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Abstract. We describe the implementation of MSTP, a multi-strategy theorem
prover based on the KE Tableau System. Strategies are responsible for the
control of (nondeterministic) inference rules of automated deduction systems.
MSTP is a theorem prover where we can vary the strategy without modifying the
core of the implementation. To achieve the goal of constructing a well-designed
and efficient multi-strategy theorem prover, we are using a new software devel-
opment method, aspect orientation, that allows a better modularization of cross-
cutting concerns such as strategies. MSTP obtained excellent results compared
with a similar tableau-based theorem prover.

1. Introduction
Since the 1950s, automated deduction has been an active area of research. The early
developments within the automated deduction field have had a profound effect on the
artificial intelligence area. Automated Theorem Proving (ATP) deals with the develop-
ment of computer programs that show that some statement (the conjecture) is a logical
consequence of a set of statements (the axioms and hypotheses). ATP systems are used
in a wide variety of domains [Sutcliffe 2001], such as mathematics, software generation,
software verification, security protocol verification and hardware verification.

Most automated theorem provers nowadays are based either on the resolution prin-
ciple [Robinson 1965] or on the DPLL procedure [Davis et al. 1962], but other methods
can also be used. Tableau methods [Smullyan 1968, Fitting 1999] are particularly in-
teresting for theorem proving since they exist in many varieties and for several logics.
Besides that, contrary to resolution and DPLL, they do not require conversion of input
problems to clause form.

The inference rules of automated deduction systems in general and tableau provers
in particular are typically non-deterministic in nature. They say what can be done,
not what must be done [Fitting 1999]. Thus, in order to obtain a mechanical proce-
dure, inference rules need to be complemented by another component, usually called
strategy or search plan, which is responsible for the control of the inference rules
[Bonacina and de la Tour 2004]. That is, the inference rules of a proof method define
a nondeterministic algorithm for finding a proof, and a strategy is a (deterministic) algo-
rithm for finding proofs in this method. For each proof method, many strategies can be
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defined. Several features of the proofs obtained by a strategy such as size of the proof and
time spent by the proof procedure, can vary greatly as different strategies are used.

In this paper we present the design and implementation of MSTP, a multi-strategy
theorem prover based on the KE Tableau System [D’Agostino and Mondadori 1994]. The
KE System is a refutation system for finding proofs which is close to Analytic Tableaux
(AT) [Smullyan 1968] but, instead of being cut free, includes a classical cut rule which is
not eliminable. Because of this, KE was proven to be more efficient than AT (KE linearly
simulates AT) and allows the insertion of several new proof strategies.

A multi-strategy theorem prover is a theorem prover where we can vary the strat-
egy without modifying the core of the implementation. A multi-strategy theorem prover
can be used for three purposes: educational, exploratory and adaptive. For educational
purposes, it can be used to illustrate how the choice of a strategy can affect performance
of the prover. As an exploratory tool, a multi-strategy theorem prover can be used to test
strategies and make comparisons between them. And we can also think of an adaptive
multi-strategy theorem prover that changes the strategy used according to features of the
problem presented to it.

To achieve the goal of constructing a well-designed and efficient multi-strategy
theorem prover, we are using a new software development paradigm: aspect orientation
[Elrad et al. 2001]. This is a contribution of our work, as we know of no other aspect-
oriented theorem prover. We are using aspect-orientation together with object-orientation,
a well-established software development paradigm. The use of these two technologies
allows a better modularization of strategies in the development of the prover than that
achieved using object-orientation only. MSTP obtained excellent results compared with a
similar tableau-based theorem prover [Dias 2002].

1.1. Overview

In Section 2 we present the KE System and an example showing the use of strategies
in that system. Section 3 discusses the design of the prover and Section 4 presents some
remarks on the implementation. Section 5 shows the problems used to evaluate our system
and the results obtained. Finally, Section 6 concludes and points to future work.

2. The KE System

The KE System, a tableau method developed by Marco Mondadori and Marcello
D’Agostino [D’Agostino and Mondadori 1994], was presented as an improvement, in the
computational sense, over Analytic Tableaux [Smullyan 1968]. Here we discuss the ver-
sion for classical propositional logic, a refutation system that is sound and complete.

We assume familiarilty with the syntax and semantics of propositional classical
logic. See [Smullyan 1968] for an introduction. Let us see some conventions used throgh-
out this paper. A signed formula is an expression S X where S is called the sign and X is
a propositional formula. The symbols T and F , respectively representing the truth-values
true and false, can be used as signs. The conjugate of a signed formula TA (or FA) is FA

(or TA).

We define a proof in the KE System as a tree whose nodes are lists of signed
formulas, here called branch nodes. The root branch node is the only branch node that



does not have a parent branch node. All branch nodes can have two children: the left
branch node child and the right branch node child. A leaf branch node is childless. A
branch is a sequence of branch nodes starting at the root and finishing in a leaf branch
node.

When we want to prove that the formulas B1, B2, . . . , Bn follow
from A1, A2, . . . , Am, we start a tree with a root branch node containing
TA1, TA2, . . . , TAm, FB1, FB2, . . . , FBn. That means we are trying to falsify
(A1 ∧ A2 ∧ . . . ∧ Am) → (B1 ∨ B2 ∨ . . . ∨ Bn). The set of expansion rules for the KE
System is presented in Figure 1. For each branch node, we can use expansion rules that
take as premises one or more signed formulas that already appear in the branch of this
branch node and introduce one or more new signed formulas. These new signed formulas
are logical consequences of the premises. The PB rule has no premiss and introduces two
branch nodes as children of a given branch node.

The rules define what one can do, not what one must do. That is, at a given
time during the construction of the tree one may have several rules that can be applied.
Notice also that all rules are linear, except the PB rule, corresponding to the princi-
ple of bivalence. This rule is related to the Cut rule in Gentzen sequent presentations
[Gentzen 1969].

T A ∨ B

F A

T B

(T ∨ 1)
T A ∨ B

F B

T A

(T ∨ 2)
F A ∨ B

F A
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F A ∧ B

T B
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Figure 1. KE tableau expansion rules

A proof terminates when all branches of a tree are closed. It important to notice
that closure is not a rule, but a definition. A branch is closed if, for some formula X , TX

appears in some branch node and FX also appears in some branch node (possibly not the
same) of the branch. That is, a branch is closed when we arrive at a contradiction. If we
arrive at a contradicition in all branches of the generated tree, then the sequent is valid.
Otherwise, it is not valid.

The size of a tableau proof is defined as the sum of the sizes of all branch nodes
of the proof tree generated by the use of expansion rules. The size of a branch node is the
sum of the size of all its signed formulas. The size of a signed formula is the size of its
formula. Finally, the size s(A) of a formula A is defined as:



• s(A) = 1 if A is a propositional atom;
• s(¬A) = 1 + s(A), where A is a formula and
• s(A ◦ B) = 1 + s(A) + s(B), where ◦ is a binary connective, and A and B are

formulas.

The height of the proof tree and the number of branch nodes in the tree are other important
dimensions of a proof. These are defined as usually for trees.

Let us give an example of proof in the KE System (see the first proof in Figure 2)
that will help to illustrate the use of strategies in tableaux. The formula below, called Γ3,
is a tautology:

((p1 ∨ q1)∧

(p1 → (p2 ∨ q2)) ∧ (q1 → (p2 ∨ q2))∧

(p2 → (p3 ∨ q3)) ∧ (q2 → (p3 ∨ q3))∧

(p3 → (p4 ∨ q4)) ∧ (q3 → (p4 ∨ q4))) →

(p4 ∨ q4)

Suppose we want to prove this formula, representing it as the signed formulas 1-8 in
Figure 2. First all linear rules are applied. This generates formulas 9-12. Then, one has
to choose a formula to apply the PB rule. It is clever to choose a formula that can be used
as an auxiliary premise with one of the five formulas (1-5) that were not yet used as main
premises. If we first choose the left subformula of 2, the result is a proof with size 71
and 31 nodes. If we use a different strategy, do not expand formula 8 and choose the left
subformula of 4 to apply the PB rule, the result is a proof with size 61 and 25 nodes, as
can be seen in the second proof of Figure 2.

3. Design
The main purpose of the design of our system is to have a prover where we can vary the
proof strategy with the minimum amount of changes in the rest of the system. A strategy
for a KE tableau prover will be responsible for: (i) choosing the next rule to be applied,
(ii) choosing the formula on which to apply the PB rule and (iii) checking the closure of
branches. These features can be scattered in the prover if strategies are not considered
first-class citizens. With the use of object-orientation along with aspect-orientation (see
Section 4), a strategy can influence several classes of the prover and still be defined in a
modular way.

Let us see how some other object-oriented tableau-based provers treat
strategies. The here called WDTP [Dias 2002], written in C++, implements
Analytic [Smullyan 1968] and KE propositional tableaux methods while jTAP
[Beckert et al. 1999] is a propositional tableau prover, written in Java, based on the
method of signed Analytic Tableaux. Both systems have some strategies implemented
and can be extended with new ones, but strategies are not well modularized since one
has to subclass one or more classes of the system, as well as modify existing ones, to
implement a new strategy. LOTREC [del Cerro et al. 2001] is a generic tableau prover
for modal and description logics (MDLs). It aims at covering all logics having possible
worlds semantics, in particular MDLs. It is implemented in Java. Logic connectives,
tableau rules and strategies are defined in a high-level language specifically designed for



1 T p1 ∨ q1

2 T p1 → (p2 ∨ q2)
3 T q1 → (p2 ∨ q2)
4 T p2 → (p3 ∨ q3)
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Figure 2. Two proofs of Γ3.



this purpose. In LOTREC, strategies are described using a very simple language, not in
a programming language. They are limited to establishing the order and the number of
times the rules will be applied.

In our system, instead of the rules in Figure 1, we are using rules based on simpli-
fication rules in the style of [Massacci 1998]. These simplification inference rules do not
cause branching and in some cases may even prevent it.

For the definition of simplification rules, we use the following notation: Φ(A)
means a formula where A appears as a subformula. For instance, Φ(A → B) can be
A → B, (A → B) → B or even (C → D) → ((A → B) → (A → B)). Let us see
an example of the development of simplification rules for KE. Instead of “T ∨ 1” rule in
Figure 1, in MSTP we have the “X ∨ F ” rule in Figure 3. Besides that, other rules such
as the one in Figure 4 may be added to reduce the size of some formulas. And rules such
as the ones in Figure 5 have to be incorporated to deal with the appearance of > and ⊥ in
some formulas. In MSTP, the “T ∨ 1” (but not the “T ∨ 2”) rule in Figure 1 is still used,
but only for choosing a formula for the application of PB.

X Φ(A ∨ B)
F A

X Φ(B)
(X ∨ F )

Figure 3. Simplification rule that replaces T ∨ 1 rule

X Φ(A ∨ B)
T A

X Φ(>)
(X ∨ T )

Figure 4. Simplification rule for ∨

X Φ(> ∨ A)
X Φ(>)

(X ∨ >)
X Φ(⊥ ∨ A)
X Φ(A)

(X ∨ ⊥)

Figure 5. Two auxiliary simplification rules for ∨

The architecture of the system is depicted in Figure 6. The main input to the
system is a text file that contains a description of an instance of a problem (see Section 5).
The Problem Analyser module parses this file and constructs the object that is going to be
used by the Prover module. The Prover module also receives as input some configuration
options such as the strategy and set of rules to be used. It is this module that actually asks
the Strategy module to try to construct a closed proof tree for the problem. The Strategy
module contains classes and aspects. It is responsible for changing the behavior of classes
in the prover according to the features of the strategy chosen. A better separation of
concerns is achieved because the strategy is not in the prover, but rather works alongside



the prover. The Profiler module also contains classes and aspects. It tracks and records
the performance of the Prover by checking information collected while the code is being
executed.

Figure 6. Architecture of the Multi-Strategy tableau Prover

4. Implementation

Our multi-strategy tableau prover was implemented in Java [Gosling et al. 1996] and As-
pectJ [Kiczales et al. 2001]. Java is a well established object-oriented programming lan-
guage and AspectJ is an extension of Java that supports a new software development
paradigm: aspect-orientation (AO). In aspect-oriented systems, classes are blueprints for
the objects that represent the main concerns of a system while aspects represent concerns
that are orthogonal to the main concerns and that may have impact over several classes in
different places in the class hierarchy. The use of aspects, among other advantages, leads
to less scattered code. That is, lines of code that implement a given feature of the system
can rest in the same file.

By using AO we are able to better modularize strategies. In MSTP, a strategy
is represented as a collection of classes and aspects. More precisely, for each strategy
implemented, there is a Strategy object that is responsible for the main concerns of that
strategy and some aspects that implement other features of the strategy.

The first strategy implemented is called SimpleStrategy. In this strategy, no rule
is tried with a signed formula (or pair of signed formulas) if it cannot be applied to it,
different from what is done in [Dias 2002]. The strategy keeps a list of PB candidates
for every branch. These are the signed formulas that were not used as main premiss of



any rule in a given branch (a formula can be used as main premiss in different branches).
When a formula is used as main premiss in a branch we say that it was analysed in that
branch. In the beginning every formula is on the list, except T> and F⊥, that cannot be
analysed.

The strategy keeps a stack of open branches. The first branch is put on the top of
this stack. The proof continues until the stack is empty. If the stack becomes empty we
have to check if the first branch is closed. If it is, the tableau was successfully closed.
Otherwise, it was not. When an open branch is exhausted, the proof search stops. Now,
suppose there is at least one open branch on the stack. (a) Then the strategy removes the
next branch from the top of stack. This becomes the current branch. After that it does
the following: applies as much linear rules as possible. If the branch closes using only
linear rules, it stops with this branch and goes back to (a). If all possible linear rules are
applied, it choses a signed formula X from PB Candidates. If there is no such signed
formula, the proof search finished without success. Otherwise, this formula is going be to
the main premiss of one of the two premiss rules in Figure 1. The auxiliary premiss and
its conjugate are the formulas that will appear in the new branches of the proof tree. Two
branches will be put on the top of stack of open branches. The former current branch and
the right branch. The left branch becomes the current branch.

This finishes the description of SimpleStrategy. MemorySaverStrategy is the name
of our second strategy. It implements almost the same algorithm of SimpleStrategy but
keeps the minimum amount of data structures in memory. For instance, when is closes a
left branch, it discards it from memory (SimpleStrategy keeps it for recording the proof
object). And instead of keeping references to subformulas of formulas in a map, it
searches these references every time they are needed. This strategy uses less memory
but can take more time and produces a simplified proof object file.

Other strategies can be implemented either from scratch or as variations over these
strategies. To do this, one must create a subclass of the Strategy class and write as many
aspects and auxiliary classes as necessary to implement the features of the strategy.

5. Evaluation
Theorem provers are usually compared by using benchmarks such as SATLIB
[SAT 2003]. We have chosen to evaluate our system using the same families of problems
used in [Dias 2002] as benchmarks: Γ, H , Statman and Pigeon Hole Principle (PHP).
These families contain explicit propositional valid formulas whose proofs in Analytic
Tableaux [Smullyan 1968] tend to be exponential.

Figure 7 shows the results obtained by MSTP and WDTP with some instances of
the problems above. In the tables, “x” means that the prover ran out of memory before
finishing the instance with a given strategy and “n/a” is placed when the feature was not
measured. The tests were run on a personal computer with an Athlon 1100Mhz proces-
sor, 384Mb of memory, running a Linux operating system with a 2.26 kernel. For each
instance the following features were measured:

• the time (in seconds) needed to finish the proof (excluding the time to parse the
problem),

• the number of occurrences of signed formulas in branch nodes of the proof tree,
• the height of the proof tree,



• the size of the proof tree, as defined in Section 2.

The proof trees as well as more data about the problems and the execution are avaliable
in [Neto 2005].

The results for WDTP in Figure 7 were obtained running it in the same machine
using the KE method option. WDTP was implemented in C/C++, which is usually faster
than Java. It uses the rules in Figure 1 plus n-ary versions of the rules for the ∧ and
∨ connectives but no simplification rule. Its problem analyser parses a formula such as
A ∨ B ∨ C as an n-ary disjunction while MSTP parser generates A ∨ (B ∨ C) for the
same description. A strategy close to the canonical procedure for KE [D’Agostino 1999]
is implemented and it closes only on atomic formulas.

From these results one can see that in all cases MSTP is faster and its proof trees
have fewer signed formulas and smaller heights1. Besides that, some instances that WDTP
was not able to close were proved by MSTP. This happened because of the use of simpli-
fication rules and because MSTP closes branches on any kind of formula, not only atomic
formulas. Notice that MSTP was able to prove PHP5, PHP6 and PHP5 clausal only with
Memory Saver Strategy, which does not produce a detailed proof object.

MSTP results
family instance time signed formulas height size

MSS SS
H 6 1.926 2.885 605 5 33313
Γ 7 0.333 0.284 53 0 440
Γ 100 23.627 2.567 805 0 2205
Statman 6 0.409 0.311 33 0 440
Statman 21 1.274 2.178 258 0 13425
PHP 4 2.264 2.635 1127 10 4959
PHP 5 35.425 x n/a n/a n/a
PHP 6 764.182 x n/a n/a n/a
PHP (clausal) 4 5.551 6.152 2101 10 10860
PHP (clausal) 5 89.781 x n/a n/a n/a

WDTP results
family instance time signed formulas height
H 6 75.65 35537 133
Γ 7 4.31 8885 13
Statman 6 9.80 19539 17
PHP 4 4.24 2219 27
PHP 5 183.41 26527 54
PHP 6 8092.56 405217 95
PHP (clausal) 4 17.82 9860 34
PHP (clausal) 5 2041.66 151202 65

Figure 7. Results obtained

1We were not able to compare the size of the proof trees generated because WDTP does not measure it.



6. Conclusion
We have presented the design and implementation of MSTP as well as the results obtained
with our prover. Thanks to the use of aspect-orientation together with object-orientation,
the design and implementation of MSTP achieves a better separation of concerns com-
pared to pure object-oriented tableau provers. The results obtained with benchmark prob-
lems showed that this is a promising approach to the implementation of multi-strategy
theorem provers. We plan to extend the system to be able to deal also with other logics,
such as approximate logics and logics of formal inconsistency.

We are currently working on the development of new strategies for MSTP. For
instance, we hope to be able to prove bigger instances of PHP (DPLL-based provers can
prove up to PHP14 clausal in a few days). We also want to try MSTP with some problems
taken from SATLIB [SAT 2003]. and compare new strategies running them with other
families of problems for studying the computational complexity of ATP’s [Pelletier 1986].
Usually different theorem provers are compared by using benchmarks. As soon as our
work is completed, we will be able to test many different strategies using the same core
implementation. Such a prover will be useful for education as it will enable the student to
see how different strategies behave on the same problem. And from this prover it will be
possible to implement an adaptive multi-strategy theorem prover that changes the strategy
used according to features of the problem being tackled.
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