Using Aspect-Oriented Programming in the
Development of a Multi-strategy Theorem Prover

Adolfo Gustavo Serra Seca Neto and Marcelo Finger

Departamento de Ciéncia da Computagao,
Instituto de Matematica e Estatistica,
Universidade de Sao Paulo,
Rua do Matao, 1010, Sao Paulo SP, Brazil 05315-970, + 55 11 30916122

e-mail: [adolfo, mfinger]@ime.usp.br



Using Aspect-Oriented Programming in the
Development of a Multi-strategy Theorem Prover

Abstract

When a computer program is written to implement a nondeterministic algorithm, it must
have a strategy for choosing the next step that is going to be performed. Automated
Theorem Provers (ATP’s) usually implement nondeterministic algorithms, therefore the
representation of strategies is a very important part of their design. A multi-strategy
theorem prover is an ATP where we can vary the strategy without modifying the im-
plementation. In this paper we present some remarks towards the development of an
aspect-oriented multi-strateqy prover.

1 Introduction

An algorithm is a sequence of computational steps that takes a value (or set of values)
as input and produces a value (or set of values) as output [2]. A nondeterministic
algorithm is an algorithm that is allowed, at certain times, to choose between more than
one possible steps. Nondeterministic algorithms compute the same class of functions
as deterministic algorithms, but the complexity may be much less. Nondeterministic
algorithms are used in several areas such as automated theorem proving, term-rewriting
systems and protocol specification.

Every nondeterministic algorithm can be turned into a deterministic algorithm, pos-
sibly with exponential slow down. For instance, there are some problems for which
no polynomial-time deterministic algorithm is known, but there is an exponential-time
deterministic algorithm that is obtained by testing all possibilities of a polynomial-
time nondeterministic algorithm. Omne of the most important open research problems
in computer science nowadays is the “P=NP?” question. Informally speaking, the an-
swer to this question corresponds to knowing if decision problems that can be solved
by a polynomial-time nondeterministic algorithm can also be solved by polynomial-time
deterministic algorithm.

When a computer program is written to implement a nondeterministic algorithm, it must
have a strategy for choosing the next step that is going to be performed. An interesting
example of nondeterminism and the use of strategies is the method of tableaux. It is
a formal proof procedure that has many variants and exists for several logics [5]. It is
a refutational procedure. That is, in order to prove that a formula X is valid we try
to show that it is not valid. Having this in mind, we apply a procedure for inferring
the logical consequences of the formulas present in the tableaux. This procedure applies
a strategy for choosing the next expansion rule to be applied amongst possibly many
applicable rules. A tree is generated by this procedure and if all branches of the tree
close (a branch is closed when we find a contradiction) then we have a proof of X.
Otherwise, if we apply all possible rules and at least one branch of tree remains open,
we have a refutation of X.

Automated theorem provers were one of the first applications of computers and still have
many applications such as hardware and software verification. Their history is almost
as old as that of computing; the first provers were implemented almost 50 years ago.
Most provers discussed in the literature are based on the resolution method, but tableau



methods have also been found to be a convenient formalism for automating deduction
in various non-standard logics as well as in classical logic.

We have just finished the implementation of a single-strategy object-oriented version
of a tableau prover, implemented in Java [8]. Our prover is based on the KE Tableau
System [3], developed by Marco Mondadori and Marcello D’Agostino. We know of two
other object-oriented tableau-based provers: the system presented in [4] and jTAP [1].
In our work we are investigating the construction of multi-strategy theorem provers.
A multi-strategy theorem prover is a prover where we can vary the strategy without
modifying the implementation. Usually different theorem provers (using distinct imple-
mentations techniques) are compared by using benchmarks [10]. Our first objective is
to be able to test different strategies in the same implementation. Another objective is
to investigate if proof strategies for tableau provers can be well modularized by using
object-oriented and aspect-oriented software development. Right now we have three
questions:

e how can we use object-orientation and aspect-orientation to achieve modularity in
the definition of proof strategies?

e how should we represent a proof strategy: as an object, an aspect or a composition
of aspects?

e can we represent features of proof strategies as aspects?

In this paper we will present our initial ideas towards the construction of aspect-oriented
multi-strategy provers. In Section 2 we present the KE System and an example showing
the use of strategies in that system. Sectiontefinitial presents some remarks on the
design and implementation of a multi-strategy prover using aspect-orientation. Section 4
concludes and points to some future work.

2 The KE System

The KE System, a tableau method presented by Marco Mondadori and Marcello D’ Agostino
[3], is an improvement, in the computational sense, over traditional tableaux [9]. It is a
refutation system for classical propositional logic that is sound and complete.
Informally, a proof in the KE System is a tree whose nodes are signed formulas. A signed
formula is an expression T' X or F' X where X is a (unsigned) formula and the symbols
T and F represent the truth-values true and false. Every proof of a formula X begins
by starting a tree with F' X as the root node. Then, we use expansion rules that take
as premises one or more signed formulas that already appear in the tree and introduce
one or more new signed formulas. These new signed formulas are logical consequences
of the premises. We can only introduce in a given branch of the tree signed formulas
that can be produced from signed formulas that appear in that same branch. The set
of expansion rules for the KE System is presented in Figure 1. The rules define what
one can do, not what one must do. That is, at a given time during the construction of
the tree one may have several rules that can be use. Notice also that there is only one
rule that divides the tree into branches, the PB rule, corresponding to the principle of
bivalence; all other rules are linear.

When does a proof terminate? It terminates when all branches of a tree are closed. A
branch is closed if it contains T' X and F' X for some formula X, that is, when we arrive
at a contradiction. Therefore, the method can be described as follows: if we want to
prove a formula X, we start by supposing it is false. Then, we apply a procedure for
inferring the logical consequences of that supposition (that is done by applying expansion



Disjunction Rules

(EFV)

(ETA)

(EF —)

TAVB TAVB FAVEB
FA (ET V1) FB (ET Vv 2) FA
TB TA FB
Conjunction Rules
FAANB FAANB TANB
TA (EF AT) TB (EF A 2) TA
FB FA TB
Implication Rules
TA— B TA— B FA— B
TA (ET — 1) FB (EF — 2) TA
TB FA FB

Negation Rules

T-A F—-A
A ([ET) TA

(EF=)

Principle of Bivalence

7ara B

Figure 1: KE tableau expansion rules



rules). If we arrive at a contradicition in all branches of the generated tree, then the
formula is a tautology. Otherwise, it is satisfiable.

F((AN(A=B)ANA—-C)ANA—D))—C
T(AN(A—=BAN(A—C))AN(A— D)
FC
T(ANA—B)AN(A— ()
TA—D
TA
T(A— B)AN(A—C)
TA— B
TA—C
TD
TB
TC
X

© 00 O Ul W N+

—_
)

—_
N}

Figure 2: A proof of (AAN(A— B)AN(A—-C)AN(A—D))—C

Let us give an example of proof in the KE System (see Figure 2) that will help to
illustrate the use of strategies in tableaux. Suppose we want to prove (((A A (A —
B)AN(A — C)AN(A — D)) — C in the KE System. This formula is a tautology in
propositional classical logic, therefore it can be proved in the KE System. We begin the
tableau by putting F (((AA (A — B)A (A — C)) A (A — D)) — C as the root node,
that is, suuposing that it is false. Then by using KE rules we add formulas 2-9 to the
tableau. Among other things, we arrive at T A (node 6) and T A — C (node 9). Using
“ET — 17 rule with these two formulas, we can obtain T C and arrive at a contradiction
with F C' in node 10. But as we had other rules that could be applied, and the strategy
used here applies all rules that can be applied top-down, the contradiction is introduced
only in node 12. If we had used a different strategy, the proof could be shorter.

3 Design

Here we will describe some of our initial ideas towards the design and implementation
of an aspect-oriented multi-strategy theorem prover. A simplified class diagram is pre-
sented in Figure 3. An object of the KETableau class is instantiated for a formula whose
tableau we want to build. For instance, we can create a KETableau for the A — B for-
mula. Then, the FA — B formula is included as the root of the tableau. The tree that
represents the tableau is an object of the ProofTree class. Every object of this class can
have a right and/or a left child, as well as a list of formulas.

In the instantiation of an object of the KETableau class, we must also pass as parameters
two factory objects: a FormulaFactory object and a SignedFormulaFactory object. This
happens because we are using the Flyweight design pattern [6] to prevent the multipli-
cation of objects representing formulas and signed formulas as well as making it easier
to implement the choice and application of rules. By using this pattern, when we want
to compare two formulas, we have only to compare two pointers instead of two strings.



KETaleay

tormila; Formila

tolose |

FomigFecoy

ratonicformlas: Formlalist
tieroargformlas: Formlalist
tunaryformalas: Formilaldst

thinaryFormulas: Formlalist

aryformlas: Formulalist

!
—

Proofee

Sty

tohooselextRule(

45Closed(): boolean

!

rsionedFormls: SiedFormulalist

toregtebtonicomula(f:String

toreatelnaryPormula (uc: naryComect ive

toreateBinaryormula (e BinaryComect ive, :Formla
toresteleroaryormula zc: leroaryComect ive

toreatelaryTommulanc:NaryComect ve, £:Formla

torintleel): String

tisCosed |+ boolean

TooDownSteley

BotonUpSeegy

Jeft il

SiedFomuaFacoy

tsignedFormulas: SionedFormulalist

reresteStqedormilals:Sion, f:Formila

oty e

P aglaon e

i cosue
el

Figure 3: Simplified class diagram of the KE Tableau Prover.




For instance, in the A — (BV—A) we have two occurrences of the atomic formula A. By
using the Flyweight pattern, only one object of the AtomicFormula class representing
the A formula is created.

Strategy

tchooseNextRule ()

+isClosed(): boolean

7

TopDownStrategy BottomUpStrategy
A\ 4\ A\

]

atomic closure
aspect

polarity aspect PB application aspect

Figure 4: Strategy class hierarchy with aspects.

A strategy is going to be represented as a composition of aspects. More precisely,
features of strategies will be aspects that may affect the hierarchy of classes representing
strategies as well as other classes in the system. In Figure 4, we have depicted a possible
class diagram for the Strategy class. A Strategy object implements an algorithm for
choosing the next rule to be applied and for answering if the tableau is closed.

Two examples of simple classes of strategies are top-down and bottom-up strategies. A
top-down strategy scans the list of formulas top-down, applying each rule that can be
applied, while a bottom-up strategy scans the list from the bottom-up. More sofisticated
ways to choose the next rule to be applied could give origin to other classes of strategies.
And to every one of these classes we could apply the “atomic closure” aspect, that
establishes that tableau branches can be closed only with atomic formulas. Or even the
“PB rule application aspect” that decides when and how to apply the PB rule. Another
possible aspect would be the “polarity aspect”, that chooses the next rule based on a
polarity established for the subformulas of the formulas present in the tableau.

4 Conclusion
In this paper we have presented some remarks towards the development of an aspect-

oriented multi-strategy prover. Our design represents a strategy a composition of as-
pects. More precisely, features of strategies will be aspects that may affect the hierarchy



of classes representing strategies as well as other classes in the system.

We are implementing this prover using Java and AspectJ [7]. Soon we will be able to
compare the hierarchy of classes in our design with that of jTAP [1] to see if concerns were
better separated by using aspect-orientation. As soon as the prover is implemented we
will also be able to compare benchmarks for several problems using different strategies.
And in the future we may extend the system for classical predicate logic or even non
classical logics.

References

1]

Bernhard Beckert, Richard Bubel, Elmar Habermalz, and Andreas Roth. jTAP -
a Tableau Prover in Java. Universitat Karlsruhe, February 1999.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms - Second Edition. MIT Press, 2001.

M. D’Agostino and M. Mondadori. The taming of the cut: Classical refutations
with analytic cut. Journal of Logic and Computation, pages 285-319, 1994.

Wagner Dias. Implementacdes de Tableaux para Raciocinio por Aprozimacdes. Mas-
ter’s thesis, Departamento de Ciéncia da Computacao, Instituto de Matematica e
Estatistica, Universidade de Sao Paulo, 2002.

Melvin Fitting. Introduction. In Marcello D’Agostino et al., editor, Handbook of
Tableau Methods, chapter 1, pages 1-43. Kluwer Academic Press, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Adisson-Wesley, 1994.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. Lecture Notes in Computer Science,
2072:327-355, 2001.

Adolfo Gustavo Serra Seca Neto. An Object-Oriented Implementation of a KE
Tableau Prover, November 2003. Avaliable at http://www.ime.usp.br/~adolfo.

Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.

Geoff Sutcliffe and Christian Suttner. The CADE ATP System Competition, 2003.
Available at http://www.cs.miami.edu/~tptp/CASC.



