS)"

Funds the eigenfunctions in the appropriate functional space
For m-stack of ribbons, the eigenfunctions are m-fermionic states.
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e For example, for slope 1/2,
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e One solves the boundary problem:

F(x) = 1/Af(x),  f(1)=0, f(0)=0,  f"(0)=0.

e For m-stack of ribbons, the eigenfunctions are m-fermionic states.
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Finally...

e This leads to the a large deviation principle for Young tableaux:
given a continual Young diagram of shape ), the typical growth
profile of a randomly chosen Young tableau of shape A maximizes
the functional

0= [/ [ (1o (2eo(528)) st )

subject to being a feasible growth profile for the shape .
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Conclusions

Strip tableaux (and to a lesser extent their generalizations with
arbitrary slope) are an exactly solvable model.

Interesting determinantal formulas - connection to determinantal
point processes, random matrices?

Connection to Euler and Bernoulli numbers and values of poly-zeta
functions.

Connection to square ice model

Thank you!



