
Um provador de teoremas

multi-estratégia

Adolfo Gustavo Serra Seca Neto

Tese apresentada

ao

Instituto de Matemática e Estat́ıstica

da

Universidade de São Paulo

para

obtenção do t́ıtulo de Doutor

em

Ciências

Área de Concentração: Ciência da Computação
Orientador: Prof. Dr. Marcelo Finger

Durante a elaboração deste trabalho o autor recebeu aux́ılio financeiro da CAPES.

São Paulo, março de 2007.

Um provador de teoremas

multi-estratégia

Este exemplar corresponde à redação final da tese devi-
damente corrigida e defendida por Adolfo Gustavo Serra
Seca Neto e aprovada pela Comissão Julgadora.

São Paulo, 1o de março de 2007.

Banca Examinadora:

Prof. Dr. Marcelo Finger (orientador) - IME-USP
Profa. Dra. Renata Wassermann - IME-USP
Prof. Dr. Walter Alexandre Carnielli - CLE-IFCH-UNICAMP
Prof. Dr. Guilherme Bittencourt - DAS-UFSC
Prof. Dr. Mario Benevides - COPPE-UFRJ

Resumo

Nesta tese apresentamos o projeto e a implementação do KEMS, um provador de

teoremas multi-estratégia baseado no método de tablôs KE. Um provador de teoremas

multi-estratégia é um provador de teoremas onde podemos variar as estratégias utilizadas

sem modificar o núcleo da implementação. Além de multi-estratégia, KEMS é capaz de

provar teoremas em três sistemas lógicos: lógica clássica proposicional, mbC e mCi.

Listamos abaixo algumas das contribuições deste trabalho:

• um sistema KE para mbC que é anaĺıtico, correto e completo;

• um sistema KE para mCi que é correto e completo;

• um provador de teoremas multi-estratégia com as seguintes caracteŕısticas:

– aceita problemas em três sistemas lógicos: lógica clássica proposicional, mbC

e mCi;

– tem seis estratégias implementadas para lógica clássica proposicional, duas

para mbC e duas para mCi;

– tem treze ordenadores que são usados em conjunto com as estratégias;

– implementa regras simplificadoras para lógica clássica proposicional;

– possui uma interface gráfica que permite a visualização de provas;

– é de código aberto e está dispońıvel na Internet em http://kems.iv.fapesp.br;

• benchmarks obtidos através da comparação das estratégias para lógica clássica pro-

posicional resolvendo várias famı́lias de problemas;

• sete famı́lias de problemas para avaliar provadores de teoremas paraconsistentes;

• os primeiros benchmarks para as famı́lias de problemas para avaliar provadores de

teoremas paraconsistentes.

http://kems.iv.fapesp.br

Abstract

In this thesis we present the design and implementation of KEMS, a multi-strategy

theorem prover based on the KE tableau inference system. A multi-strategy theorem

prover is a theorem prover where we can vary the strategy without modifying the core of

the implementation. Besides being multi-strategy, KEMS is capable of proving theorems

in three logical systems: classical propositional logic, mbC and mCi.

We list below some of the contributions of this work:

• an analytic, correct and complete KE system for mbC;

• a correct and complete KE system for mCi;

• a multi-strategy prover with the following characteristics:

– accepts problems in three logical systems: classical propositional logic, mbC

and mCi;

– has 6 implemented strategies for classical propositional logic, 2 for mbC and

2 for mCi;

– has 13 sorters to be used alongside with the strategies;

– implements simplification rules of classical propositional logic;

– provides a proof viewer with a graphical user interface;

– it is open source and available on the internet at http://kems.iv.fapesp.br;

• benchmark results obtained by KEMS comparing its classical propositional logic

strategies with several problem families;

• seven problem families designed to evaluate provers for logics of formal inconsistency;

• the first benchmark results for the problem families designed to evaluate provers for

logics of formal inconsistency.

http://kems.iv.fapesp.br

A Deus, por tudo.

Agradecimentos

Ao professor Marcelo Finger, que me orientou, apoiou e encorajou durante todo este

processo.

Aos professores Walter Carnielli, Marcelo Coniglio e Ítala D’Ottaviano, que tão bem

me acolheram no CLE-Unicamp. Em particular ao Walter pelas cŕıticas e sugestões feitas

à tese e ao Coniglio pelos comentários feitos durante o desenvolvimento do trabalho.

À professora Renata Wassermann, pelas cŕıticas e sugestões feitas à tese e durante o

desenvolvimento do trabalho.

Aos professores Mario Benevides e Guilherme Bittencourt, pelas cŕıticas e sugestões

feitas à tese.

A todos os professores da pós-graduação de Departamento de Ciência da Computação

do IME-USP, em especial a Flávio Soares, Fabio Kon, Carlos Eduardo Ferreira e Leliane

Nunes. Também ao professor Jacques Wainer, do IC-Unicamp.

Aos que me estimularam e me ajudaram a iniciar o doutorado: Evandro Costa, Gui-

lherme Atáıde, Valdemar Setzer, Liliane, Luiz Elias, Ruy de Queiroz e os amigos e ex-

colegas de trabalho do CEFET-AL.

Aos colegas (do CLE, IME, IC-Unicamp e de outros ambientes por onde circulei nestes

anos) com quem aprendi bastante: Helio Martins, Ronaldo Silva, Samir, Rodrigo Freire,

Juliana Bueno, Juan Carlos, Patrick, André Atanásio, Augusto Devegili, Eduardo Guerra,

Eudenia, Mehran, Rudini, Ricardo Damm, João Marcos, Francisco Antonio Doria, Eleo-

nora Moraes, Wellington, Pĺınio, Marcelo Couto, Leonardo, Vagner, Helio Dias, Eric, Gil

e Alexandre Junqueira.

Aos irmãos da Igreja Cristã Maranata, em especial ao Adailton, por me mostrarem o

caminho a seguir nos momentos dif́ıceis.

Aos meus pais, Albino e Ĺıdice, aos meus sogros Walter e Waldtraut, à minha tia Eli,

aos meus irmãos Albino Júnior e Antônio Augusto, ao meu cunhado Walter Filho, e a

todos os meus familiares pelo apoio e encorajamento.

E, finalmente, à minha amada esposa Wiviane, pelo est́ımulo, apoio, paciência e por

ter dado a luz à nossa querida filha Noara, que é motivo de grande alegria para nós.

Sumário

1 Um Provador de Teoremas Multi-Estratégia 1

1.1 Motivação . 1

1.1.1 Um Exemplo de Aplicação de Lógicas de Inconsistência Formal . . 4

1.2 Apresentação e Resumo dos Apêndices . 7

1.2.1 Tablôs para Lógica Clássica e Lógicas Paraconsistentes 7

1.2.2 Projeto e Implementação do KEMS 7

1.2.3 Avaliação do KEMS . 8

1.2.4 Conclusão . 8

1.2.5 Manual do Usuário Simplificado . 9

1.3 Contribuições . 9

1.3.1 Publicações e Submissões . 10

A Introduction 12

A.1 Overview . 15

B Tableaux for Classical and Paraconsistent Logics 16

B.1 Logical Systems . 17

B.1.1 Classical Propositional Logic . 18

B.1.2 Logics of Formal Inconsistency . 20

B.1.3 mbC, A Fundamental LFI . 22

B.1.4 The mCi Logic . 23

B.2 Tableau Systems . 24

B.2.1 Analytic Tableaux for CPL . 24

B.2.2 A KE System for CPL . 24

B.2.3 A KE System for mbC . 27

B.2.4 A KE System for mCi . 33

B.3 Complexity of Logical Systems . 37

B.3.1 Complexity of Decision Problems 37

B.3.2 Complexity of Theorem-Proving Procedures 40

C KEMS Design and Implementation 43

C.1 Tableau Provers . 43

C.2 KEMS—A Multi-Strategy Tableau Prover 44

C.2.1 KE Proof Search Procedure . 45

C.2.2 Extended CPL KE System . 48

C.2.3 Simplification Rules . 51

C.2.4 Extended mbC and mCi KE Systems 55

C.3 System Description . 56

C.3.1 Class Diagrams . 59

C.3.2 Programming Languages Used . 61

C.4 Strategies . 64

C.4.1 Strategy Implementation . 66

C.4.2 Sorters . 68

C.4.3 CPL Strategies . 69

C.4.4 mbC Strategies . 77

C.4.5 mCi Strategies . 78

C.5 Conclusion . 79

D KEMS Evaluation 81

D.1 Problem Families . 81

D.1.1 CPL Problem Families . 82

D.1.2 LFI Problem Families . 87

D.2 Results Obtained . 94

D.2.1 Gamma Family Results . 96

D.2.2 H Family Results . 97

D.2.3 Statman Family Results . 98

D.2.4 PHP Family Results . 98

D.2.5 U Family Results . 100

D.2.6 Square Tseitin Family Results . 100

D.2.7 Backjumping Family Results . 101

D.2.8 Random SAT Family Results . 102

D.2.9 First family results . 103

D.2.10 Second family results . 104

D.2.11 Third family results . 106

D.2.12 Fourth family results . 108

D.2.13 Seventh family results . 110

D.2.14 Eighth family results . 112

D.2.15 Ninth family results . 113

E Conclusion 115

E.1 Test Conclusions . 115

E.2 Thesis Conclusions and Contributions . 117

E.3 Future Works . 118

F Brief User Manual 120

F.1 Installation . 120

F.2 Scenarios . 121

F.2.1 Configuring the Prover . 121

F.2.2 Choosing and Running a Problem 123

F.2.3 Editing and Running a Problem . 123

F.2.4 Running a Problem Sequence . 124

F.2.5 Browsing a Proof . 126

F.2.6 Command-line Sequence Runner . 128

Lista de Figuras

B.1 CPL AT rules. 25

B.2 CPL KE rules. 26

B.3 mbC C3M tableau rules. 27

B.4 mbC KE rules. 28

B.5 An mbC KE proof. 29

B.6 mCi C3M tableau rules. 33

B.7 mCi KE rules. 34

B.8 An mCi KE proof of ◦A ⊢ ¬¬ ◦ A. 35

B.9 An mCi KE proof of ¬¬ ◦ A ⊢ ◦A. 35

C.1 A CPL KE proof of Γ3. 49

C.2 A smaller CPL KE proof of Γ3. 50

C.3 ‘Top’ and ‘bottom’ KE rules. 51

C.4 ‘Bi-implication’ KE rules. 52

C.5 ‘Exclusive or’ KE rules. 52

C.6 Simplification CPL KE rules for the conjunction connective. 55

C.7 Derived mbC KE rules. 56

C.8 System architecture. 57

C.9 Formula and Signed Formula class diagram. 59

C.10 Prover class diagram. 60

C.11 Strategy class diagram. 61

C.12 Rule class diagram. 62

C.13 A proof of B PHP2
n. 74

C.14 A proof of B PHP2
n using backjumping. 74

C.15 A proof of PHP3. 75

C.16 An example of learning in a proof of PHP3. 76

C.17 Sketch of a Comb Learning Strategy proof. 76

D.1 A proof of Φ1
n. 90

D.2 A proof of Φ2
3. 92

F.1 KEMS main window. 122

F.2 Prover Configurator window. 122

F.3 Problem Editor. 125

F.4 Several Problems Runner window. 126

F.5 A Proof Viewer window. 128

Lista de Tabelas

C.1 Overview of KEMS Strategies. 79

C.2 Overview of KEMS sorters. 80

D.1 Random K-SAT problems. 86

D.2 Γ360 results table. 97

D.3 Γ10 results table. 97

D.4 H6 results table. 97

D.5 Statman29 results table. 98

D.6 Statman9 results table. 98

D.7 PHP6 results table. 99

D.8 PHP7 results table. 99

D.9 PHP4 results table. 99

D.10 U13 results table. 100

D.11 U8 results table. 100

D.12 ST4 results table. 101

D.13 ST3 results table. 101

D.14 B PHP3
6 results table. 102

D.15 B PHP3
4 results table. 102

D.16 Random K-SAT results table. 103

D.17 mbC Φ1
90 results table. 103

D.18 mCi Φ1
90 results table. 104

D.19 mbC Φ2
14 results table. 105

D.20 mbC Φ2
10 results table. 105

D.21 mCi Φ2
17 results table. 105

D.22 mCi Φ2
11 results table. 106

D.23 mbC Φ3
14 results table. 106

D.24 mbC Φ3
11 results table. 107

D.25 mCi Φ3
14 results table. 107

D.26 mCi Φ3
10 results table. 108

D.27 mbC Φ4
90 results table. 108

D.28 mbC Φ4
80 results table. 108

D.29 mCi Φ4
90 results table. 109

D.30 mCi Φ4
80 results table. 109

D.31 mbC Φ7
20 results table. 110

D.32 mbC Φ7
7 results table. 110

D.33 mCi Φ7
20 results table. 111

D.34 mCi Φ7
8 results table. 111

D.35 mCi Φ8
50 results table. 112

D.36 mCi Φ8
7 results table. 113

D.37 mCi Φ9
75 results table. 114

D.38 mCi Φ9
40 results table. 114

E.1 Best CPL strategy-sorter pairs. 116

E.2 Best mbC strategy-sorter pairs. 117

E.3 Best mCi strategy-sorter pairs. 117

Caṕıtulo 1

Um Provador de Teoremas

Multi-Estratégia

1.1 Motivação

A Dedução Automática tem sido uma área de pesquisa ativa desde os anos 50 [69].

Os esforços iniciais na área tiveram um efeito profundo no domı́nio da Inteligência Arti-

ficial (IA) e em toda a Ciência da Computação [70]. A Prova Automática de Teoremas

(PAT) lida com o desenvolvimento de programas de computador que demonstram que

alguma sentença (a conjetura) é uma conseqüência lógica de um conjunto de sentenças

(os axiomas e as hipóteses). Sistemas de PAT são utilizados em uma grande variedade de

domı́nios [110], como matemática, inteligência artificial, geração e verificação de software,

verificação de protocolos de segurança e verificação de hardware.

A maior parte dos provadores automáticos de teoremas hoje em dia é baseada ou

no prinćıpio da resolução [100] ou no procedimento de Davis-Logemann-Loveland1 [32].

Porém, outros métodos também podem ser utilizados. Os métodos baseados em tablôs

são particularmente interessantes para a PAT por existirem em diferentes variedades e

para várias lógicas [52]. Além disso, estes métodos não exigem a conversão dos problemas

para a forma clausal. Tablôs podem ser utilizados para desenvolver procedimentos de

prova para lógica clássica assim como para vários tipos de lógicas não clássicas, como

1Também conhecido como procedimento de Davis-Putnam e que é uma forma restrita de resolução.

1.1. MOTIVAÇÃO 2

Lógica Nebulosa [68], Residuated Logic [71], lógicas modais e de descrição [46], lógicas

sub-estruturais [30], lógicas multi-valoradas [13], e Lógicas de Inconsistência Formal [18].

As regras de inferência dos sistemas de dedução automática, em geral, e dos provado-

res baseados em métodos de tablôs, em particular, são tipicamente não-determińısticas.

Elas dizem o que pode ser feito, não o que deve ser feito [52]. Logo, para obter um pro-

cedimento automatizável, as regras de inferência precisam ser complementadas por um

outro componente, geralmente chamado estratégia ou plano de busca, que fica responsável

pelo controle da aplicação das regras de inferência [6]. Isto é, as regras de inferência de

um método de prova definem um algoritmo não determińıstico para encontrar uma prova;

uma estratégia é um algoritmo determińıstico para encontrar provas neste método. Para

cada método de prova, muitas estratégias podem ser definidas. O tamanho das provas

assim como o tempo gasto pelo procedimento de prova pode variar imensamente quando

são usadas estratégias diferentes.

Algoritmos não determińısticos são utilizados em diversas áreas da ciência da com-

putação como PAT [94], sistemas de reescrita de termos [114], especificação de protocolos

[59], especificação formal [81], otimização [10], reconhecimento de padrões [61], e tomada

de decisões [84]. Um algoritmo é uma seqüência de passos computacionais que recebe um

valor (ou conjunto de valores) como entrada e produz um valor (ou conjunto de valores)

como sáıda [26]. Um algoritmo não determińıstico é um algoritmo com um ou mais pontos

de escolha onde várias continuações diferentes são possśıveis, sem qualquer especificação

de qual será escolhida. Uma execução particular de um tal algoritmo escolhe uma das

continuações sempre que chega a um ponto de escolha. Portanto, diferentes caminhos de

execução do algoritmo aparecem quando ele é aplicado à mesma entrada, e estes caminhos,

quando terminam, geralmente produzem diferentes sáıdas [115].

Algoritmos não determińısticos computam a mesma classe de funções que os algo-

ritmos determińısticos, mas sua complexidade pode ser menor. Qualquer algoritmo não

determińıstico (AND) pode ser transformado num algoritmo determińıstico (AD), pos-

sivelmente com uma redução de eficiência exponencial em tempo. Isto é, um AD que

percorre todos os caminhos de execução posśıveis de um AND polinomial pode ter com-

1.1. MOTIVAÇÃO 3

plexidade de tempo exponencial. Um dos mais importantes problemas em aberto na

pesquisa em computação atualmente é a questão “P=NP?” [20, 21]. Informalmente, a

resposta a esta questão corresponde a saber se problemas de decisão que podem ser re-

solvidos em tempo polinomial por um AND podem também ser resolvidos em tempo

polinomial por um AD.

O problema da satisfatibilidade (SAT) para lógica proposicional clássica foi o primeiro

problema declarado como NP-completo. Um problema de decisão é NP-completo se (1)

ele está em NP, e (2) qualquer problema em NP pode ser reduzido em tempo polinomial

a ele. SAT pode ser descrito como “dada uma fórmula proposicional, decida se ela é ou

não satisfat́ıvel”. Muitos outros problemas de decisão, como problemas de coloração de

grafos, problemas de planejamento e problemas de agendamento podem ser codificados

em instâncias de SAT.

Um dentre os muitos métodos lógicos que podem ser utilizados para resolver o pro-

blema da satisfatibilidade é o sistema KE. É um método de tablôs originalmente desen-

volvido para lógica clássica por Marco Mondadori e Marcello D’Agostino [31], mas que foi

estendido para outros sistemas lógicos. O sistema KE foi apresentado como uma melho-

ria, no aspecto computacional, em relação ao sistema de tablôs anaĺıticos [106]. Apesar

de parecido com o sistema de tablôs anaĺıticos, o sistema KE é um sistema refutacional

que não é afetado pelas anomalias dos sistemas livres de corte [29].

Nós projetamos e implementamos KEMS, um provador de teoremas multi-estratégia

baseado no método KE para lógicas proposicionais clássicas e não-clássicas. Um pro-

vador de teoremas multi-estratégia é um provador de teoremas onde podemos variar as

estratégias utilizadas sem modificar o núcleo da implementação. Um provador de te-

oremas multi-estratégia pode ser usado com três objetivos: educacional, exploratório e

adaptativo. Com fins educacionais, pode ser utilizado para ilustrar como a escolha de uma

estratégia pode afetar a performance de um provador de teoremas. Como uma ferramenta

exploratória, um provador de teoremas multi-estratégia pode ser usado para testar novas

estratégias e compará-las com outras já existentes. Por fim, podemos ainda imaginar um

provador de teoremas multi-estratégia adaptativo, que modifica a estratégia utilizada de

1.1. MOTIVAÇÃO 4

acordo com as caracteŕısticas do problema que é submetido ao provador.

A versão atual do KEMS implementa estratégias para três sistemas lógicos: lógica

clássica proposicional, mbC e mCi. mbC e mCi são lógicas paraconsistentes. As lógicas

paraconsistentes podem ser usadas para representar teorias inconsistentes porém não tri-

viais [42]. Essas duas lógicas são de uma classe especial de lógicas paraconsistentes, as

Lógicas de Inconsistência Formal [18], uma famı́lia de lógicas paraconsistentes que inter-

nalizam as noções de consistência e inconsistência no ńıvel da linguagem-objeto. Esta

famı́lia de lógicas tem algumas propriedades interessantes em sua teoria de prova e foi

utilizada em algumas aplicações em ciência da computação, como na integração de in-

formação inconsistente em bases de dados [34].

1.1.1 Um Exemplo de Aplicação de Lógicas de Inconsistência

Formal

Vamos exibir agora uma plauśıvel aplicação prática (ainda não implementada nem

completamente especificada) de lógicas de inconsistência formal2. Em primeiro lugar

apresentaremos o problema e depois a solução proposta. O problema que queremos ajudar

a resolver está relacionado ao atendimento ao parto. De acordo com [93, 39], a cesariana é

um tipo de parto que só deve acontecer quando há uma indicação médica correta. Porém,

o que se observa na realidade é que algumas vezes ela acontece sem que haja indicação

médica, seja porque é mais cômodo para o médico obstetra (que não precisa esperar por

um longo trabalho de parto), seja por escolha da própria parturiente (que tem medo da

dor). O problema é que nestes casos, quando realizada sem justificativa médica, a cesárea

traz mais riscos do que benef́ıcios tanto para o bebê quanto para a parturiente.

Estamos preocupados aqui apenas com o primeiro caso, que ocorre quando o médico

obstetra indica uma cesariana sem que haja uma justificativa médica correta. Quando isto

acontece, o médico apresenta como justificativa para a realização da operação uma série de

motivos que na verdade não são suficientes para justificar a realização de uma cesariana.

E algumas parturientes, geralmente por desinformação, aceitam esta indicação incorreta.

2Outras aplicações de lógicas paraconsistentes podem ser encontradas em [16]

1.1. MOTIVAÇÃO 5

Nestes casos, dizemos que aconteceu uma ‘cesárea desnecessária’. Diversos casos reais de

situações como a descrita acima podem ser encontrados em listas de discussão sobre parto

na Internet [41, 45, 35].

Para evitar que isto aconteça é necessário que as mulheres informem-se melhor sobre

quais são as condições que justificam ou não a realização de uma cesárea. Os livros e

listas de discussão citados acima são excelentes fontes de consulta sobre este assunto.

Além destes, [44] traz uma abordagem baseada em evidências cient́ıficas sobre esta e

outras questões relacionadas à gravidez e ao nascimento.

Nossa proposta aqui é um sistema para auxiliar a parturiente a tomar uma decisão

informada sobre a finalização do próprio parto. Um sistema que a ajude compreender

melhor o diagnóstico médico e, se for o caso, a procurar uma segunda opinião.

Suponha a seguinte situação: a parturiente recebe, antes de entrar em trabalho de

parto, o diagnóstico (informal) do médico de que uma cesárea é necessária. Neste di-

agnóstico o médico elenca uma ou mais justificativas para a realização da cesariana. E

algumas vezes (conforme relatado em [41, 45, 35]) estas justificativas não são suficientes

para que uma cesárea seja realizada.

O sistema que estamos propondo atuaria da seguinte forma: a parturiente acessaria

o sistema, informaria ao sistema as justificativas oferecidas pelo médico e o sistema res-

ponderia se a decisão de fazer cesárea é (a) realmente necessária, (b) se é uma decisão

questionável ou (c) se a cesárea naquele caso é desnecessária.

A base de regras para o sistema seria algo como:

Bebê em posição pélvica não é indicação absoluta de cesárea.

Bebê pesando mais de 5kg e em posição pélvica é indicação absoluta de cesárea.

Bebê em posição transversa é indicação absoluta de cesárea.

Placenta prévia é indicação absoluta de cesárea.

Gravidez com mais de 40 semanas não é indicação absoluta de cesárea.

Circular de cordão não é indicação absoluta de cesárea.

...

Esta base de regras (que chamaremos de BR) pode ser representada por fórmulas

1.1. MOTIVAÇÃO 6

lógicas como as abaixo:

BEBE PELVICO → ¬ FAZER CESAREA

(BEBE GRANDE ∧ BEBE PELVICO) → FAZER CESAREA

Se usarmos BR e as justificativas fornecidas pela parturiente ao sistema como premis-

sas, podemos verificar a que conclusões é posśıvel chegar. Vejamos alguns exemplos:

BR, BEBE PELVICO ⊢ ¬ FAZER CESAREA

BR, PLACENTA PREVIA ⊢ FAZER CESAREA

BR, BEBE GRANDE, BEBE PELVICO ⊢ FAZER CESAREA ∧¬

FAZER CESAREA.

Em lógica clássica, a última dedução acima levaria à seguinte conclusão:

BR, BEBE GRANDE, BEBE PELVICO ⊢ X

para qualquer fórmula X, pois para quaisquer fórmulas C e X, (C ∧ ¬C) ⊢ X em lógica

clássica. Esta caracteŕıstica é chamada de explosividade (explosiveness) [18]. Isto é, a

partir de uma contradição ‘A e ¬A’ tudo é derivável. Em outras palavras, as teorias con-

traditórias são triviais. Em lógicas de inconsistência formal (e em lógicas paraconsistentes

em geral) esta caracteŕıstica é controlada, ou seja, nem toda teoria contraditória é trivial.

Portanto, quando se utiliza lógica clássica para a construção de uma base de co-

nhecimento [99] como esta, se ela contiver uma contradição, todas as fórmulas seguem

trivialmente desta base, o que torna extremamente dif́ıcil a construção da base. Porém,

se utilizarmos um sistema lógico que tolera contradições para descrever uma base de co-

nhecimento, esta pode produzir resultados úteis mesmo que contenha contradições. No

sistema em questão, naturalmente podem aparecer contradições entre as diferentes fon-

tes que podemos consultar para criar a base de regras do sistema. Portanto, lógicas de

inconsistência formal seriam bastante adequadas para a construção desta base.

Utilizando uma lógica de inconsistência formal, um base de regras como a descrita

acima não iria tornar-se inútil na ocorrência de uma contradição. Um sistema baseado

em BR pode indicar que encontrou uma contradição, e exibir o que o levou a encontrar

1.2. APRESENTAÇÃO E RESUMO DOS APÊNDICES 7

esta contradição. E não deixaria de chegar a outras conclusões a partir das justificativas.

Deste modo, este sistema orientaria a parturiente sobre como informar-se mais sobre a

sua situação, e ela (a parturiente) teria como discutir melhor esta situação ao procurar

uma segunda opinião.

Este é apenas um exemplo de um posśıvel uso de lógicas de inconsistência formal.

Pode-se pensar em outros. Não conhecemos, porém, nenhuma aplicação de lógicas de

inconsistência formal em uso na prática.

1.2 Apresentação e Resumo dos Apêndices

Esta tese contém este caṕıtulo escrito em português e vários apêndices escritos em

inglês. Abaixo descrevemos cada um dos apêndices, exceto o Apêndice A que é apenas

uma introdução em inglês para os outros apêndices.

1.2.1 Tablôs para Lógica Clássica e Lógicas Paraconsistentes

O Apêndice B apresenta as lógicas com as quais iremos trabalhar: lógica clássica

proposicional (em inglês, classical propositional logic — CPL), mbC e mCi. As duas

últimas são lógicas paraconsistentes, da famı́lia de lógicas de inconsistência formal. Em

seguida, exibimos alguns sistemas de tablôs relevantes para a nossa análise: o sistema de

tablôs anaĺıticos para CPL, o sistema de tablôs KE para CPL e os sistemas de tablôs

KE que desenvolvemos para mbC e mCi, entre outros. Por fim, discutimos brevemente

a questão da complexidade computacional de alguns sistemas de prova.

1.2.2 Projeto e Implementação do KEMS

No Apêndice C apresentamos o projeto e a implementação do KEMS. Primeiramente

discutimos provadores de teoremas baseados em tablôs e as idéias que estão por trás do

desenvolvimento do KEMS. Depois exibimos algumas extensões dos métodos KE discu-

tidos no Apêndice B, extensões estas cujo desenvolvimento foi motivado por questões de

implementação. Em seguida apresentamos uma breve descrição do sistema, mostrando

1.2. APRESENTAÇÃO E RESUMO DOS APÊNDICES 8

sua arquitetura e alguns diagramas de classe. Por fim, cada uma das estratégias imple-

mentadas é discutida.

1.2.3 Avaliação do KEMS

Provadores de teoremas são geralmente comparados usando-se benchmarks [112]. SA-

TLIB [102] and TPTP [111] são dois exemplos de śıtios na Internet que contêm problemas

para avaliar provadores de teoremas. Nós avaliamos o KEMS para CPL usando como

benchmarks algumas famı́lias de problemas dif́ıceis encontradas na literatura [12, 95].

Além disso, desenvolvemos algumas novas famı́lias especialmente para avaliar o nosso pro-

vador em suas estratégias para lógicas paraconsistentes, para as quais não encontramos

famı́lias de problemas na literatura. Apresentamos no Apêndice D todas estas famı́lias

além dos resultados da avaliação.

1.2.4 Conclusão

Desenvolvemos um provador de teoremas multi-estratégia onde podemos variar a es-

tratégia sem modificar o núcleo da implementação. KEMS permite descrever várias

estratégias de prova para o mesmo sistema lógico, além de permitir implementar diferen-

tes sistemas lógicos.

Avaliamos o KEMS com várias instâncias de famı́lias de problemas (Apêndice D) e ne-

nhuma configuração do KEMS obteve resultados incorretos. Algumas destas instâncias,

como as de PHP e ST (veja Apêndice D) são reconhecidamente bastante dif́ıceis de provar.

Para várias destas instâncias, mesmo algumas de tamanho bem pequeno, o procedimento

de busca de prova não terminou no tempo limite estabelecido para nenhum par estratégia-

ordenador utilizado nos testes. Algumas instâncias de outras famı́lias foram dif́ıceis apenas

para alguns dos pares estratégia-ordenador.

Executamos os testes com problemas para os três sistemas lógicos implementados.

Para lógica clássica proposicional, Memory Saver Strategy foi a melhor estratégia para a

maior parte das famı́lias. Porém, nenhum ordenador se destacou como tendo desempenho

consistentemente melhor do que os outros. E para as lógicas de inconsistência formal

1.3. CONTRIBUIÇÕES 9

(mbC e mCi) nenhuma estratégia ou ordenador se destacou. É importante observar

que os resultados obtidos pelo KEMS para as famı́lias de problemas para lógicas de

inconsistência formal são os primeiros resultados de avaliação para estas famı́lias.

Todos os resultados usados nesta tese estão dispońıveis em [92]. Estas e outras con-

clusões, além de uma revisão das contribuições desta tese e algumas sugestões de trabalhos

futuros são apresentados no Apêndice E.

1.2.5 Manual do Usuário Simplificado

No Apêndice F descrevemos o procedimento de instalação do KEMS (dispońıvel em

[92]), além de alguns cenários para sua utilização. Na apresentação dos cenários, as

funcionalidades básicas do sistema ficam claras.

1.3 Contribuições

Os seguintes resultados foram obtidos e estão sendo apresentados nesta tese:

• desenvolvemos sistemas KE para duas lógicas paraconsistentes: mbC e mCi. Pro-

vamos que os dois são corretos e completos. Além disso, demonstramos que o

primeiro é anaĺıtico (ver Apêndice B);

• implementamos um provador de teoremas multi-estratégia, chamado KEMS, de

código aberto e dispondo de uma interface gráfica que permite a visualização de

provas. O provador tem 10 estratégias implementadas (seis para CPL, duas para

mbC e duas para mCi) além de 13 ordenadores de fórmulas (ver Apêndice C);

• comparamos as estratégias para lógica clássica proposicional observando os resulta-

dos da avaliação do KEMS com várias famı́lias de problemas;

• desenvolvemos sete famı́lias de problemas para avaliar provadores de teoremas para-

consistentes (ver Seção D.1.2) e obtivemos os primeiros benchmarks para sete destas

famı́lias.

1.3. CONTRIBUIÇÕES 10

1.3.1 Publicações e Submissões

Resultados parciais obtidos durante a elaboração desta tese foram divulgados nas

seguintes publicações:

• Effective Prover for Minimal Inconsistency Logic [91] – artigo sobre a implementação

das estratégias do KEMS para mbC e sobre os problemas para avaliar provadores

para mbC e outras lógicas de inconsistência formal;

• Implementing a Multi-Strategy Theorem Prover [89] – artigo descrevendo uma versão

inicial do KEMS;

• Using Aspect-Oriented Programming in the Development of a Multi-Strategy The-

orem Prover [90] – artigo contendo considerações preliminares sobre o uso de pro-

gramação orientada a aspectos no desenvolvimento de provadores de teorema multi-

estratégia;

• duas versões do artigo A Multi-Strategy Tableau Prover [87, 88], artigo este que

mostra uma visão geral do KEMS.

E os seguintes artigos estão sendo preparados para em breve serem submetidos a

conferências e/ou revistas:

• A KE Tableau for a Logic of Formal Inconsistency – artigo sobre a implementação

das estratégias do KEMS para mCi e sobre os problemas desenvolvidos para avaliar

provadores para mCi;

• Implementing Backjumping in a Multi-Strategy Tableau Prover – artigo sobre a im-

plementação de uma estratégia com a técnica chamada ‘retrossalto’ (backjumping);

• Implementing Learning in a a Multi-Strategy Tableau Prover – artigo sobre a imple-

mentação de duas estratégias com a técnica chamada ‘aprendizado’ (learning);

• A KE-based Multi-Strategy Tableau Prover – um artigo mais longo contendo os

resultados desta tese.

Adolfo Gustavo Serra Seca Neto

A Multi-Strategy Tableau Prover

Submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in Computer Science to the

Institute of Mathematics and Statistics of the University of

São Paulo

Advisor: Prof. Dr. Marcelo Finger

São Paulo

2007

Apêndice A

Introduction

Automated deduction has been an active area of research since the 1950s [69]. Early

developments within the automated deduction field have had a profound effect on the

Artificial Intelligence (AI) domain, and, indeed, all of Computer Science [70]. Automated

Theorem Proving (ATP) deals with the development of computer programs that show

that some statement (the conjecture) is a logical consequence of a set of statements (the

axioms and hypotheses). ATP systems are used in a wide variety of domains [110], such as

mathematics, AI, software generation, software verification, security protocol verification,

and hardware verification.

Most automated theorem provers nowadays are based either on the resolution principle

[100] or on the Davis-Logemann-Loveland (DLL) procedure1 [32], but other methods can

also be used. Tableau methods are particularly interesting for theorem proving since

they exist in many varieties and for several logics [52]. Besides that, they do not require

conversion of input problems to clausal form. Tableaux can be used for developing proof

procedures in classical logic as well as several kinds of non-classical logics, such as Fuzzy

Logic [68], Residuated Logic [71], Modal and description logics [46], Substructural logics

[30], Many Valued Logics [13], and Logics of Formal Inconsistency [18].

The inference rules of automated deduction systems in general and tableau provers

in particular are typically non-deterministic in nature. They say what can be done, not

what must be done [52]. Thus, in order to obtain a mechanical procedure, inference rules

1Which is a restricted form of resolution also known as Davis-Putnam procedure.

13

need to be complemented by another component, usually called strategy or search plan,

which is responsible for the control of the inference rules [6]. That is, the inference rules

of a proof method (or of an automated deduction system based on this proof method)

define a nondeterministic algorithm for finding a proof; a strategy is a (deterministic)

algorithm for finding proofs in this method. For each proof method, many strategies can

be defined. The size of proofs as well as the time spent by the proof procedure can vary

greatly as different strategies are used.

Nondeterministic algorithms are used in several areas in computer science such as au-

tomated theorem proving [94], term-rewriting systems [114], protocol specification [59],

formal specification [81], optimization [10], pattern recognition [61], and decision making

[84]. An algorithm is a sequence of computational steps that takes a value (or set of val-

ues) as input and produces a value (or set of values) as output [26]. A nondeterministic

algorithm is an algorithm with one or more choice points where multiple different contin-

uations are possible, without any specification of which one will be taken. A particular

execution of such an algorithm picks a choice whenever such a point is reached. Thus,

different execution paths of the algorithm arise when it is applied to the same input, and

these paths, when they terminate, generally produce different output [115].

Nondeterministic algorithms compute the same class of functions as deterministic al-

gorithms, but the complexity may be lower. Every nondeterministic algorithm can be

turned into a deterministic algorithm, possibly with exponential slow down. That is,

a deterministic algorithm that traces all possible execution paths of a polynomial time

nondeterministic algorithm may have exponential time complexity. One of the most im-

portant open research problems in computer science nowadays is the “P=NP?” question

[20, 21]. Informally speaking, the answer to this question corresponds to knowing if de-

cision problems that can be solved by a polynomial-time nondeterministic algorithm can

also be solved by polynomial-time deterministic algorithm.

The satisfiability problem (SAT) for classical propositional logic was the first known

NP-complete problem. A decision problem is NP-complete if (1) it is in NP, and (2) any

problem in NP can be reduced in polynomial time to it. SAT can be described as “given

14

a propositional formula, decide whether or not it is satisfiable”. Many other decision

problems, such as graph coloring problems, planning problems, and scheduling problems

can be encoded into SAT.

One of many logical methods that can be used to solve the satisfiability problem is

the KE system. It is a tableau method originally developed for classical logic by Marco

Mondadori and Marcello D’Agostino [31], but that has been extended for other logical

systems. The KE system was presented as an improvement, in the computational sense,

over traditional Analytic Tableaux [106]. It is a refutation system, that though close to

the analytic tableau method, is not affected by the anomalies of cut-free systems [29].

We have designed and implemented KEMS, a multi-strategy theorem prover based

on the KE method for propositional logics. A multi-strategy theorem prover is a theorem

prover where we can vary the strategy without modifying the core of the implementation.

A multi-strategy theorem prover can be used for three purposes: educational, exploratory

and adaptive. For educational purposes, it can be used to illustrate how the choice of a

strategy can affect performance of the prover. As an exploratory tool, a multi-strategy

theorem prover can be used to test new strategies and compare them with others. And

we can also think of an adaptive multi-strategy theorem prover that changes the strategy

used according to features of the problem presented to it.

KEMS current version implements strategies for three logics: classical propositional

logic and two paraconsistent logics: mbC and mCi. Paraconsistent logics are tools for

reasoning under conditions which do not presuppose consistency [18]. We have chosen to

implement KEMS for mbC and mCi because these two logics are the simplest logics

from the family of Logics of Formal Inconsistency [18], a family of paraconsistent log-

ics that internalize the notions of consistency and inconsistency at the object-language

level. This family of logics has some nice proof-theoretic features and have been used in

some computer science applications such as the integration of inconsistent information in

multiple databases [34].

A.1. OVERVIEW 15

A.1 Overview

Appendix B discusses the logical systems implemented in KEMS, their tableau meth-

ods, and their complexity. It also provides the necessary background and the basic notions

which will be used in the rest of the document. Appendix C presents KEMS design and

implementation, discussing in more detail the implemented strategies. In Appendix D we

exhibit the problems used to evaluate KEMS as well as the results obtained in the evalu-

ation. Concluding remarks, a review of this thesis contributions and some suggestions for

future works are presented in Appendix E. Next, a brief KEMS user manual is shown in

Appendix F.

Apêndice B

Tableaux for Classical and

Paraconsistent Logics

The method of tableaux is a formal proof procedure existing in many varieties and for

several logics [52]. It is a refutation procedure — that is, in order to prove that a formula

X is valid we try to invalidate its negation. Besides that, tableau systems are expansion

systems, i.e., they are systems that contain a finite set of expansion rules [29]. A tableau

is a tree1 [26] with one or more branches2, whose nodes are lists of formulas. The proof

search procedure of each specific tableau method describes how to construct a tableau

proof (for a list of formulas that one wants to refute) using the expansion rules.

In this appendix we briefly present two tableau systems for classical propositional

logic: analytic tableaux [106] and the KE inference system [29]. After that, we show KE

systems we have developed for mbC and mCi, two paraconsistent logics, and prove some

properties of these systems. We finish by discussing the complexity of some of the logical

systems and proof methods presented.

1In fact, it is better to represent a tableau as a sequence of trees, as it is done in [17], to describe the
history of the derivation.

2Some of the terms used in this appendix will become clear only in Section C.2.1 when we will describe
the KE Proof Search Procedure.

B.1. LOGICAL SYSTEMS 17

B.1 Logical Systems

In this section we present some notions3 about logical systems which will be used in

the rest of this thesis. We assume familiarity with the syntax and semantics of classical

propositional logic, from now on denoted by CPL.

The language of every logic L is defined over a propositional signature Σ = {Σn}n∈ω

such that Σn is the set of connectives of arity n. As can be seen in [19], ‘ω’ is the smallest

infinite ordinal, which is the order type of the natural numbers; it can be identified with

the set of natural numbers. Therefore, each Σn is at most enumerable. The cardinality

of each Σn is less than or equal to ℵ0 (the cardinal of the set of natural numbers N [79]);

in fact, each Σn can be written as a family with indices in ω [74].

The set P = {pn : n ∈ ω} is the set of propositional variables (or atomic formulas)

from which we freely generate the algebra For of formulas using Σ. From here on, Σ

will denote the signature containing the binary connectives ‘∧’, ‘∨’, ‘→’, and the unary

connective ‘¬’. By For we will denote the set of formulas freely generated by P over Σ.

In the same spirit, Σ◦ (Σ•) will denote the signature obtained by the addition of a new

unary connective ‘◦’ (‘•’) to the signature Σ, and For◦ (For•) will denote the algebra of

formulas for the signature Σ◦ (Σ•). ‘◦’ and ‘•’ are called, respectively, the ‘consistency’

and ‘inconsistency’ connectives.

The other connectives’ names are the following: ‘∧’ is the ‘and’ connective, also called

‘conjunction’; ‘∨’ is the ‘or’ connective, also called ‘disjunction’; ‘→’ is the ‘implies’

connective, also called ‘implication’; and ‘¬’ is the ‘not’ connective, also called ‘negation’.

Given a formula A, the set of its subformulas, sf(A), is defined recursively in the

following way:

• If p is a propositional atom, then sf(p) = {p};

• If A is ⊙A1, where ⊙ is a unary connective, then sf(A) = {A} ∪ sf(A1);

• If A is A1 ⊘A2, where ⊘ is a binary connective, then sf(A) = {A}∪ sf(A1)∪ sf(A2).

3Most of the notions presented here were taken from [18].

B.1. LOGICAL SYSTEMS 18

Let ℘(X) be the powerset of a set X. As usual, given a set For of formulas, we say

that ⊢ defines a (Tarskian) consequence relation on For, where ⊢⊆ ℘(For) × For, if the

following clauses hold, for any formulas A and B, and subsets Γ and ∆ of For (formulas

and commas at the left-hand side of ⊢ denote, as usual, sets and unions of sets of formulas)

[18]:

A ∈ Γ implies Γ ⊢ A (reflexivity)

(∆ ⊢ A and ∆ ⊆ Γ) implies Γ ⊢ A (monotonicity)

(∆ ⊢ A and Γ, A ⊢ B implies Γ, ∆ ⊢ B (cut)

A (Tarskian) logic L is a structure of the form 〈For,⊢〉, containing a set of formulas

and a consequence relation defined on this set [18]. A logical system is a pair (⊢, S⊢),

where ⊢ is a consequence relation (a set of pairs) and S⊢ is an algorithmic system for

generating all the pairs in that relation [54]. For a given consequence relation, there can

be many algorithmic systems. For CPL, for instance, we have axiomatic systems (see

Section B.1.1), the Davis-Putnam procedure [33, 32], the Resolution method [100] and

many others.

B.1.1 Classical Propositional Logic

According to [17], the axiomatic method is the oldest known proof method. An ax-

iomatic system [78] is composed of a set of axioms and a set of inference rules. An axiom

is a starting point for deducing logically valid propositions, a formula which is taken for

granted as valid. And an inference rule is a relation between formulas. As stated in [78],

for each inference rule R, there is a unique positive integer j such that for every set of

j formulas and each formula C, one can effectively decide whether the given j formulas

and each C are related to C in R , and, if so, C is said to follow from or to be a direct

consequence of the given formulas by virtue of R. In an inference rule, the j formulas are

called premises and C is called the conclusion of the inference rule.

An axiom schema is a formula such that any formula obtained by one or more sub-

stitutions in it is taken to be an axiom [67]. Similarly, an inference rule schema is an

inference rule where one or more substitutions can be performed on the formulas in the

B.1. LOGICAL SYSTEMS 19

inference rule relation (see [17]).

The following definitions were taken from [78]: a proof in an axiomatic system AS is

a sequence F1, . . . , Fn of formulas such that, for each i, either Fi is an axiom of AS or

Fi is a direct consequence of some of the preceding formulas in the sequence by virtue

of one of the inference rules of AS. A theorem of AS is a formula F such that F is the

last formula of some proof in AS. A formula C is said to be a consequence in AS of a

set Γ of formulas if and only if there is a sequence F1, . . . , Fk of formulas such that C is

Fk and, for each i, either Fi is an axiom or Fi is in Γ, or Fi is a direct consequence by

some inference rule of some of the preceding formulas in the sequence. Such a sequence

is called a proof (or deduction) of C from Γ. The members of Γ are called the hypotheses

or premises of the proof.

Given an axiomatic system for a logic L, we write Γ ⊢L A to say that there is proof in L

of A from the premises in Γ [18]. Axiomatization is the process of defining an axiomatic

system for a given logical system. Classical propositional logic can be axiomatized in

several ways. The following is an axiomatization for CPL [18] that contains axiom and

inference rule schemas in the signature Σ:

Axiom schemas:

(Ax1) A → (B → A)

(Ax2) (A → B) → ((A → (B → C)) → (A → C))

(Ax3) A → (B → (A ∧ B))

(Ax4) (A ∧ B) → A

(Ax5) (A ∧ B) → B

(Ax6) A → (A ∨ B)

(Ax7) B → (A ∨ B)

(Ax8) (A → C) → ((B → C) → ((A ∨ B) → C))

(Ax9) A ∨ (A → B)

(Ax10) A ∨ ¬A

(exp) A → (¬A → B)

Inference rule schema:

(MP)
A, A → B

B

B.1. LOGICAL SYSTEMS 20

Let 2
def

= {0, 1} be the set of truth-values, where 1 denotes the ‘true’ value and 0 denotes

the ‘false’ value. By defining a valuation, we can inductively define the truth-value of a

formula from the truth-value of its propositional variables. Below we present a definition

of a valuation for CPL:

Definition B.1.1. [18] A CPL-valuation is any function v : For −→ 2 subject to the

following clauses:

(v1) v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1;

(v2) v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1;

(v3) v(A → B) = 1 iff v(A) = 0 or v(B) = 1;

(v4) v(¬A) = 1 iff v(A) = 0.

A formula X is said to be satisfiable if truth-values can be assigned to its propositional

variables in a way that makes the formula true, i.e. if there is at least one valuation such

that v(X) = 1. A formula is a tautology if all possible valuations make the formula true.

In CPL, for instance, A ∨ B is satisfiable, but it is not a tautology, while A ∨ ¬A is a

tautology.

Let Γ be a set of formulas in For, and A a formula in For. We say that A is a semantical

consequence of Γ (denoted by Γ |= A) if for any valuation v we have the following [17]:

if v(B) = 1 for all B in Γ, then v(A) = 1.

The CPL axiomatization we have presented above is sound and complete with re-

spect to the semantical consequence relation presented above. That is, for any Γ and A,

Γ ⊢CPL A implies Γ |=CPL A (soundness [17]). And Γ |=CPL A implies Γ ⊢CPL A (strong

completeness [17]).

B.1.2 Logics of Formal Inconsistency

Logics of Formal Inconsistency (LFIs) are a class of paraconsistent logics. Below we

reproduce a short definition of paraconsistent logics taken from [42]:

B.1. LOGICAL SYSTEMS 21

A theory T is said to be inconsistent (contradictory) if it has as theorems

a formula and its negation; otherwise, T is consistent (non-contradictory). A

theory T is said to be trivial if every formula of its language is a theorem;

otherwise T is non-trivial.

If a theory T has as its underlying logic classical logic, the deduction of a

contradiction leads to its trivialization.

A logic is paraconsistent if it can be used as the underlying logic to incon-

sistent but non-trivial theories, which we call paraconsistent theories.

Logics of Formal Inconsistency are paraconsistent logics that internalize the notions

of consistency and inconsistency at the object-language level (read more about the foun-

dations of LFIs in [14]). Below we present some definitions (taken from [18]) which are

necessary to give a formal characterization of LFIs.

The Principle of Explosion states that a logic L is explosive when ∀Γ∀A∀B(Γ, A,¬A ⊢

B). It is well known that CPL is explosive. To define a Gentle Principle of Explosion,

we first have to define Gently Explosive Theories. Consider a (possibly empty) set ©(A)

of formulas which depends only on the formula A. This is the set of formulas that, along

with A and ¬A, makes a given theory Γ explode. We will call a theory Γ gently explosive

(with respect to ©(A)) if there are formulas A and B such that the following hold:

1. ©(A), A 6⊢ B;

2. ©(A),¬A 6⊢ B; and

3. ∀A∀B(Γ,©(A), A,¬A ⊢ B).

The Gentle Principle of Explosion states that a logic L is said to be gently explosive

when there is a set ©(A) such that all of the theories of L are gently explosive (with

respect to ©(A)). Finally, a Logic of Formal Inconsistency is defined as any logic in

which the Principle of Explosion does not hold, but the Principle of Gentle Explosion

does.

B.1. LOGICAL SYSTEMS 22

B.1.3 mbC, A Fundamental LFI

The logic mbC is the weakest LFI based on classical logic [18]. Any LFI based on

classical logic can be axiomatized starting from positive classical logic (CPL+), whose

axiomatization is that of CPL without the (exp) axiom schema. mbC is the weakest

of such logics because all other LFIs based on classical logic presented in [18] prove

more theorems. mbC axiomatization is obtained from CPL+’s axiomatization, over the

signature Σ◦, by adding the following axiom schema:

(bc1) ◦A → (A → (¬A → B))

The following valuation for mbC was presented in [18]:

Definition B.1.2. An mbC-valuation is any function v : For◦ −→ 2 subject to (v1)-

(v3) from Definition B.1.1 and the following clauses:

(v4’) v(¬A) = 0 implies v(A) = 1;

(v5) v(◦A) = 1 implies v(A) = 0 or v(¬A) = 0.

The definition of satisfiability in Section B.1.1 also holds for mbC. For instance, A∨¬A

is a tautology in CPL, but not in mbC. The formula ¬(A∧¬A∧◦A) is an mbC-tautology.

The intended reading of ◦A is ‘A is consistent’. In mbC, ◦A is logically independent from

¬(A ∧ ¬A), that is, ◦ is a primitive unary connective, not an abbreviation depending on

conjunction and negation, as it happens in da Costa’s Cn hierarchy of paraconsistent

logics [27].

If ⊢mbC denotes the consequence relation of mbC, then we obtain, by (MP):

◦ A, A,¬A ⊢mbC B (B.1)

The Finite Gentle Principle of Explosion says that a logic L will be said to be finitely

gently explosive when there is a finite set ©(A) such that all of the theories of L are

finitely gently explosive (with respect to ©(A)). According to [18], Rule (B.1) can be

read as saying that ‘if A is consistent and contradictory, then it explodes’, and amounts

to a realization of the Finite Gentle Principle of Explosion.

B.1. LOGICAL SYSTEMS 23

B.1.4 The mCi Logic

The mCi logic is another LFI presented in [18]. The motivation for its development

was to enrich mbC so as to be able to define an inconsistency connective by the direct

use of the paraconsistent negation, that is, by setting •A
def

= ¬ ◦A. In mCi, •A and ¬•A

are logically indistinguishable from ¬ ◦ A and ◦A, respectively.

The logic mCi is obtained from mbC by the addition of the following axiom schemas:

(ci) ¬ ◦ A → (A ∧ ¬A);

(cc)n ◦¬n ◦ A (n ≥ 0).

To the above axiomatization is added the definition of an inconsistency connective • by

setting •A
def

= ¬ ◦ A.

It is easy to verify (and it was shown in [18]) that A ∧ ¬A ⊢mbC ¬ ◦ A. The converse

property does not hold in mbC and it was the first additional axiom (ci) added to obtain

mCi. So ¬◦A and (A∧¬A) are equivalent in mCi. To make formulas of the form ¬◦A

‘behave classically’, and to obtain a logic that is controllably explosive in contact with

formulas of the form ¬n ◦ A, where ¬0A
def

= A and ¬n+1A
def

= ¬¬nA, axioms (cc)n were

added to obtain mCi. With these axioms added, any formula of the form ¬n ◦A ‘behaves

classically’ and {¬n ◦A,¬n+1 ◦A} in an explosive theory in mCi. Much more about mCi

can be found in [18].

The following valuation for mCi was presented in [18]:

Definition B.1.3. An mCi-valuation is an mbC-valuation v : For◦ −→ 2 (see Defini-

tion B.1.2) satisfying, additionally, the following clauses:

(v6) v(¬ ◦ A) = 1 implies v(A) = 1 and v(¬A) = 1;

(v7.n) v(◦¬n ◦ A) = 1 for n ≥ 0.

The definition of satisfiability in Section B.1.1 also holds for mCi. In mCi, (•A) →

(A ∧ ¬A), which is by definition equal to (¬ ◦ A) → (A ∧ ¬A), is a tautology. In mbC,

the second formula is not a tautology.

B.2. TABLEAU SYSTEMS 24

B.2 Tableau Systems

In this section we will present some tableau systems for the logical systems presented

in Section B.1. We will discuss their origin and motivation, present their rules, as well as

prove some properties. We will not discuss here some aspects of the tableau systems which

are relevant only for implementation. These aspects will be discussed in Appendix C.

B.2.1 Analytic Tableaux for CPL

The analytic tableau (AT) method, also known as semantic tableaux, is surely the most

studied tableau method. It was presented in [106] as “an extremely elegant and efficient

proof procedure for propositional logic”. According to [52], this method is a variant of

Beth’s “semantic tableaux” [5], and of Hintikka methods [60].

The AT for CPL is a sound and complete proof system for CPL [106]. Its expansion

rules (for the connectives in Σ) are presented in Figure B.1. This is the signed formula

version of the AT for CPL (an unsigned version is also presented in [106]). A signed

formula is an expression S X where S is called the sign and X is a propositional formula.

The symbols T and F, respectively representing the ‘true’ and ‘false’ truth-values, can be

used as signs. The conjugate of a signed formula TA (FA) is FA (TA). Following [29],

we shall call subformulas of a signed formula SA (where S ∈ {T ,F }) all the formulas of

the form TB or FB where B is a subformula of A.

B.2.2 A KE System for CPL

The KE inference system is a more recent tableau method [31]. It was developed by

Marco Mondadori and discussed in detail in several works authored or co-authored by

Marcello D’Agostino [28, 8, 29]. The KE system was presented as an improvement, in

the computational efficiency sense, over Analytic Tableaux. It is a refutation system that,

though close to the analytic tableau method, is not affected by the anomalies of cut-free

systems [29].

The KE system for CPL is a refutation system that is sound and complete. The

B.2. TABLEAU SYSTEMS 25

TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧ B
FA | FB

(F∧)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
TA | TB

(T∨)
FA ∨ B
FA
FB

(F∨)

T ¬A
FA

(T¬)
F ¬A
TA

(F¬)

Figure B.1: CPL AT rules.

first motivation for its development was to obtain a tableau method inline with classical

principles. In [29], D’Agostino argues that analytic tableau rules for CPL are not really

classical since one of the two principles that form the basis of the classical notion of

truth, the Principle of Bivalence, is not clearly present in that tableau system. The

Principle of Bivalence (also known as the Principle of the Excluded Middle) states that

every proposition is either true or false, and there are no other possibilities. The other

principle, the Principle of Non-contradiction, which asserts that no proposition can be true

and false at the same time, is embodied in the definition of closed branches in analytic

tableaus together with the rules for negation.

The second motivation for KE development was to design a computationally more effi-

cient system. Analytic tableau refutations are intrinsically redundant because, depending

on the problem being tackled, it is necessary to prove again the same subproblem one

or more times [29]. This difficulty is not related to any intrinsic difficulty of the prob-

lem considered but only to the redundant behavior of analytic tableau rules. Analytic

tableaux correspond to cut-free sequent calculus [56] while KE corresponds to sequent

calculus with Cut rule. Several families of problems have only exponential size proofs in

cut-free sequent calculus, but can have polynomial size proofs in sequent calculus with

Cut. Therefore, the KE system solves this limitation of analytic tableaux by presenting

B.2. TABLEAU SYSTEMS 26

a set of rules that does not have AT rules’ redundant behavior.

So what exactly is the main difference between the KE system and AT? A KE system

is a tableau system with only one branching rule, the Principle of Bivalence (PB) rule.

And although this rule resembles Gentzen’s sequent calculus [56] Cut rule, which is not

essential for the sequent calculus proof system, (PB) is not eliminable from KE.

The KE expansion rules for CPL are presented in Figure B.2. Notice that some rules

have two premises, some have one premise and the (PB) rule is a zero premise rule. We

say that the rules with two premises have a main premise (the more complex) and an

auxiliary premise. For rules with only one premise, this premise is also referred as main

premise. A linear rule is a rule which does not force branching. All KE rules are linear,

except the (PB) rule.

Some rules in Figure B.2 can be derived from others. For instance, if we have (T∨1)

and (PB) we can derive (T∨2). It is clear that the opposite is true: if we have (T∨2) and

(PB) we can derive (T∨1). This relationship also happens between (F∧1) and (F∧2), and

between (T→1) and (T→2).

TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧ B
TA
FB

(F∧1)
FA ∧ B
TB
FA

(F∧2)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
FA
TB

(T∨1)
TA ∨ B
FB
TA

(T∨2)
FA ∨ B
FA
FB

(F∨)

T ¬A
FA

(T¬)
F ¬A
TA

(F¬)

TA | FA
(PB)

Figure B.2: CPL KE rules.

B.2. TABLEAU SYSTEMS 27

B.2.3 A KE System for mbC

In [11], Caleiro et alli exhibit a way of effectively constructing the two-valued semantics

of any logic that has a truth-functional finite-valued semantics and a sufficiently expressive

language. From there, one can provide those logics with adequate canonical systems of

sequents or tableaux. The method permits one to obtain a complete tableau system for

any propositional logic which has a complete semantics given through the so-called ‘dyadic

valuations’. In [18], sound and complete tableau systems for mbC and mCi obtained by

using this general method are presented4. Let us call these systems C3M tableau systems.

The C3M tableau system rules for mbC are shown in Figure B.3. It is easy to

notice that the rules for the binary connectives in Σ are the same as that from AT (see

Figure B.1). It also has AT (F¬) rule but does not have AT (T¬) rule. To compensate

for this, it has two additional rules: a branching rule similar to KE (PB) rule, and a (T◦)

rule. In total, this tableau system has 5 branching rules.

TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧ B
FA | FB

(F∧)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
TA | TB

(T∨)
FA ∨ B
FA
FB

(F∨)

T ◦ A
FA | F ¬A

(T◦)
F ¬A
TA

(F¬)

TA | FA
(PB)

Figure B.3: mbC C3M tableau rules.

As explained in [29], branching rules lead to inefficiency. To obtain a more efficient

proof system, we used the C3M tableau system for mbC as a basis to devise an original

4Some tableau systems for logics of formal inconsistency had already been presented in [15].

B.2. TABLEAU SYSTEMS 28

mbC KE system. The rules are presented in Figure B.4. The only difference between

this system and the KE system for CPL is the replacement of the CPL KE (T¬) rule

by the KE (T¬ ′) rule. Notice that the KE (T¬ ′) rule is a LFI version of CPL KE

(T¬). It states clearly that besides T ¬A, we need to have T ◦ A to obtain FA.

TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧ B
TA
FB

(F∧1)
FA ∧ B
TB
FA

(F∧2)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
FA
TB

(T∨1)
TA ∨ B
FB
TA

(T∨2)
FA ∨ B
FA
FB

(F∨)

T ¬A
T ◦ A
FA

(T¬ ′)
F ¬A
TA

(F¬)

TA | FA
(PB)

Figure B.4: mbC KE rules.

Example B.2.1. In Figure B.5 we show a proof of ◦A, ◦C, A → ◦B, B → C, (¬B) →

(D → ¬A) ⊢ ¬(A∧¬C ∧D). Notice that to obtain 17 from 16 we used the optional rule

Ffor (a derived rule presented in Section C.2.4).

Analyticity, Correctness and Completeness Proof

A tableau proof enjoys the subformula property if every signed formula in the proof

tree is a subformula of some formula in the list of signed formulas to be proved. Let

us call analytic the applications of (PB) which preserve the subformula property. And

the analytic restriction of a tableau system is the system obtained by restricting (PB) to

analytic applications.

B.2. TABLEAU SYSTEMS 29

1 T ◦ A
2 T ◦ C
3 T A → ◦B
4 T B → C
5 T (¬B) → (D → ¬A)
6 F ¬(A ∧ ¬C ∧ D)
7 T A ∧ ¬C ∧ D
8 T A
9 T ¬C ∧ D
10 T ¬C
11 T D
12 T ◦ B

13 TB
14 TC
15 FC

×

16 FB
17 T ¬B
18 TD → ¬A
19 T ¬A
20 FA

×

Figure B.5: An mbC KE proof.

Given a rule R of an expansion system S, we say that an application of R to a branch

θ is analytic when it has the subformula property, i.e. if all the new signed formulas

appended to the end of θ are subformulas of signed formulas occurring in θ. According to

[29], a rule R is analytic if every application of it is analytic. When the analytic restriction

of a tableau system is sound and complete we say that this system is analytic (and that

we have proved the system’s analyticity).

Our intention here is to prove that the mbC KE system is analytic, sound and

complete. As we have seen in Section B.2.3, the mbC KE system originated from the

CPL KE system and the C3M tableau system. It is easy to notice that all CPL KE

rules, except (PB), are analytic. And although (PB) is not analytic, the KE system for

CPL was proven to be analytic, sound and complete [29]. On the other hand, the C3M

tableau system for mbC has two non-analytic rules: (PB) and (T◦). It is sound and

complete [18, 11] but there is no proof either that it is analytic or not analytic.

It is easy to show a procedure that transforms any proof in the C3M tableau system

for mbC in an mbC KE proof, thus proving that mbC KE system is also sound and

complete. We will not do this here. Instead, we will prove directly that the mbC KE

B.2. TABLEAU SYSTEMS 30

system is sound, complete and also analytic.

Proving that analytic restriction of mbC KE is sound and complete is a little bit more

difficult than proving that CPL KE is analytic, because mbC KE has a two-premise rule,

the (T¬ ′) rule, where neither premise is a subformula of the other premise, a condition

satisfied by all CPL KE two-premise rules.

Because of this feature of the (T¬ ′) rule, it could be necessary to have non-analytic

applications of the (PB) rule. But that is not the case: when performing an mbC KE

proof we can restrict ourselves to analytic applications of (PB), applications which do

not violate the subformula property, without affecting completeness. In this way, we

demonstrate that even the analytic restriction of mbC KE is sound and complete.

The proof will be as follows. First we will define the notion of downward saturatedness

for mbC. Then we will prove that every downward saturated set is satisfiable. The mbC

KE proof search procedure for a set of signed formulas S either provides one or more

downward saturated sets that give a valuation satisfying S or finishes with no downward

saturated set.

Therefore, if an mbC KE tableau for a set of formulas S closes, then there is no

downward saturated set that includes it, so S is unsatisfiable. However, if the tableau is

open and completed, then any of its open branches can be represented as a downward

saturated set and be used to provide a valuation that satisfies S. By construction, down-

ward saturated sets for open branches are analytic, i.e. include only subformulas of S. We

then conclude that the mbC KE system is analytic. As a corollary, it is also sound and

complete.

Note: some concepts used in this proof are defined in Section C.2.1.

Definition B.2.1. A set of mbC signed formulas DS is downward saturated if

1. whenever a signed formula is in DS, its conjugate5 is not in DS;

2. when all premises of any mbC KE rule (except (PB)) are in DS, its conclusions

are also in DS;

5For any formula A The conjugate of T A is F A, and vice-versa.

B.2. TABLEAU SYSTEMS 31

3. when the major premise of a two-premise mbC KE rule is in DS, either its auxiliary

premise or its conjugate is in DS. For mbC KE, this item is valid for every rule

except (T¬ ′). In this case, if T ¬X (which we define as the major premise in (T¬ ′))

is in DS, either T ◦ X or F ◦ X can be in DS, but only if ◦X is a subformula of

some other formula in DS. If ◦X is not a subformula of some other formula in DS,

neither T ◦ X nor F ◦ X are in DS.

We can extend valuations to signed formulas in an obvious way: v(TA) = v(A) and

v(FA) = 1−v(A). A set of signed formulas L is satisfiable if it is not empty and there is a

valuation such that for every formula SX ∈ L, v(SX) = 1. Otherwise, it is unsatisfiable.

Lemma B.2.2. (Hintikka’s Lemma for mbC) Every mbC downward saturated set

is satisfiable.

Proof. For any downward saturated set DS, we can easily construct an mbC valuation v

such that for every signed formula SX in the set, v(SX) = 1. How can we guarantee this

is in fact an mbC valuation? First, we know that there is no pair TX and FX in DS.

Second, all premised mbC KE rules preserve mbC valuations. That is, if v(SXi) = 1

for every premise SXi, then v(SCj) = 1 for all conclusions Cj . And if v(SX1) = 1

and v(SX2) = 0, where X1 and X2 are, respectively, major and minor premises of an

mbC KE rule, then v(S ′X2) = 1, where S ′X2 is the conjugate of SX2. For instance,

suppose TA ∧ B ∈ DS, then v(TA ∧ B) = 1. In accordance with the definition of

downward saturated sets, {TA,TB} ⊆ DS. And by the definition of mbC valuation,

v(TA ∧ B) = 1 implies v(TA) = v(TB) = 1.

Theorem B.2.3. Let DS’ be a set of signed formulas. DS’ is satisfiable if and only

if there exists a downward saturated set DS” such that DS’ ⊆ DS”.

Proof. (⇐) First, let us prove that if there exists a downward saturated set DS” such that

DS’ ⊆ DS”, then DS’ is satisfiable. This is obvious because from DS” we can obtain a

valuation that satisfies all formulas in DS”, and DS’ ⊆ DS”.

(⇒) Now, let us prove that if DS’ is satisfiable, there exists a downward saturated set

B.2. TABLEAU SYSTEMS 32

DS” such that DS’ ⊆ DS”.

So, suppose that DS’ is satisfiable and that there is no downward saturated set DS”

such that DS” ⊆ DS’. Using items (2) and (3) of (B.2.1), we can obtain a family of sets of

signed formulas DS’i (i ≥ 1) that include DS’. If none of them is downward saturated, it

is because for all i, {TX,FX} ∈DS’i for some X. But all rules are valuation-preserving,

so this can only happen if DS is unsatisfiable, which is a contradiction.

Corollary B.2.4. DS’ is an unsatisfiable set of formulas if and only if there is no

downward saturated set DS” such that DS’ ⊆ DS”.

Theorem B.2.5. The mbC KE system is analytic.

Proof. The mbC KE proof search procedure for a set of signed formulas S either provides

one or more downward saturated sets that give a valuation satisfying S or finishes with no

downward saturated set. If an mbC KE tableau for a set of formulas S closes, then there is

no downward saturated set that includes it, so S is unsatisfiable. If the tableau is open and

completed, then any of its open branches can be represented as a downward saturated set

and be used to provide a valuation that satisfies S. By construction, downward saturated

sets for open branches are analytic, i.e. include only subformulas of S. Therefore, the

mbC KE system is analytic.

Corollary B.2.6. The mbC KE system is sound and complete.

Proof. The mbC KE system is a refutation system, as most tableau systems. The mbC

KE system is sound because if an mbC KE tableau for a set of formulas S closes, then S

is unsatisfiable. And if the tableau is open and completed, S is satisfiable. This has been

shown in the proof of the theorem above. It is complete because if S is satisfiable, no

mbC KE tableau for a set of formulas S closes. And if S is unsatisfiable, all completed

mbC KE tableau for S close.

B.2. TABLEAU SYSTEMS 33

B.2.4 A KE System for mCi

A tableau system for mCi, the C3M system for mCi, was presented in [18] as an

extension of the C3M mbC system. Its rules are shown in Figure B.6. This system has

a new rule called (T¬◦) that corresponds to the axiom (cc) (see mCi axiomatization in

Section B.1.4) and rules (T ◦ ¬ n◦), for n ≥ 0, that correspond to axioms (cc)n.

TA → B
FA | TB

(T →)
FA → B
TA
FB

(F→)

FA ∧ B
FA | FB

(F∧)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
TA | TB

(T∨)
FA ∨ B
FA
FB

(F∨)

T ◦ A
FA | F ¬A

(T◦)
F ¬A
TA

(F¬)

T ¬ (◦A)
TA
T ¬A

(T¬◦)
T ◦ (¬ n(◦A)) for (n≥0)

(T ◦ ¬ n◦)

TA | FA
(PB)

Figure B.6: mCi C3M tableau rules.

As we have done for mbC, we use the C3M tableau system for mCi as a basis to

devise an original mCi KE system. mCi KE rules are presented in Figure B.7. We can

see this system as an extension of the mbC KE system, where we include the (T¬◦) rule

and the new (F ◦ ¬ n◦) rules, for n ≥ 0. These (F ◦ ¬ n◦) rules were motivated by the

same axioms that motivated (T ◦ ¬ n◦) rules, with the advantage of being analytic. The

(T¬◦) rule, however, is not analytic. So neither C3M for mCi nor mCi-KE are analytic

proof systems.

Example B.2.2. In Figure B.8 we show an example of an mCi KE non analytic proof:

B.2. TABLEAU SYSTEMS 34

TA → B
TA
TB

(T→1)
TA → B
FB
FA

(T→2)
FA → B
TA
FB

(F→)

FA ∧ B
TA
FB

(F∧1)
FA ∧ B
TB
FA

(F∧2)
TA ∧ B
TA
TB

(T∧)

TA ∨ B
FA
TB

(T∨1)
TA ∨ B
FB
TA

(T∨2)
FA ∨ B
FA
FB

(F∨)

T ¬A
T ◦ A
FA

(T¬ ′)
F ¬A
TA

(F¬)

T ¬ (◦A)
TA
T ¬A

(T¬◦)
F ◦ (¬ n(◦A))

× for (n≥0)
(F ◦ ¬ n◦)

TA | FA
(PB)

Figure B.7: mCi KE rules.

B.2. TABLEAU SYSTEMS 35

a proof of ◦A ⊢ ¬¬ ◦A. The formula number 5 is not a subformula of any formula in the

sequent being proved.

Example B.2.3. In Figure B.9 we show another example of a non analytic proof of

¬¬ ◦ A ⊢ ◦A. In fact, it is not possible to prove this sequent in mCi KE without a non

analytic application of the (PB) rule.

1 T ◦ A
2 F ¬¬ ◦ A
3 T ¬ ◦ A
4 T A
5 T ¬A
6 F A

×

Figure B.8: An mCi KE proof of ◦A ⊢ ¬¬ ◦ A.

T ¬¬ ◦ A
F ◦ A

T ◦ ¬ ◦ A
F ¬ ◦ A
T ◦ A
×

F ◦ ¬ ◦ A
×

Figure B.9: An mCi KE proof of ¬¬ ◦ A ⊢ ◦A.

Correctness and Completeness Proof

Our intention here is to prove that the mCi KE system is sound and complete. It

seems clear to us that the mCi KE system is not analytic, because of its (T¬◦) rule,

which is not analytic. We will follow the same schema used in Section B.2.3.

Definition B.2.7. A set of mCi signed formulas DS is downward saturated:

1. whenever a signed formula is in DS, its conjugate is not in DS;

2. when all premises of any mCi KE rule (except (PB) and (F ◦ ¬ n◦), for n ≥ 0) are

in DS, its conclusions are also in DS;

B.2. TABLEAU SYSTEMS 36

3. when the major premise of a two-premise mCi KE rule is in DS, either its auxiliary

premise or its conjugate is in DS. And the same condition for the (T¬ ′) rule that

holds in Definition B.2.1 also holds here: if T ¬X is in DS, either T ◦ X or F ◦ X

can be in DS, but only if ◦X is a subformula of some other formula in DS. If ◦X

is not a subformula of some other formula in DS, neither T ◦ X nor F ◦ X are in

DS;

4. if a signed formula S X is in DS, then for any sign S, for any formula X, for all

subformulas Y of X and for all n ≥ 0, the signed formula T ◦ ¬n ◦ Y is in DS.

The Hintikka’s Lemma also holds for mCi downward saturated sets:

Lemma B.2.8. (Hintikka’s Lemma for mCi) Every mCi downward saturated set is

satisfiable.

Proof. For any downward saturated set DS, we can easily construct an mCi valuation

v such that for every signed formula SX in the set, v(SX) = 1. How can we guarantee

this is in fact a valuation? First, we know that there is no pair TX and FX in DS.

Second, all premised mCi KE rules (except (F ◦ ¬ n◦) rules) preserve valuations. Note

that (F ◦¬ n◦) rules are taken into account by the last clause in Definition B.2.7. That is,

if we have a set of signed formulas that contains F ◦ ¬n ◦ X, every downward saturated

set that contains this set should also contain T ◦ ¬n ◦ X. Therefore it is not downward

saturated. To be downward saturated a set DS must contain, for all its subformulas6 X,

T ◦¬n ◦X (and must not contain any F ◦¬n ◦X). As we can see in clause (v7.n) of the

mCi valuation definition (see Definition B.1.3), v(T ◦ ¬n ◦ X) = 1 for all X. Therefore,

DS is satisifable.

Theorem B.2.3 and Corollary B.2.4 also hold for mCi downward saturated sets.

Theorem B.2.9. The mCi KE system is sound and complete.

Proof. The mCi KE proof search procedure for a set of signed formulas S either provides

6To be precise, by the subformulas of a set of signed formulas {SiFi}, where Si is a sign and Fi is an
unsigned formula, we mean the set of subformulas of {Fi}.

B.3. COMPLEXITY OF LOGICAL SYSTEMS 37

one or more downward saturated sets that give a valuation satisfying S or finishes with

no downward saturated set. The mCi KE system is a refutation system. The mCi KE

system is sound because if an mCi KE tableau for a set of formulas S closes, then there

is no downward saturated set that includes it, so S is unsatisfiable. If the tableau is open

and completed, then any of its open branches can be represented as a downward saturated

set and be used to provide a valuation that satisfies S (in other words, S is satisfiable).

The mCi KE system is complete because if S is satisfiable, no mCi KE tableau for

a set of formulas S closes. And if S is unsatisfiable, all completed mCi KE tableau for

S close.

B.3 Complexity of Logical Systems

In this section, we are going to discuss some issues related to the complexity of logical

systems. We begin with the complexity of decision problems.

B.3.1 Complexity of Decision Problems

The CPL satisfiability problem (known as ‘SAT’) is a decision problem studied in

complexity theory. A decision problem is a problem that can be answered by ‘yes’ or

‘no’. SAT can be described as “given a propositional formula, decide whether or not it

is satisfiable”. Many other decision problems, such as graph coloring problems, planning

problems, and scheduling problems can be encoded into SAT.

SAT was the first known NP-complete problem. The class of NP-complete problems

is a subclass of NP. While P is the class of decision problems that can be solved in

polynomial time by a deterministic algorithm, NP is the class of decision problems that

can be solved in polynomial time by a nondeterministic algorithm. Therefore P ⊆ NP.

The problems in NP are such that positive solutions can be verified in polynomial time.

NP-complete problems are the most difficult problems in NP, the ones most likely not to

be in P. If we find a polynomial time algorithm for any NP-complete problem, we can

solve all problems in NP in polynomial time, because there is a polynomial time reduction

B.3. COMPLEXITY OF LOGICAL SYSTEMS 38

from any NP problem into any NP-complete problem.

The complement of a decision problem is the decision problem resulting from reversing

the ‘yes’ and ‘no’ answers. We can generalize this to the complement of a complexity class,

called the complement class, which is the set of complements of every problem in the class.

co-NP is the complement of the complexity class NP. It is the class of problems for which

a ‘no’ answer can be verified in polynomial time. And co-NP-complete is the complement

of the class of NP-complete problems.

mCi is co-NP-complete

The CPL decision problem (“given a propositional formula, decide whether or not it

is a tautology”) is co-NP-complete, because a formula in CPL is a tautology if and only

if its negation is unsatisfiable. In [18], it was shown that the decision problem for mbC

is also co-NP-complete.

As the mbC decision problem is co-NP-complete and mCi extends mbC, the mCi

decision problem is co-NP-hard. To prove that the mCi decision problem is also co-

NP-complete (as suggested in [18]) we need a NP algorithm for the complement of mCi

decision: the falsification of a formula. That is, we must show that given a formula A and

a mCi-valuation v it is possible to verify if v(A) = 0 in polynomial time.

Let A be an mCi formula. We show below how to construct an mCi-valuation v for

A. This is here only to show that it is more difficult to build an mCi-valuation than a

CPL-valuation.

Let SSF(A) be the set of all strict subformulas of A. A strict subformula of A is any

subformula of A except A itself. Then we construct a new set ESSF(A), such that for all

X ∈ SSF(A), X, ◦X and ¬X belong to ESSF(A).

If n is the size of A, then the size of ESSF(A) is at most 3(n−1). To build a valuation

v for A we must, for any X ∈ ESSF(A), set v(X) either to 0 or to 1, obbeying the

mCi-valuation clauses presented in Definition B.1.3.

Up to now, we have only v(X) for all X ∈ ESSF(A) (not necessarily a value for v(A)).

The following algorithm allows us to find a value for v(A):

B.3. COMPLEXITY OF LOGICAL SYSTEMS 39

1. if, for some X, A is ◦X, then:

(a) if v(¬X) = 0, then v(X) = 1 and v(A) can be set either to 0 or to 1;

(b) if v(X) = 1 and v(¬X) = 1, then v(A) = 0;

(c) if v(X) = 0 and v(¬X) = 1, then v(A) can be set either to 0 or to 1;

2. if, for some X, A is ¬X, then:

(a) if v(X) = 1 then:

i. if v(◦X) = 1 then v(A) = 0;

ii. if v(◦X) = 0 then v(A) can be set either to 0 or to 1;

(b) if v(X) = 0 then v(A) = 1;

3. if, for some X, Y , A is X ∧ Y , then:

(a) if v(X) = 1 and v(Y) = 1, then v(A) = 1;

(b) otherwise, v(A) = 0;

4. if, for some X, Y , A is X ∨ Y , then:

(a) if v(X) = 0 and v(Y) = 0, then v(A) = 0;

(b) otherwise, v(A) = 1;

5. if, for some X, Y , A is X → Y , then:

(a) if v(X) = 0 and v(Y) = 1, then v(A) = 0;

(b) otherwise, v(A) = 1.

Therefore, it is more difficult to build an mCi-valuation than a CPL-valuation7. But,

given a formula A, if we have a valuation for all formulas in ESSF(A), it is easy to verify

that v(A) can be 0. The algorithm above is clearly polynomial in time (and also in

space). As the NP class contains the problems that can be verified in polynomial time

[26], the complement of the decision problem (falsification) for mCi is in NP. Therefore,

the decision problem for mCi is co-NP-complete.

7A CPL-valuation can be built by setting values only to atomic formulas (see Definition B.1.1).

B.3. COMPLEXITY OF LOGICAL SYSTEMS 40

B.3.2 Complexity of Theorem-Proving Procedures

Besides the complexity of decision problems for logics, the complexity of theorem-

proving procedures [23] and the length of proofs in CPL [22] has also been extensively

studied. Given a possible tautology, we are faced with the problem of finding a proof, if

one exists [7]. Then we encounter two additional problems: the first is concerned with

the complexity of the proof search while the second with the complexity of the smallest

possible proof, which might be exponential in the size of the tautology.

The complexity of proof search algorithms is obviously related to the complexity of the

smallest possible proof. For instance, if the smallest proof is exponential in size, the proof

search has to be exponential. But sometimes even when the proof system has polynomial

size proofs for some classes of problems, current algorithms can be exponential, because

it is harder to find the smallest proofs in stronger proof systems.

To study the length of CPL proofs, some families of problems that are known to be

difficult are used. The pigeon hole principle (PHP) family of problems is probably the

most studied of such families. Some works have shown that there are polynomial size

proofs of this problem in some propositional proof systems [9, 24].

The resolution method [100] is the most widely studied propositional proof system.

It can also be used for first-order classical logic and is implemented by many theorem

provers, such as OTTER [77] and Vampire [98]. Resolution has exponential lower bounds

for PHP and other classes of formulas [58, 113]. That is, all resolution proofs of PHP are

exponential in length.

Another famous and successful decision procedure for CPL is the Davis-Logemann-

Loveland (DLL) procedure [32]. Its modern variants, such as Chaff [83], are used in the

most efficient SAT provers. However, these provers perform poorly on many important

families of problems, including PHP. The most competitive SAT solvers show exponential

scaling on these simple structured problems. This happens because DLL is based on tree

resolution, a variant of resolution. Because of that, the proof search procedure of DLL

also has exponential complexity.

Some extensions of DLL (see [40] for a good coverage) make it stronger than tree

B.3. COMPLEXITY OF LOGICAL SYSTEMS 41

resolution, but not stronger than resolution. Therefore, one solution to achieve shorter

PHP proofs is to use stronger proof systems. However, as we said before, sometimes

even when the proof system has polynomial size proofs for some classes of problems,

current algorithms can be exponential, because it is harder to find proofs in stronger proof

systems. In [40], a DLL style satisfiability solver that uses pseudo-Boolean representation

and automates cutting plane [25], an inference system properly stronger than resolution,

is presented. This pseudo-Boolean solver allowed exponential speedups over traditional

methods on PHP problems.

Complexity of Tableau Methods

The complexity of Analytic Tableaux (AT) has been much studied [22, 2, 76]. For in-

stance, Cook and Reckhow established in [22] that the family Σn of unsatisfiable formulas

gives a lower bound of 2Ω(2n) on the proof size with AT. Later, Massacci [76] exhibited

an AT proof for Σn for whose size he proved an upper bound of O(2n2

), which, although

not polynomial in the size O(2n) of the input, is exponentially shorter than the claimed

lower bound.

The KE system was proven to be more efficient than Smullyan’s tableaux in [29].

There, a simple refutation procedure for KE was defined and called canonical procedure.

And the canonical restriction of KE was defined as KE used with this canonical proof

search procedure. The canonical restriction of KE can polinomially simulate the ana-

lytic tableau method, but the tableau method cannot polinomially simulate the canonical

restriction of KE. In other words, for each analytic tableau proof of size n, there is a KE-

Tableau proof with size polynomial in n. But there is at least one proof in KE-Tableau

of size n whose corresponding proof in Analytic Tableaux has size superpolynomial in n.

Besides that, the KE system polinomially simulates the truth-table procedure, although

the analytic tableau method does not.

The KE system is more efficient than AT because it is based on Sequent Calculus

with Cut, while the analytic tableau method is based on cut-free Sequent Calculus. It is

well known that several families of problems have only exponential size proofs in cut-free

B.3. COMPLEXITY OF LOGICAL SYSTEMS 42

Sequent Calculus, but can have polynomial size proofs in Sequent Calculus with Cut. The

set of rules for the KE system has only one rule of the branching type, the (PB) rule.

Even if we add this rule to the analytic tableau method, it is not difficult to construct

with this extended system short refutations of the ‘hard examples’ for Smullyan’s tableaux

[29]. However, in this system the (PB) rule is dispensable, while in KE formulation it is

essential.

The complexity of KE deserves more study. According to [29], “a detailed study of

proof-search in the KE system will have to involve more sophisticated criteria for the

choice of the (PB)-formulae. A good choice may sometimes be crucial for generating

essentially shorter proofs than those generated by the analytic tableau method”.

Apêndice C

KEMS Design and Implementation

In this appendix we will discuss KEMS design and implementation. We first present

tableau provers and the basic ideas behind KEMS, a multi-strategy tableau prover.

Then we show some extensions to the KE methods discussed in Appendix B that were

motivated by implementation issues. After that we present a brief description of the

system, discussing its architecture and showing some class diagrams. Finally we briefly

discuss each of the implemented KEMS strategies.

C.1 Tableau Provers

Theorem provers are computer programs that prove formal theorems, and tableau

provers are theorem provers based on tableau methods (see Appendix B). Theorem

provers receive a problem as input, where a problem [95] is a list of logic formulas (or, for

signed tableau methods, a list of signed formulas) that represents a sequent.

A tableau prover output can be a ‘closed’ or an ‘open’ answer. A ‘closed’ answer

means that the refutation of the problem sequent was successful and a closed tableau

(see Section C.2.1) was obtained; an ‘open’ means that the sequent refutation failed and

an open and completed tableau (see Section C.2.1) was obtained. Some tableau provers,

besides this closed-open answer, provide a proof tree and maybe a countermodel. Let us

explain this in more detail. The prover uses tableau expansion rules on problem formulas

(and on formulas later generated by these rules) to construct a proof tree (also called proof

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 44

object). If the prover cannot close a tableau branch, the search for a refutation fails, and

the proof tree represents an open tableau from which we can obtain a countermodel for the

problem. Otherwise, if the prover closes all tableau branches, the search for a refutation

succeds and no countermodel can be given. The resulting closed tableau is a refutation

for the sequent, that is, an object that explains why the sequent is not valid1. Therefore

an ‘open’ answer may be accompanied by an open proof tree and a countermodel. And a

‘closed’ answer may be accompanied by a closed proof tree.

In other words, tableau methods can be seen as search procedures for countermodels

meeting certain conditions [52]. If we use a tableau prover to search for a model in which

a sequent X is false, and we produce a closed tableau, no such model exists, so X must be

valid. Tableau methods can be used to generate counter-examples: if we do not produce

a closed tableau, then we have a countermodel for X.

Many tableau provers for several logics were described in the literature [104]: leanTAP

[4], leanKE [96], linTAP [73], LOTREC [46], and jTAP [3], among others. According to

[75], “tableau and sequent calculi are the basis for most popular interactive theorem

provers for hardware and software verification. Yet, when it comes to decision procedures

or automatic proof search, tableaux are orders of magnitude slower than Davis-Putnam,

SAT based procedures or other techniques based on resolution.” But tableau provers have

two advantages over the Resolution method and the DLL procedure. First, they usually do

not require conversion to any normal form. Most implementations of Resolution and DLL

require problem formulas to be in clausal form. Second, there are tableau systems available

for several non-classical logics, while the Resolution method and the DLL procedure are

deeply linked to classical logic.

C.2 KEMS—A Multi-Strategy Tableau Prover

In this thesis we investigate the construction of KEMS, a KE-based multi-strategy

tableau prover. In a multi-strategy theorem prover we can vary the strategy without

1Many SAT provers, zChaff [53] for instance, do not give any justification when they found a problem
to be unsatisfiable.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 45

modifying the core of the implementation. Our main objective was to be able to test and

compare strategies with respect to the time spent by the proof search and the size of the

proof obtained. In KEMS, a strategy will be responsible, among other things, for: (i)

choosing the next rule to be applied, (ii) choosing the formula on which to apply the (PB)

rule, and (iii) verifying branch closure.

In KEMS, we are able to implement different strategies for the same logical system.

Then we use benchmarks to compare the results obtained by these strategies. A sec-

ondary objective was to investigate if proof strategies for tableau provers could be well

modularized by using object-oriented and aspect-oriented programming.

The first step towards KEMS construction was to study and make some modifica-

tions (discussed in [86]) on an object-oriented framework for KE-based provers [38]. The

second step was the implementation of a single-strategy KE-based object-oriented prover

[85]. After that, we implemented a multi-strategy KE-based object-oriented prover for

an extended CPL KE system [89]. In this system, besides using object orientation, we

implemented some aspects [43], a new programming construct. Finally, we extended this

system to deal with mbC and mCi, two logics of formal inconsistency, and implemented

strategies for the three logical systems. Here we describe KEMS design and implemen-

tation as well as some related issues.

C.2.1 KE Proof Search Procedure

As KEMS is a KE-based prover, we describe here the proof search procedure for

this system. This procedure builds a KE tableau (also called KE proof tree) for a target

sequent A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn (the sequent we want to prove or refute). A

sequent is an expression of the form Γ ⊢ ∆, where Γ and ∆ are finite sets of formulas. The

symbols
∧

Γ and
∨

Γ stand for, respectively, the conjunction and the disjunction of all

formulas in Γ. That is, if Γ = {A1, A2, . . . , An}, then
∧

Γ = (A1∧(A2∧(. . .∧(An−1∧An))))

and
∨

Γ = (A1 ∨ (A2 ∨ (. . . ∨ (An−1 ∨ An)))), keeping in mind that ∧ and ∨ are left-

associative. So, a sequent should be read as “from
∧

Γ we can deduce
∨

∆”. A sequent

Γ ⊢ ∆ is valid when the formula “
∧

Γ →
∨

∆” is a tautology. A sequent Γ ⊢ ∆ is

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 46

satisfiable when “
∧

Γ →
∨

∆” is satisfiable.

The KE tableau for A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn is an ordered binary tree whose

nodes contain finite sets of signed formulas. The proof search procedure starts by placing

the following signed formulas

TA1,TA2, . . . ,TAm,FB1,FB2, . . . ,FBn

in the root node. These formulas represent the falsification of the target sequent.

The proof search proceeds by expanding the tableau. The KE method is an expansion

system whose rules for CPL are presented in Figure B.2. An expansion rule R of type

〈n〉, with n ≥ 1, is a computable relation between sets of signed formulas and n-tuples of

sets of signed formulas satisfying the following condition:

R(So, (S1, . . . , Sn)) =⇒ for every truth-set S, if S0 ⊆ S, then Si ⊆ S for 1 ≤ i ≤ n.

A truth-set or saturated set [29] is a set of signed formulas corresponding to CPL val-

uations. Given any CPL valuation v, there exists a saturated set Sv such that, for

any formula A, if v(A) = 1 then A ∈ Sv. For instance, if v is a valuation such that

v(A ∧ B) = 1, then Sv = {A, B, A ∧ B} is the truth-set corresponding to v, because of

(v1) in Definition B.1.1.

The KE expansion rules define what one can do, not what one must do. That is,

at a given time during the construction of the tree one may have several rules that can

be applied. To introduce signed formulas in a node, we can apply linear expansion rules

that take as premises one or more signed formulas that already appear in that node or

in some other node of the same branch. These new signed formulas are obviously logical

consequences of the premises. We can always adjoin two nodes as successors of a given

node, by applying the (PB) rule, which is a branching rule without premises. We only

have to choose the formula to be used in (PB).

The proof search terminates when the tableau is closed or completed. A KE tableau

is closed when all its branches are closed. We say that a branch is closed if, for some

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 47

formula X, T X and F X appear in the same branch, possibly not in the same node.

Otherwise it is open. That is, a branch is closed when we arrive at a contradiction and a

tableau is closed when we arrive at a contradiction in all branches of the generated tree.

If this happens, the sequent we were trying to falsify is valid. Therefore, the resulting

KE tableau is a KE-refutation (or proof) of A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn.

We say that a signed formula SA was analyzed in a branch θ when:

• A is an atomic formula or

• SA was used as the main premise in the application of some rule in θ.

A branch is completed when all its signed formulas have been analyzed. A KE tableau is

completed when at least one of its branches is completed and open.

When a tableau is completed, the sequent we were trying to falsify is not valid. In the

KE systems presented here, as in most (if not all) tableau systems, there is a method for

obtaining a counter-model of the target sequent (A1, A2, . . . , Am ⊢ B1, B2, . . . , Bn) from

a completed tableau. A counter-model for a sequent is a valuation that assigns true to

all formulas in the left side and false to the formulas in the right side. By analyzing any

completed open branch2 it is possible to obtain a valuation such that for 1 ≤ i ≤ m,

v(Ai) = 1 and for 1 ≤ j ≤ n, v(Bj) = 0.

We define the size of a tableau proof as the sum of the sizes of all its nodes. The size

of a node is the sum of the size of all its signed formulas. Besides that, the size of a list

of signed formulas is the sum of its components’ sizes. The size of a signed formula SA

is defined as the size of A. And finally, the size s(A) of a formula A is defined as [51]:

• s(A) = 1 if A is a propositional atom;

• s(⊙A) = 1 + s(A), where A is a formula and ⊙ is a unary connective;

• s(A ⊘ B) = 1 + s(A) + s(B), where ⊘ is a binary connective, and A and B are

formulas.

2A branch is a sequence of nodes that goes from the root branch to a leaf node (a node without
successors).

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 48

The height of the proof tree and the number of nodes in the tree are other important

dimensions for evaluating the efficiency of a proof search procedure. These are defined as

usually for trees [26].

Example C.2.1. In Figures C.1 and C.2, we present two different proofs of the same

sequent: the third instance of the Γ family [12] of problems (see Section D). The Γ3

problem instance is represented by the following valid sequent:

(p1 ∨ q1), (p1 → (p2 ∨ q2)), (q1 → (p2 ∨ q2)), (p2 → (p3 ∨ q3)), (q2 → (p3 ∨ q3)),

(p3 → (p4 ∨ q4)), (q3 → (p4 ∨ q4)) ⊢ (p4 ∨ q4)

In both proofs, the first step was to include the signed formulas3 numbered 1 to 8

(representing the falsification of the sequent) in the origin. In Figure C.1, the next step

was to apply all linear rules that could be applied. This generated formulas 9 to 12.

Then, we had to choose the first formula to apply the (PB) rule. In this case, we would

do better by choosing a formula that could be used as an auxiliary premise with one of

the five formulas (1-5) that were not yet used as main premises. By choosing the left

subformula of 2, the best result is a proof with size 71 and 31 nodes.

In Figure C.2, we used a different strategy. We did not apply all linear rules that

could be applied (formula 8 was not expanded), generating only 9 and 10. After that, we

chose the left subformula of 4 to apply the (PB) rule, and the result was a proof with size

61 and 25 nodes.

C.2.2 Extended CPL KE System

Instead of the original CPL KE system (see Section B.2.2), KEMS implements an

extended CPL KE system, which we present here. First let us introduce four symbols to

the CPL language (L): ⊤ (called ‘top’), ⊥ (named ‘bottom’), ↔ (called ‘bi-implication’)

and ⊕ (named ‘exclusive or’). Σs will denote the signature obtained by the addition of

3 From now on we will use the term s-formula to refer to signed formulas.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 49

1 T p1 ∨ q1

2 T p1 → (p2 ∨ q2)
3 T q1 → (p2 ∨ q2)
4 T p2 → (p3 ∨ q3)
5 T q2 → (p3 ∨ q3)
6 T p3 → (p4 ∨ q4)
7 T q3 → (p4 ∨ q4)
8 F p4 ∨ q4

9 F p4

10 F q4

11 F p3

12 F q3

13 T p1

15 T p2 ∨ q2

16 T p2

18 T p3 ∨ q3

19 T q3

×

17 F p2

20 T q2

21 T p3 ∨ q3

22 T q3

×

14 F p1

23 T q1

24 T p2 ∨ q2

25 T p2

27 T p3 ∨ q3

28 T q3

×

26 F p2

29 T q2

30 T p3 ∨ q3

31 T q3

×

Figure C.1: A CPL KE proof of Γ3.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 50

1 T p1 ∨ q1

2 T p1 → (p2 ∨ q2)
3 T q1 → (p2 ∨ q2)
4 T p2 → (p3 ∨ q3)
5 T q2 → (p3 ∨ q3)
6 T p3 → (p4 ∨ q4)
7 T q3 → (p4 ∨ q4)
8 F p4 ∨ q4

9 F p3

10 F q3

11 T p2

13 T p3 ∨ q3

14 T q3

×

12 F p2

15 T q2

17 T p3 ∨ q3

18 T q3

×

16 F q2

19 T p1

21 T p2 ∨ q2

22 T p2

×

20 F p1

23 T q1

24 T p2 ∨ q2

25 T p2

×

Figure C.2: A smaller CPL KE proof of Γ3.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 51

these two zeroary (⊤ and ⊥) and two binary (↔ and ⊕) connectives to the original CPL

signature (Σ), and Fors will denote the algebra of formulas for this signature.

The following axioms have to be added to CPL axiomatization (see Section B.1.1) to

deal with the new connectives:

(Ax12) (A ↔ B) → ((A ∧ B) ∨ ((¬A) ∧ (¬B)));

(Ax13) (A ⊕ B) → ((A ∧ (¬B)) ∨ ((¬A) ∧ B));

(Ax14) ⊥ → A;

(Ax15) A → ⊤.

Then we extend CPL-valuations (see Definition B.1.1) by adding the following clauses:

(v5) v(A ↔ B) = 1 if and only if v(A) = v(B);

(v6) v(A ⊕ B) = 1 if and only if v(A) = 1 and v(B) = 0, or v(A) = 0 and v(B) = 1.

(v7) v(⊤) = 1;

(v8) v(⊥) = 0.

Finally, we have to add the rules shown in Figure C.3, Figure C.4 and Figure C.5 to

the original set of CPL KE rules (see Figure B.2). We call e-CPL-KE this extended

CPL KE system .

T⊤
(T⊤)

F⊥
(F⊥)

Figure C.3: ‘Top’ and ‘bottom’ KE rules.

C.2.3 Simplification Rules

To obtain a more efficient system, we can add a set of simplification rules [75] to the

extended CPL KE system. These simplification inference rules do not cause branching

and in some cases may even prevent it. They play for tableau methods the same role of unit

propagation for DLL and subsumption for resolution. We adapt Massacci’s simplification

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 52

TA ↔ B
TA
TB

(T ↔1)
TA ↔ B
TB
TA

(T ↔2)

TA ↔ B
FA
FB

(T ↔3)
TA ↔ B
FB
FA

(T ↔4)

FA ↔ B
TA
FB

(F ↔1)
FA ↔ B
TB
FA

(F ↔2)

FA ↔ B
FA
TB

(F ↔3)
FA ↔ B
FB
TA

(F ↔4)

Figure C.4: ‘Bi-implication’ KE rules.

TA ⊕ B
TA
FB

(T⊕1)
TA ⊕ B
TB
FA

(T⊕2)

TA ⊕ B
FA
TB

(T⊕3)
TA ⊕ B
FB
TA

(T⊕4)

FA ⊕ B
TA
TB

(F⊕1)
FA ⊕ B
TB
TA

(F⊕2)

FA ⊕ B
FA
FB

(F⊕3)
FA ⊕ B
FB
FA

(F⊕4)

Figure C.5: ‘Exclusive or’ KE rules.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 53

rule definition in [75] and define the following schema for KE simplification rules:

S1 Φ(Θ(X))

S2 X

S1 Φ(Θ(X)/simpl(Θ(X),S2 X))

where:

1. S1 Φ(Θ(X)) is the major premise;

2. S2 X is the minor premise;

3. S1 Φ(Θ(X)/simpl(Θ(X),S2 X)) is the conclusion

and

• S1 and S2 are signs;

• for any Z, Φ(Z) is a formula where Z appears (one or more times) as a subformula;

• Θ(X) is either ¬X or X⊘Y or Y ⊘X, for any X and Y , where ⊘ ∈ {∧,∨,→,↔,⊕};

• Φ(Θ(X)/simpl(Θ(X),S2 X)) means that we substitute every occurrence of Θ(X)

in Φ(Θ(X)) by simpl(Θ(X),S2 X).

Finally, ‘simpl(F1,S F2)’, where F2 if a subformula of F1 and S is a sign, is the

following rewrite function:

1. simpl(¬X,T X) ⊥;

2. simpl(¬X,F X) ⊤;

3. simpl(X ∧ Y,T X) = simpl(Y ∧ X,T X) Y ;

4. simpl(X ∧ Y,F X) = simpl(Y ∧ X,F X) ⊥;

5. simpl(X ∨ Y,T X) = simpl(Y ∨ X,T X) ⊤;

6. simpl(X ∨ Y,F X) = simpl(Y ∨ X,F X) Y ;

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 54

7. simpl(X → Y,T X) Y ;

8. simpl(X → Y,F Y) ¬X;

9. simpl(X → Y,F X) ⊤;

10. simpl(X → Y,T Y) ⊤;

11. simpl(X ↔ Y,T X) Y ;

12. simpl(X ↔ Y,T Y) X;

13. simpl(X ↔ Y,F X) ¬Y ;

14. simpl(X ↔ Y,F Y) ¬X;

15. simpl(X ⊕ Y,T X) ¬Y ;

16. simpl(X ⊕ Y,T Y) ¬X;

17. simpl(X ⊕ Y,F X) Y ;

18. simpl(X ⊕ Y,F Y) X.

For instance, below we have an application of a simplification rule:

T D → ((A → B) ∧ (C → E))

T A

T D → (B ∧ (C → E))

where

• Θ(A) = A → B;

• Φ(Z) = D → (Z ∧ (C → E)), therefore, Φ(Θ(A)) = D → ((A → B) ∧ (C → E));

• simpl(A → B,T A) B; and

• ‘D → (B ∧ (C → E))’ is the result of substituting ‘A → B’ by ‘B’ in ‘D → ((A →

B) ∧ (C → E))’.

C.2. KEMS—A MULTI-STRATEGY TABLEAU PROVER 55

Given this schema for simplification rules we can define an extension of e-CPL-KE

that includes simplification rules for every CPL connective. As an example we show in

Figure C.6 the simplification rules for conjunction. We call this system s-CPL-KE.

S1 Φ(A ∧ B)
T A

S1 Φ(B)

S1 Φ(B ∧ A)
T A

S1 Φ(B)

S1 Φ(A ∧ B)
F A

S1 Φ(⊥)

S1 Φ(B ∧ A)
F A

S1 Φ(⊥)

Figure C.6: Simplification CPL KE rules for the conjunction connective.

A logical system must have some properties, such as the replacement property, to

accept the definition of such rules. In mbC and mCi, for instance, the replacement

property is not valid [18], so it is not possible to have general simplification rules for these

logical systems.

C.2.4 Extended mbC and mCi KE Systems

As we have done with CPL, in KEMS we work with extended versions of the mbC

KE (see Section B.2.3) and mCi KE (see Section B.2.4) systems. For the extended

versions of these systems, called respectively e-mbC-KE and e-mCi-KE, we only intro-

duced the ‘⊤’ and ‘⊥’ connectives; we did not include ‘↔’ and ‘⊕’. For this inclusion we

followed the same steps presented in Section C.2.2, restricting ourselves to ‘⊤’ and ‘⊥’

axioms, valuation clauses and rules.

Derived Rules

To achieve better performance with some problems, we can add derived rules to the

two extended systems for mbC and mCi. In Figure C.7 we show some of the rules that

can be derived from C3M mbC rules (see Figure B.3) and that can be added to the

extended systems.

Note that the (T◦′) rule was in fact presented in [18] as a C3M C1 rule. The (Fformula)

C.3. SYSTEM DESCRIPTION 56

rule can be used to shorten proofs when we have, for instance, F A and T (¬A) → X.

Without this rule, in such a situation we must apply (PB) on {F ¬A,T ¬A}. From

F ¬A we obtain T A and close the left branch. So we proceed in the right branch with

T ¬A, exactly like the (Fformula) rule does without branching.

The current KEMS version has mbC and mCi strategies that use only (T◦′′) and

(T¬ ′′) as additional rules, but strategies can be implemented to use the other two rules,

or even other derived rules.

T ◦ A
TA
F ¬A

(T◦′′)
T ¬A
TA
F ◦ A

(T¬ ′′)

FA
T ¬A

(Fformula)

T ◦ A
TB → A
TB → ¬A

FB

(T◦′)

Figure C.7: Derived mbC KE rules.

C.3 System Description

In this section we present a description of the implemented KEMS system. We start

with the system architecture which is presented in Figure C.8. The digram describes that

the user presents as input to KEMS a problem instance and a prover configuration. The

prover configuration must contain values for four major KEMS parameters:

1. the logical system for the proof search procedure (as we see in Appendix D, some

problems can be submitted to provers for different logical systems);

2. the analyzer used to lexically analyse and parse the problem;

3. the strategy chosen to search a proof for the problem;

4. the sorter chosen to be used with the strategy.

Besides that, the prover configuration can be used to give values to other four minor

parameters:

C.3. SYSTEM DESCRIPTION 57

Figure C.8: System architecture.

C.3. SYSTEM DESCRIPTION 58

• the number of times the prover must run the proof search procedure with the given

problem4;

• the time limit for the proof search procedure (if this time limit is exceeded, the

prover is interrupted);

• a boolean option to determine if the prover must save s-formula origins or not;

• a boolean option to determine if the prover must discard closed branches or not;

• a boolean option to determine if the prover must save discarded branches in disk

(to be restored after the proof procedure finishes) or not.

Given these inputs, the system outputs a proof that contains, among other things:

• the open/closed final status of the tableau;

• the tableau proof tree, that can be partial if the discard closed branches option is

set to true;

• the problem size;

• the time spent by the prover while building a proof for the input problem;

• the proof size;

• a counter-model valuation, if the tableau is open.

Let us see an example. The user can present a PHP4 instance (see Section D.1.1)

with a prover configuration establishing ‘mbC’ (see Section B.1.3) as the logical system,

‘LFI analyzer’5 as the problem analyzer, ‘mbC Simple Strategy’ (see Section C.4.4) as

the strategy, and ‘Insertion Order’ (see Section C.4.2) as the sorter. Then KEMS uses

the chosen analyzer (which contains a lexer and a parser) to build a problem object. And

it builds a prover configuration object from user options. These two objects are used by

the prover module to build a proof object. This proof object is given as input to the proof

viewer. Finally, the proof viewer shows the proof to the user.

4 This is useful for prover evaluation, in order to get a better estimate of the time spent to find a
proof.

5A problem analyzer for mbC and mCi that we implemented.

C.3. SYSTEM DESCRIPTION 59

C.3.1 Class Diagrams

Here we present and discuss some simplified class diagrams for KEMS. The first of

these diagrams is depicted in Figure C.9. It describes the classes we implemented to

represent formulas and signed formulas. The Formula class uses the Composite design

pattern [55]: a formula can be either an AtomicFormula or a composition of AtomicFor-

mula objects. A SignedFormula object contains references of one FormulaSign object and

one Formula object.

The FormulaFactory and SignedFormulaFactory classes use the Flyweight design pat-

tern [55]. This pattern prevents the multiplication of objects representing formulas and

signed formulas as well as makes it easier to implement rule choice and application. That

is, there is only one instance of each formula and each signed formula. This allows us to

save space as well as serves to simplify the search for subformulas of a formula, and for

signed formulas where a formula appears. Using this pattern, when we want to compare

two formulas, we have only to compare pointers instead of character strings or formula

structure.

Formula

+getImmediateSubformulas(): List

+isSubformula(Formula): boolean

+isStrictSubformula(Formula): boolean

AtomicFormula

-name: String

CompositeFormula

-subformulas: List

+CompositeFormula(Connective)

+CompositeFormula(Connective,Formula)

+CompositeFormula(Connective,Formula,Formula)

+CompositeFormula(Connective,List)

SignedFormula

+SignedFormula(FormulaSign,Formula)

formula

FormulaSign

sign

FormulaFactory

+createAtomicFormula(String): AtomicFormula

+createCompositeFormula(...): CompositeFormula

SignedFormulaFactory

+createSignedFormula(FormulaSign,Formula)

signedFormulas

formulas

Figure C.9: Formula and Signed Formula class diagram.

The diagram in Figure C.10 shows that in the ProverFacade class we have used the

C.3. SYSTEM DESCRIPTION 60

Facade design pattern [55] to provide a higher-level interface to the classes that implement

prover functionality. The SignedFormulaCreator class uses instances of subclasses of Lexer

and Parser classes to build a Problem object. The Prover class has a method that receives

as input a Problem object and outputs a Proof object. And the ProofVerifier class has a

method that gets as input a Proof object and outputs an ExtendedProof object, containing

a tableau proof tree and additional information about the proof and the proof search

procedure.

Figure C.10: Prover class diagram.

The Prover class uses the Strategy design pattern [55] to be able to make proof strate-

gies interchangeable. In Figure C.11 we see that an IStrategy interface was defined. All

strategies must implement this interface. Besides that we defined an ISimpleStrategy

that defines several methods that are common to all strategies implemented in KEMS

current version (but that future strategies need not implement). We implemented the

functionality which is common to all implemented KEMS strategies in AbstractSim-

pleStrategy. This class has three subclasses: SimpleStrategy, MemorySaverStrategy and

ConfigurableSimpleStrategy. These three classes define three strategies whose features

we discuss in Section C.4.3. And we used SimpleStrategy as a basis for several other

strategies that are discussed in Sections C.4.4, C.4.5 and also in Section C.4.3.

A subset of the classes and interfaces written to implement KE rules is shown in

C.3. SYSTEM DESCRIPTION 61

Figure C.11: Strategy class diagram.

Figure C.12. We have classes for one-premise one-conclusion rules, two-premise one-

conclusion rules and one-premise two-conclusion rules. All of these classes are subclasses

of an abstract class Rule that implements the IRule interface. A RuleStructure contains

one or more lists of rules and there is a map that assigns a name to each RuleList object.

In this way, a RuleStructure can have subsets of the chosen KE system rules so that a

strategy can choose which subset to apply first. Besides these classes, we have several

classes to implement rule premise patterns and rule conclusion actions.

C.3.2 Programming Languages Used

Current KEMS version is written in Java 1.5 [57] with some aspects written in AspectJ

1.5 [65, 64]. Java was chosen because it is a well established object-oriented programming

(OOP) language for which there is an extension, called AspectJ, that supports a new

software development paradigm: aspect-orientation. At the time of our choice, 2003,

AspectJ was the best aspect-oriented language. As we had a plan to make use of aspects

in our implementation, we chose to work with Java and AspectJ.

C.3. SYSTEM DESCRIPTION 62

RuleStructure

+add(ruleListName:String,RuleList)

+contains(Rule): boolean

+getRules(): Collection

+get(ruleListName): RuleList

RuleList Rule

<<interface>>

IRule

+getPossibleConclusions(SignedFormulaList): SignedFormulaList

OneConclusionRule

+getConclusion(): KEAction

OnePremiseOneConclusionRule TwoPremiseOneConclusionRule

OnePremiseTwoConclusionRule

n
n

Figure C.12: Rule class diagram.

In aspect-oriented systems, classes are blueprints for the objects that represent the

main concerns of a system while aspects represent concerns that are orthogonal to the

main concerns and that may have impact over several classes in different places in the

class hierarchy. The use of aspects, among other advantages, leads to less scattered code.

That is, lines of code that implement a given feature of the system can rest in the same

file. Next we present in more detail AspectJ and Aspect-oriented programming (AOP),

and discuss briefly some aspects we have implemented in KEMS.

AspectJ

Although the object oriented paradigm is dominant nowadays, it has some limita-

tions. For instance, in object oriented systems, code with different purposes can become

scattered and tangled. Part of these limitations can be overcome with the use of design

patterns [55] or traits [103]. Aspect oriented programming [43] is an attempt to solve

these and other problems identified in the object oriented paradigm. It is a technique

that intends to achieve more modularity in situations where object orientation and the

use of design patterns is not enough.

The main motivation for the development of AOP was the alleged inability of OOP

and other current programming paradigms to fully support the separation of concerns

C.3. SYSTEM DESCRIPTION 63

principle [65]. According to AOP proponents, AOP solves some problems of OOP by

allowing an adequate representation of the so-called crosscutting concerns [107]. With

AOP, code that implements crosscutting concerns, i.e. that implements specific functions

that affect different parts of a system and would be scattered and tangled in an OOP

implementation, can be localized, increasing modularity. With this increase in modularity,

one can achieve software that is more adaptable, maintainable and evolvable in the face

of changing requirements [97]. Other expected benefits of using AOP are a more readable

and reusable code and a more natural mapping of system requirements to programming

constructs.

To work with AOP one needs an aspect-oriented programming language or an aspect-

oriented extension/framework to an existing language. AspectJ is a general purpose,

seamless aspect-oriented extension to Java that enables the modular implementation of a

wide range of crosscutting concerns. We have chosen to use AspectJ because it seems to

be the most promising approach to aspect orientation. It adds support for aspects to the

well-established Java language and is regarded as the most mature approach to AOP at

the time of writing.

An AspectJ program is a Java program with some extra constructs. These included

language constructs allow the implementation of AOP features such as pointcuts, advice,

inter-type declarations and aspects. Pointcuts and advice dynamically affect program flow,

while inter-type declarations statically affect the class hierarchy of a program. Aspects

are the modularization unit in AspectJ, just as a common concern’s implementation in

OOP is called a class. They are units of modular crosscutting implementation, composed

of pointcuts, advice, and ordinary Java member declarations [65]. Aspects are defined by

aspect declarations, which have a form similar to that of class declarations.

Implemented Aspects

In KEMS, we have a few aspects implementing secondary functionalities:

• the Complexity aspect introduces an int getComplexity() method in the classes

that represent formulas and their lists and factories, and signed formulas and their

C.4. STRATEGIES 64

lists and factories. This method calculates the size of the objects of these classes;

• the Formula Parent Introduction (FPI) aspect adds data structures (as attributes)

and methods to the Formula class. With these structures and methods, a given

formula can hold references to its parents (i.e to all formulas of which this formula

is a subformula) and to its signed counterparts (i.e to all signed formulas that

have this formula). This aspect works together with the Formula Parents aspect,

which intercepts Formula and Signed Formula object creations and uses FPI aspect

methods to add those extra references to all formulas;

• the Memory Usage Tracker aspect inspects memory usage and when necessary forces

the java virtual machine to perform a garbage collection on its heap memory;

• the Proof Tree Size aspect includes attributes and methods in the Proof Tree class

to get the size, the number of branches and the number of nodes of a proof tree;

• finally, the Prover Thread aspect interrupts running problems. That is, when a

problem is being runned, there is always a thread of the prover which was initiated

only for this purpose. When the user asks KEMS to interrupt a running problem,

or when a prespecified time limit is reached, the Prover Thread aspect captures the

runnning thread and interrupts it.

We had planned to make more use of AOP in KEMS, but we find out it was not as

productive as we thought it would be (in line with what was described in [109]). This

happened, in part, due to the evolutionary nature of our development and to the lack of

adequate tools for refactoring aspects (to aspects and to classes). Therefore we decided

to use it only on secondary features. But as it was described in [90], it is still possible to

use AOP to design future KEMS strategies.

C.4 Strategies

As we have said in Section C.2, a KEMS strategy is responsible, among other things,

for: (i) choosing the next rule to be applied, (ii) choosing the formula on which to apply

C.4. STRATEGIES 65

the (PB) rule, and (iii) verifying branch closure. In other provers, these features can be

scattered in several prover modules if strategies are not designed as first-class citizens.

In KEMS, strategies are first-class citizens. This is KEMS most important feature. In

KEMS, the core of the implementation is shared by all strategies and each strategy is

defined in one main class and possibly some auxiliary classes and aspects. In this way

we can prove the same problem with several different strategies and compare the proofs

obtained.

The idea of having several strategies implemented in the same prover and being able

of varying the strategy used is not new: in [72], in the context of first-order theorem

proving, this idea is clearly present. KEMS is a multi-strategy tableau prover for KE

systems. As KE is a tableau method that is available for several logics, KEMS can be

used to provide effective provers for many different logical systems, as well as to enable

the comparison between strategies for these systems.

Let us see how some other object-oriented tableau-based provers represent strategies.

The prover developed by Wagner Dias, which we call WDTP [38], was written in C++

and implements Analytic [106] and KE propositional tableaux methods. jTAP [3] is

a propositional tableau prover, written in Java, based on the method of signed Analytic

Tableaux. Both systems have some strategies implemented and can be extended with new

ones, but strategies are not well modularized since one has to create subclasses of one or

more classes of the system, as well as modify existing ones, to implement a new strategy.

LOTREC [46] is a generic tableau prover for modal and description logics (MDLs). It

aims at covering all logics having possible worlds semantics, in particular MDLs. It

is implemented in Java. Logic connectives, tableau rules and strategies are defined in

a high-level language specifically designed for this purpose. In LOTREC, strategies are

described using a very simple language, not in a programming language. They are limited

to establishing the order and the number of times the rules will be applied.

C.4. STRATEGIES 66

C.4.1 Strategy Implementation

As we have said above, in KEMS a strategy is implemented by writing a main class

and possibly some auxiliary classes and aspects. We will describe later each strategy im-

plemented in KEMS. Let us discuss now some features that are common to all strategies.

We are going to see now the basic procedure for applying rules in a node. The proce-

dure which is the basis for all strategies is the KE canonical procedure described in [29].

This generic procedure establishes the following order for KE rule applications:

1. all one-premise rules;

2. all two-premise rules;

3. (PB) rule.

This sequence is rather obvious since (PB) rule applications are computationally more

expensive.

Another important feature of KEMS strategies is that they choose which rules are

going to be applied by analyzing signed formula structure. For instance, suppose a CPL

KE strategy is analyzing a node that has the following list of signed formulas: [T A →

B, T C ∨ A, F C, TD → E]. By iterating over this list we first analyse ‘T A → B’

and see that it can be used as the main premise in application of the (T→1) and (T→2)

rules6. These rules tell us that the minor premise could be either ‘T A’ or ‘F B’, but as

none of these signed formulas in our list, we cannot apply any of these rule.

Next the strategy analyses the ‘T C ∨ A’ s-formula and discovers that it can be the

major premise of (T∨1) and (T∨2) rule applications. These rules tells us that the minor

premise could be either ‘F C’ or ‘F A’. As ‘F C’ is in our list, we apply the (T∨1) rule

and include ‘T A’ in our list. Now we can apply (T→1) rule and obtain ‘T B’.

Some s-formulas can be the main premise of two-premise rule applications, some can-

not. In CPL KE all s-formulas whose connective is binary can be the main premise of

a two-premise rule application, but that can vary from logic to logic. When we start the

proof search procedure for a problem, we create a list of not analyzed main candidates

6Because the analyzed s-formula’s sign is T and its main connective is ‘→’.

C.4. STRATEGIES 67

(namc) that contains all problem s-formulas that can be main premise. Every time we

use one of these s-formulas as main premise in some rule application, we remove it from

the list. If, after we have applied all possible linear rules, the tableau is still open, and the

namc list is not empty, we can choose one of the s-formulas on the list to serve as a basis

for a (PB) application. In KEMS, after choosing a s-formula S F from the list, where

F is something like ‘A ⊘ B’ and ‘⊘’ is a binary connective, all strategies apply the (PB)

rule by branching on ‘S1 A’ and ‘S2 A’7. And S1 is the sign that allows the application

of a two-premise rule on the left successor node.

Continuing our example, after iterating over the list we have only one formula in our

namc list: ‘T D → E’. By following the procedure described in the previous paragraph,

we apply (PB) with {T D, F D} and the result is the following:

T D → E

T D

T E

F D

Therefore, from the node we were analyzing we created two new successor node. Now

let us describe how strategies deal with nodes. Every strategy has to keep a stack of open

nodes. When a strategy starts the proof search procedure for a problem, the root branch,

containing the s-formulas of the problem, is put on the top of this stack. Only one node

is being expanded at a given time. We call this node the current node.

The procedure for dealing with nodes is as follows:

1. Remove the node which is on the top of the open node stack and make it the current

node. If the stack is empty, finish the procedure;

2. Apply all possible linear rules to the current node. If the node closes, go to the first

step. If it remains open, apply the (PB) rule, put the two newly created nodes on

the stack (first the right node and after that the left, so that the left goes to the top)

and go back to the first step. If no (PB) rule can be applied, finish the procedure.

7That is, they always choose the left subformula to be the motivation for (PB) application, that is,
the auxiliary formula of a two-premise rule application.

C.4. STRATEGIES 68

When the procedure finishes, the strategy checks if the root node is closed. If it is,

that is because all of its child nodes are also closed. Therefore the tableau is closed. If

the root node is not closed, this happened because at least one of its child nodes remained

open and completed, thus the tableau is open.

C.4.2 Sorters

The order in which s-formulas are analyzed is an aspect that can have a strong influence

on a strategy performance. As we have already said, at every moment in the proof search

procedure, the prover has a list of not-analyzed s-formulas in the current node from which

it is going to choose the next formula to be analyzed. As the s-formulas in the beginning

of the list are analyzed first, if we sort the s-formulas we can change the strategy behavior.

In KEMS, the s-formulas are sorted before rules are applied by one signed formula

sorter. Let us describe each of the thirteen sorters we have implemented8. The first two

sorters are related to the order in which signed formulas are inserted in KE tableau nodes’

signed formula list:

1. insertion order - most recently inserted s-formulas go to the end of the list;

2. reverse order - most recently inserted s-formulas go to the beginning of the list.

The five connective sorters behave similarly: the s-formulas where a given connective

appears as the main connective are put in the beginning of list:

1. and connective;

2. or connective;

3. implication connective;

4. bi-implication connective;

5. exclusive or connective.

8In future versions we may have more sorters and even combine two or more in a prover configuration.

C.4. STRATEGIES 69

The two sign sorters behave in a similar way: the s-formulas with a given sign are put

in the beginning of list:

1. true sign;

2. false sign.

In the two complexity sorters, the s-formulas are sorted according to their size:

1. increasing complexity - the smaller s-formulas appear first;

2. decreasing complexity - the more complex s-formulas appear first.

In the two string sorters, the s-formulas are sorted according to the string that repre-

sents them:

1. string order - sorts s-formulas in alphabetical order;

2. reverse string order - sorts s-formulas in reverse alphabetical order.

The two sorters above were implemented only to be compared with others.

The results presented in Section D.2 will illustrate the impact of sorters on KEMS

prover configurations performance.

C.4.3 CPL Strategies

Here we will discuss the six strategies implemented for CPL.

Simple Strategy

The first implemented strategy is called Simple Strategy because it uses simplification

rules (it implements the s-CPL-KE system). This is the order of rule applications in

Simple Strategy:

1. all one-premise rules;

2. all simplification rules in which ‘T ⊤’ or ‘F ⊥’ is the minor premise;

C.4. STRATEGIES 70

3. all other simplification rules9;

4. (PB) rule.

Tableau proof trees are represented by the ProofTree class. A ProofTree contains a

list of nodes and three references to other ProofTree objects: a reference to its left child,

a reference to its right child, and a reference to its parent. Each of these references may

be null. Only the root proof tree does not have a parent. Every ProofTree either has two

children or none.

ClassicalProofTree is a subclass of ProofTree in which each node contain a list that

we call s-formula container. A s-formula container includes a s-formula, a state and an

origin. The state of a signed formula container (sf-container) can be either not analyzed,

analyzed, and fulfilled. The first state is for those containers that contain signed formulas

that can be used as the major premise in some rule application, but were not yet used.

The second is for the containers that contain signed formulas that were used as major

premise. And the last state is for the containers that contain signed formulas that cannot

be used as major premise. A container origin may contain references to the rule that

originated that container as well as the premises used in that rule application. Besides

that, a ClassicalProofTree contains a namc list and has additional methods for dealing

with node closure.

To apply simplification rules, we designed a subclass of the ClassicalProofTree class

called FormulaReferenceClassicalProofTree. This class contains data structures that keep

track of all references between signed formula containers. For instance, if we have a sf-

container that contains the ‘T A → B’ s-formula, we can find all s-formulas that have

‘A → B’ as subformula so that we can apply a simplification rule. And all this data is

kept in memory, what makes this strategy consume a lot of memory.

Let us see an example of this strategy in action. In this example we will work with

labelled signed formulas ‘l : S F ’ where l is a label that contains the ‘S F ’ signed formula’s

origin. Signed formulas which come from the problem are labelled pi, where i is an index.

appp
c(R,S1 F1, t) is the label associated with the application of a basic (non simplification)

9Notice that no non-simplification two-premise rule is used in this strategy.

C.4. STRATEGIES 71

rule R (that has p premises and c conclusions), where ‘S1 F1’ is the main premise and

the third parameter (t) can either not appear, or be ‘S2 F2’, the auxiliary premise (for

two-premise rules), or even be an i which is the number of the conclusion associated with

the label (for two-conclusion rules).

To indicate when a node is closed, we have the close(sfl1, sf l2) label, where sfl1 and

sfl2 are the labels of the s-formulas that justify the closure. Finally,

simplSubst(sflm, sf la, Θ(X))

is the label of the s-formula which is the result of applying a simplification rule, where sflm

is the main premise label, sfla is the auxiliary premise label, and Θ(X) is the subformula

of the main premise to which the simplification rule is applied (see Section C.2.3 for

simplification rule definition).

In the examples below, the ‘×’ symbol denotates that a node is closed. The ‘�’ symbol

is used to state that a node is open and completed, that is, no further rule can be applied

and from that node we can find a valuation that falsifies the sequent. The ‘�’ symbol is

used to state that a node is open but not completed. When another (a previous) node is

found to be open and completed, that is, when we find a valuation that falsifies, we no

longer need to analyze other nodes that are in the open node stack. Therefore the other

nodes remain open but usually are not completed.

The first example only illustrates the use of labels in a proof of A, A → B ⊢ B:

p1 : TA

p2 : TA → B

p3 : FB

g1 := app2
1(T →1, p2, p1) : TB

close(g1, p3) : ×

The second example shows three applications of simplification rules. We used the

gi := l notation, stating that gi abbreviates label l, to simplify the labels in the following

open tableau for A, D → ((A → B) ∧ (C → A)) ⊢ B:

C.4. STRATEGIES 72

p1 : T⊤

p2 : F⊥

p3 : TA

p4 : TD → ((A → B) ∧ (C → A))

p5 : FB

g1 := simplSubst(p5, p3, A → B) : TD → (B ∧ (C → A))

g2 := simplSubst(g1, p5, B ∧ (C → A)) : TD → ⊥

g3 := simplSubst(g2, p2, D → ⊥) : T ¬D

app1
1(T¬ , g3) : FD

�

Our last example uses the PB(sfl1, s) label to indicate that the signed formula to

which this label is associated is the result of applying the (PB) rule to the signed formula

whose label is sfl1. The b parameter indicates if this is the label associated with the left

successor node (when s = l) or right successor node (s = r). The example below is an

open and completed tableau for E ∨ C ⊢ A → ¬(C ∨ D):

p1 : TE ∨ C

p2 : F A → ¬(C ∨ D)

app1
2(F →, p2, 1) : TA

g1 := app1
2(F →, p2, 2) : F ¬(C ∨ D)

g2 := app1
1(F¬ , g1) : TC ∨ D

g3 := PB(g2, l) : F C

app2
1(T ∨, g2, g3) T D

app2
1(T ∨, p1, g3) T E

�

PB(g2, r) : T C

�

Memory Saver Strategy

The Memory Saver Strategy implements almost the same algorithm implemented by

Simple Strategy but keeps the minimum amount of data structures in memory. For

C.4. STRATEGIES 73

instance, instead of using the FormulaReferenceClassicalProofTree class for keeping ref-

erences to formulas in memory, this strategy uses an OptimizedClassicalProofTree class

(that does not keep those references). And it uses a ReferenceFinder class that has meth-

ods for searching the same references stored in a FormulaReferenceClassicalProofTree

whenever they are needed.

Backjumping Simple Strategy

Backjumping is a technique used in backtracking algorithms that allows for efficient

pruning of search spaces. It has been proposed in the early 1990s, and has been extensively

applied in constraint propagation [36], but it has hardly ever been applied to theorem

provers [40], specially tableau based ones [63]. Backjumping can be very useful in tableau

based theorem provers because it can be used to prevent repeatedly re-solving the same

subproblem.

The Backjumping Simple Strategy implements the backjumping technique and is an

extension of Simple Strategy. The only difference occurs when nodes are closed. Recall

that a KE-tableau tree is a tree whose nodes contain a list of signed formulas. A left

(right) node is a node which is the left (right) child of another node. The first signed

formula of a left node is called a decision. A node that contains a decision is called a

decision node. In the Backjumping Simple Strategy, whenever a node closes, the decision

nodes used (as premises) to close that node must be marked as used. And whenever a

right node closes, if any of its grandparents is a not used decision, its sibling can be closed

by backjumping.

In Section D.1.1 we show a family of problems used to test the Backjumping Simple

Strategy. The tableau proofs (for instances of this family) generated by strategies that do

not use backjumping may include redundant sub-trees. This is clear in Figure C.13 where

we show an example of a B PHP2
n proof (see Section D.1.1). The sub-tree containing the

KE PHPn proof (T1) appears four times.

In Figure C.14 we show a proof of the same problem using backjumping. The T1 sub-

tree now appears only once because the nodes containing F A1,1 and F A2,1 are declared

C.4. STRATEGIES 74

T ¬(A1,1 ∧ A1,2)
T A2,1 → A2,2

PHPn

F A1,1 ∧ A1,2

TA1,1

FA1,2

T A2,1

T A2,2

T1

F A2,1

T1

FA1,1

T A2,1

T A2,2

T1

F A2,1

T1

Figure C.13: A proof of B PHP2
n.

closed by the backjumping strategy when it is found that the T A1,1 and T A2,1 decisions

were not used to close T1. That is, the T1 sub-proof now needs to be generated only once,

in the leftmost leaf node. When the strategy verifies that the two open nodes came from

unused decisions, it closes these nodes.

T ¬(A1,1 ∧ A1,2)
T A2,1 → A2,2

PHPn

F A1,1 ∧ A1,2

TA1,1

FA1,2

T A2,1

T A2,2

T1

F A2,1

×

FA1,1

×

Figure C.14: A proof of B PHP2
n using backjumping.

Learning Strategy

In the Learning Strategy we implemented the learning technique [40] used in SAT

solvers. The idea is the following: whenever a left node closes we look for the reasons

for this closure. The reasons are two s-formulas: T X and F X. Then we look for the

C.4. STRATEGIES 75

binary s-formulas that were used as main premise to obtain the closing reasons. Then we

apply general resolution [1] to these two formulas and include this learned formula in the

parent node.

For instance, suppose we close a node of an instance of PHP3 with F p3,1 and T p3,1

(see Figure C.15). The s-formulas that gave origin to these formulas are F p2,1 ∧ p3,1 and

T p3,0 ∨ p3,1. Suppose we apply (F∧2) rule to F p2,1 ∧ p3,1 and T p3,1; the result would

be F p2,1. And suppose we apply (T∨2) to T p3,0 ∨ p3,1 and F p3,1; the result would be

T p3,0. We take these two results (S1 F1 and S2 F2) and create a learned formula (lf) is

the following way:

• lfi = Fi if Si = T , otherwise lfi = ¬(Fi);

• lf = T (lf1 ∨ lf2).

This ‘T ¬(p2,1) ∨ p3,0’ learned formula is then included the node which is the parent of

the current node (see Figure C.16) so that it can be used in the proof search on the open

nodes.

PHP3

...
T p3,1

...

...
F p3,1

...
×

...

...

Figure C.15: A proof of PHP3.

Comb Learning Strategy

This strategy produces a proof whose left branches have a height equal or less than 1,

that is, a comb-like proof (see Figure C.17). The idea is the following: whenever we close

C.4. STRATEGIES 76

PHP3

...
T p3,1

...
T ¬(p2,1) ∨ p3,0

...
F p3,1

...
×

...

...

Figure C.16: An example of learning in a proof of PHP3.

a left node, the strategy gathers the used decisions and separates them in two groups:

those with a T sign ({T A1, . . .TAn}) and those with a F sign ({F B1, . . .FBm}). Then

it discards the whole left node from the root node (τ) and creates two new child nodes

for τ :

τ

F (A1 ∧ . . . ∧ An) → (B1 ∨ . . . ∨ Bm) T (A1 ∧ . . . ∧ An) → (B1 ∨ . . . ∨ Bm)

The left node does not have to be expanded, because it will surely close since the

‘F (A1 ∧ . . . ∧ An) → (B1 ∨ . . . ∨ Bm)’ learned formula will be decomposed into the

decisions that led the original left branch to close. So the proof can continue with the

right node. It is important to notice that this is a näıve kind of learning that usually

produces proofs which are bigger than other strategies’ proofs.

Problem

...
×

...

...
×

. . .

...
×

...
×

Figure C.17: Sketch of a Comb Learning Strategy proof.

C.4. STRATEGIES 77

Configurable Strategy

All previous CPL strategies implement the s-CPL-KE system. This strategy imple-

ments the e-CPL-KE system. This is the order of rule applications:

1. all one-premise rules;

2. all two-premise rules;

3. (PB) rule.

The other features are equal to Simple Strategy features.

This strategy is useful because, by using sorters, it allows a higher control over which

formulas are analyzed first. Besides that, it is interesting to compare this strategy with

the strategies that implement the s-CPL-KE system, because the comparison may show

when simplification rules are most useful.

C.4.4 mbC Strategies

For mbC, we have implemented the following two strategies.

mbC Simple Strategy

This is an extension of CPL Simple Strategy for mbC. It implements the e-mbC-

KE system – therefore it does not use any simplification rule. This is the order of rule

applications:

1. all mbC one-premise rules;

2. all mbC two-premise rules;

3. (PB) rule.

An important difference here is that in mbC’s (T¬ ′) rule the two premises have the

same size (in CPL two-premise rules the major premise is always bigger than the minor

premise). We have proved (see Section B.2.3) that we only need to branch on a ‘◦A’

formula if it already appears as subformula of some formula in this branch. So we had

C.4. STRATEGIES 78

to add this check before applying the (PB) rule. The other features are equal to Simple

Strategy features.

mbC Extended Strategy

This is an extension of the previous strategy. It implements the e-mbC-KE system

with the (T◦′′) and (T¬ ′′) additional rules (see Section C.2.4). These rules are applied

after all other mbC two-premise rules and before (PB) rule. The other features are equal

to mbC Simple Strategy features.

C.4.5 mCi Strategies

For mCi, we have implemented the following two strategies.

mCi Simple Strategy

This strategy is very similar to mbC Simple Strategy. It implements the e-mCi-KE

system. This is the order of rule applications:

1. all mCi one-premise rules;

2. all mCi two-premise rules;

3. (PB) rule.

But here we do not have to restrict the application of the (PB) rule because of the

(T¬ ′) rule. All other features of this strategy are equal to mbC Simple Strategy features.

mCi Extended Strategy

This is an extension of the previous strategy. It implements the e-mCi-KE system

with two additional rules: (T◦′′) and (T¬ ′′) (see Section C.2.4). These rules are applied

after all other mCi two-premise rules and before (PB) rule. The other features are equal

to mCi Simple Strategy features.

C.5. CONCLUSION 79

Strategy Main feature

CPL Simple Strategy Keeps formula reference data structures in mem-
ory

CPL Memory Saver Strategy Does not keep formula reference data structures in
memory

CPL Backjumping Simple Strat-
egy

Implements the backjumping technique

CPL Learning Strategy Implements a learning technique
CPL Comb Learning Strategy Implements the comb learning technique
CPL Configurable Strategy Allows a higher control over which formulas are

analyzed first
mbC Simple Strategy An extension of CPL Simple Strategy for mbC
mbC Extended Strategy An extension of mbC Simple Strategy that applies

derived rules before applying (PB)
mCi Simple Strategy An extension of CPL Simple Strategy for mCi
mCi Extended Strategy An extension of mCi Simple Strategy that applies

derived rules before applying (PB)

Table C.1: Overview of KEMS Strategies.

C.5 Conclusion

KEMS current version implements strategies for three logics: CPL, mbC and mCi.

An overview of the implemented strategies is presented in Table C.1. We have shown that

to solve a problem with a strategy we must choose a sorter. The implemented sorters are

described in Table C.2. In Appendix D we present the results obtained by KEMS with

several families of problems using these strategies and sorters.

C.5. CONCLUSION 80

Sorter Description

Insertion Order least recently inserted s-formulas are analyzed first
Reverse Order most recently inserted s-formulas are analyzed first
And s-formulas with ‘∧’ as main connective are analyzed first
Or s-formulas with ‘∨’ as main connective are analyzed first
Implication s-formulas with ‘→’ as main connective are analyzed first
Bi-implication s-formulas with ‘↔’ as main connective are analyzed first
Exclusive Or s-formulas with ‘⊕’ as main connective are analyzed first
True s-formulas with T as sign are analyzed first
False s-formulas with F as sign are analyzed first
Increasing smaller s-formulas are analyzed first
Decreasing bigger s-formulas are analyzed first
String Order s-formulas whose representation as a string of characters come

first in alphabetical order are analyzed first
Reverse String Order s-formulas whose representation as a string of characters come

last in alphabetical order are analyzed first

Table C.2: Overview of KEMS sorters.

Apêndice D

KEMS Evaluation

Theorem provers are usually compared by using benchmarks [112]. SATLIB [102]

(for CPL) and TPTP [111] (for first-order classical logic) are two web sites that contain

benchmark problems to evaluate theorem provers. We have chosen to evaluate KEMS

using as benchmarks some families of difficult problems [12, 95], some of which well known

and some new families we developed to test KEMS. We present below the families we

used to evaluate CPL, mbC and mCi strategies.

D.1 Problem Families

A problem family is a set of problems that we know, by construction, whether they

are valid, satisfiable or unsatisfiable. For any family f we have a procedure such that, for

any n ∈ N, n ≥ 1, we construct an instance fn of this family.

In the problem families described below, formulas such as
∧n

i=m Ai (an iterated con-

junction) and
∨n

i=m Ai (an iterated disjunction) may appear, where m, n ∈ N. If m = n,

then both reduce to Am. If m < n, then the first reduces to (Am ∧ (Am+1 ∧ (. . .∧ (An−1 ∧

An)))) and the second to (Am∨(Am+1∨(. . .∨(An−1∨An)))). And if m > n, then the first

formula is an empty conjunction (which corresponds to the ⊤ formula) and the second is

an empty disjunction (which corresponds to the ⊥ formula). Besides that, whenever we

have (A ∧ ⊤), (⊤ ∧ A), (A ∨ ⊥) or (⊥ ∨ A), for any formula A, we replace any of these

formulas by A.

D.1. PROBLEM FAMILIES 82

D.1.1 CPL Problem Families

The problem families used to evaluate KEMS CPL strategies contain explicit propo-

sitional valid sequents whose proofs in Sequent Calculus [56], Analytic Tableaux [106] or

Resolution [100] can be exponential. For instance, zChaff [53], one of the fastest SAT

solvers available, takes a couple of days to prove the instance number 14 of the PHP

family on a personal computer.

Γ Problems

The n-th instance of the Γ family [12] has 2n propositional variables and 2n + 2

formulas. It is possible to find both exponential and non-exponential (in n) proofs of

instances of this family using AT. For the n-th instance (Γn), the sequent to be proved

is:

p1 ∨ q1, Cn ⊢ pn+1 ∨ qn+1

where

Cn = {pi → (pi+1 ∨ qi+1), qi → (pi+1 ∨ qi+1)|1 ≤ i ≤ n}

H Problems

For this family, the sequent to be proved for the n-th instance is

⊢ Hn

where Hn is constructed in the following way:

H1 = p1 ∨ ¬p1

H2 = (p1 ∧ p2) ∨ (p1 ∧ ¬p2) ∨ (¬p1 ∧ p2) ∨ (¬p1 ∧ ¬p2)

H3 = (p1 ∧ p2 ∧ p3) ∨ . . . ∨ (¬p1 ∧ ¬p2 ∧ ¬p3)

...

These formulas (also called “truly fat” formulas) were defined in [28] and used to

prove that the Analytic Tableaux method cannot polynomially simulate the truth-table

D.1. PROBLEM FAMILIES 83

method1. Each instance of this family has n propositional variables, but the size of the

formula Hn grows exponentially in n (because any instance has 2n clauses q1 ∧ . . . ∧ qn,

where each qi is either equal to pi or ¬pi).

Statman Problems

Statman formulas [108] can be constructed as follows. Consider

Ak =
∧k

j=1(pj ∨ qj)

B1 = p1

C1 = q1

and, inductively:

Bi+1 = Ai → pi+1 Ci+1 = Ai → qi+1

The sequent to be proved for the n-th instance of this family is:

B1 ∨ C1, . . . , Bn ∨ Cn ⊢ pn ∨ qn

Statman has proved that this family of formulas has polynomial proofs in sequent

calculus if we use the cut rule, but only exponential size cut-free proofs [12].

Pigeon Hole Principle Problems

The Pigeon Hole Principle (PHP) [95, 12] states that given n − 1 pigeon holes and n

objects to be put in these holes, there is always one hole that will receive at least two

objects.

The sequent to be proved is

⊢ PHPn

where

PHPn = An → Bn

1And this problem family has a structure which is very similar to the structure of the problems used
in [22] (and commented in [76]) to analyze the complexity of Analytic Tableaux.

D.1. PROBLEM FAMILIES 84

and

An =
n∧

i=1

n−1∨

j=1

pi,j

Bn =
n−1∨

i=1

n∨

k=i

n−1∨

j=1

(pi,j ∧ pk,j)

where pi,j expresses that object number i was inserted in hole number j. The An formula

states that every object goes to some hole and the Bn formula that at least one hole

receives 2 objects.

This problem leads to a lot of branching in Analytic Tableaux and Sequent Calcu-

lus. In Sequent Calculus, cut-free proofs are exponential but there is a very complicated

polynomial proof with cut [9].

U Problems

The U family was described in [95]. It is stated there that resolution system proofs of

this problem instances increase exponentially with n. The sequent to be proved for the

n-th instance of this family is ⊢ Un, where Un is defined as follows:

U1 : (P1 ↔ P1)

U2 : (P1 ↔ (P2 ↔ (P1 ↔ P2)))

U3 : (P1 ↔ (P2 ↔ (P3 ↔ (P1 ↔ (P2 ↔ P3)))))

...

Un : (P1 ↔ (P2 ↔ (P3 ↔ . . . ↔ (Pn ↔ (P1 ↔ P2 . . . ↔ Pn) . . .)

Square Tseitin Problems

We present below a description (found in [95]) of the arbitrary graph problems due to

Tseitin:

Consider a graph with the edges labelled. (. . .) Assign 0 or 1 arbitrarily to

nodes of the graph. For each node of the graph, we associate a set of clauses

as follows:

D.1. PROBLEM FAMILIES 85

1. every label of an edge emanating from that node will occur in each clause

(of the set of clauses generated from that node);

2. if the node is assigned 0, then the number of negated literals in each of

the generated clauses is to be odd. Generate all such clauses for that

node;

3. if the node is assigned 1, then the number of negated literals in each of

the generated clauses is to be even. Generate all such clauses for that

node.

Tseitin’s result is this: the sum (mod 2) of the 0’s and 1’s assigned to the

nodes of the graph equals 1 if and only if the set of all generated clauses is

inconsistent.

A rather obvious subset of Tseitin’s problems is what we call here Square Tseitin (ST)

problems. The STn instance is constructed (using Tseitin procedure) from a graph that

resembles a matrix, with n lines and n columns of nodes. Every node is connected with

its four closest neighbors: left, right, top and bottom2. The top left node is assigned

0 and the other nodes are assigned 1. The result is an inconsistent set of clauses. By

negating this set of clauses we obtain a valid sequent. We will not describe the exact

procedure here; we only present ST1, which is the following sequent: ⊢ (V00 ↔ H00) ∨

((V01 ⊕ H00) ∨ ((V00 ⊕ H10) ∨ (V01 ⊕ H10))). An alternative version of this instance is:

(V00 ⊕ H00) ⊢ (V01 ⊕ H00), (V00 ⊕ H10), (V01 ⊕ H10).

Backjumping PHP Problems

To test the performance of strategies in presence of irrelevant premises, we devised a

schema to generate what we called backjumping versions of any family. For instance, for

each PHP family instance we can generate one or more backjumping versions (B PHP)

of these problems. The idea is to include in the beginning of each instance one or more

2 Obviously, some nodes do not have one or more of these neighbors.

D.1. PROBLEM FAMILIES 86

signed formulas that are not relevant, such as:

Ai,1 ⊘ Ai,2

or

¬(Ai,1 ⊘ Ai,2)

where i ∈ N
+ and ⊘ ∈ {∧,∨,→}.

For instance, if we add three irrelevant formulas to PHP4, we obtain the following

B PHP3
4 instance:

¬(A1,1 ∧ A1,2), (A2,1 ∨ A2,2), (A3,1 → A3,2) ⊢ PHP4

where we know that no Ai,j for any i or j appears in PHP4.

We used backjumping versions of PHP to evaluate KEMS.

Random SAT Problems

Random K-SAT formulas were presented in [82] as a class of random formulas to be

used as a benchmark for CPL satisfiability-testing procedures. To generate a problem in-

stance of this class one must provide values for three parameters: number of propositional

symbols, number of clauses and length of each clause. The generated set of clauses can

be satisfiable or not. We have generated six instances of random K-SAT problems (see

Table D.1) to test KEMS. To verify unsatisfiability of a set of clauses {C1, C2 . . . Cn} we

try to prove whether (C1 ∧ C2 ∧ . . . ∧ Cn) ⊢ ⊥ is valid.

name propositional variables clauses clause length size CPL satisfiability

cnf1 10 30 3 223 satisfiable
cnf2 10 70 3 526 unsatisfiable
cnf3 20 70 3 517 satisfiable
cnf4 10 140 3 1042 unsatisfiable
cnf5 20 140 3 1043 unsatisfiable
cnf6 30 140 3 1066 unsatisfiable

Table D.1: Random K-SAT problems.

D.1. PROBLEM FAMILIES 87

D.1.2 LFI Problem Families

We present below the problem families we devised to evaluate mbC and mCi theorem

provers. We had two objectives in mind. First, to obtain families of valid problems whose

KE proofs were as complex as possible. And second, to devise problems which required

the use of many, if not all, KE rules. These families are not classically valid, since their

formulas are in For◦•. However, if we define ◦X
def

= ⊤ and •X
def

= ⊥ in CPL3, then all

families become CPL-valid and can be used for evaluating a CPL prover.

The LFI families can be divided into two groups: first to fourth families are valid in

mbC (and also in mCi, since this logic extends mbC) while seventh to ninth families

were designed as valid mCi problems. This strange numbering is due to historical reasons

(fifth and sixth families are not presented here).

Note: in [18] we can find many simple problems that can be used to evaluate the

correctness of provers for LFIs, including the so-called contraposition rules. We have

used all these problems to evaluate KEMS. They were useful to evaluate correctness, but

not to evaluate performance since they are rather small.

First family

Here we present the first family (Φ1) of valid sequents for mbC. In this family all

mbC connectives from the Σ◦ signature are used. The sequent to be proved for the n-th

instance (Φ1
n) of this problem is:

n∧

i=1

(¬Ai),

n∧

i=1

((◦Ai) → Ai), [

n∨

i=1

(◦Ai)] ∨ (¬An → C) ⊢ C (D.1)

The sequent in (D.1) means that, for every 1 ≤ i ≤ n, the following set of assumptions

has C as a logical consequence:

1. all ¬Ai are true;

2. if ◦Ai is true, then Ai is also true;

3. either one of the ◦Ais or ¬An → C is true.

3A natural way of extending CPL presented in [18].

D.1. PROBLEM FAMILIES 88

The explanation for this family is the following: suppose we are working with a system

that allows inconsistent information representation. The Ai fact means that someone

expressed an opinion A about an individual i and ¬Ai means that someone expressed an

opinion ¬A about this same individual. For instance, if A means that a person is nice,

¬A3 means that at least one person finds 3 is not nice, and A4 means that at least one

person finds 4 nice. Then ◦Ai means that either all people think i is nice, or all people

think i is not nice, or there is no opinion A recorded about i. ‘◦Ai → Ai’ means that if

all opinions about a person are the same, then that opinion is A.

For a subset of individuals numbered 1 to n, we have ¬Ai and ◦Ai → Ai for all of them.

From the fact that either ¬An → C or for one of them we have ◦Ai, we can conclude C.

It is easy to obtain polynomial mbC KE proofs for this family of problems. The

proofs use most (but not all) mbC KE rules and have a comb-like form (see Figure D.1).

In this figure, the shown proof of Φ1
n closes left branches with the following sequence of

signed formulas, which we call Φ1
c(i):

T ◦ Ai

T Ai

FAi

×

Thus, a proof of Φ1
n is a Φ1

p(1) structure, where Φ1
p(i) is depicted below:

D.1. PROBLEM FAMILIES 89

1. Φ1
p(1) is:

Φ1
n

...

T ¬A1

...

T ¬An

T (◦A1) → A1

...

T (◦An) → An

Φ1
c(1) Φ1

p(2)

2. For 1 < i ≤ n, Φ1
p(i) is defined as:

F ◦ Ai−1

T [
∨n

j=i(◦Aj)] ∨ ((¬An) → C)

Φ1
c(i) Φ1

p(i + 1)

3. And when i = n + 1, Φ1
p(i) is:

F ◦ An

T (¬An) → C

F ¬An

×

Second Family

The second family of problems (Φ2) is a variation over the first family whose proofs

can be exponential. The sequent to be proved for the n-th instance of this family (Φ2
n) is:

n∧

i=1

(¬Ai), [
∧n

i=1[(◦Ai) → ([
∨n

j=i+1 ◦ Aj] ∨ ((¬An) → C))]], [
n∨

i=1

(◦Ai)] ∨ (¬An → C) ⊢ C

D.1. PROBLEM FAMILIES 90

Φ1
n
...

T ¬A1
...

T ¬An

T (◦A1) → A1
...

T (◦An) → An

Φ1
c(1) F ◦ A1

T [
∨n

i=2(◦Ai)] ∨ ((¬An) → C)

Φ1
c(2) ...

. . . F ◦ An−1

T (◦An) ∨ ((¬An) → C)

Φ1
c(n)

F ◦ An

T (¬An) → C
F ¬An

×

Figure D.1: A proof of Φ1
n.

In this family, instead of closing left branches easily on Φ1
c(i), we obtain two child

branches with the same difficulty. Our objective when designing this family was to obtain

a problem whose proof contained two proofs of the immediately smaller instance of the

same problem:

Φ2
i

...

Φ2
i−1

...

Φ2
i−1

To achieve this, we had to replace the conjunction of (◦Ai) → Ai in (D.1) by a

conjunction of

(◦Ai) → ([

n∨

j=i+1

◦Aj] ∨ ((¬An) → C)) (D.2)

This means that for every person numbered 1 to n, if all opinions about a person are the

D.1. PROBLEM FAMILIES 91

same, then either all opinions about some other person with a higher index are the same

or (¬An) → C) is true.

The proof of Φ2
n is

Φ2
n

T (¬A1) ∧ (¬A2) ∧ . . . ∧ (¬An)

Φ2p(1)

Where, for 1 ≤ i < n, Φ2p(i) is:

T ◦ Ai

T ([
∨n

j=i+1 ◦Aj] ∨ ((¬An) → C))

Φ2p(i + 1)

F ◦ Ai

T ([
∨n

j=i+1 ◦Aj] ∨ ((¬An) → C))

Φ2p(i + 1)

Finally, Φ2p(n) is

T ◦ An

T (¬An) → C

F ¬An

×

F ◦ An

T (¬An) → C

F ¬An

×

In Figure D.2 we show a proof of Φ2
3. The right branch (which we omitted) is a copy

of the left branch except that, in the beginning, instead of T ◦ A1 we have F ◦ A1.

Third Family

With the third family of problems we intended to develop a family whose instances

required the application of all mbC KE rules. To obtain an instance of the third family

(Φ3), we have to make the following changes to an instance of the second family:

1. replace C in the right-side of the sequent by C ′ → (C ′′ ∨ C);

D.1. PROBLEM FAMILIES 92

T (¬A1) ∧ (¬A2) ∧ (¬A3)
T [(◦A1) → ((◦A2) ∨ (◦A3) ∨ ((¬A3) → C))]∧

[(◦A2) → ((◦A3) ∨ ((¬A3) → C))]∧
[(◦A3) → (((¬A3) → C))]

T (◦A1) ∨ (◦A2) ∨ (◦A3) ∨ ((¬A3) → C)
F C

T ¬A1

T ¬A2

T ¬A3

T ◦ A1

T (◦A2) ∨ (◦A3) ∨ ((¬A3) → C)

T ◦ A2

T (◦A3) ∨ ((¬A3) → C)

T ◦ A3

T (¬A3) → C

F ¬A3

×

F ◦ A3

T (¬A3) → C

F ¬A3

×

F ◦ A2

T (◦A3) ∨ ((¬A3) → C)

T ◦ A3

T (¬A3) → C

F ¬A3

×

F ◦ A3

T (¬A3) → C

F ¬A3

×

F ◦ A1

T (◦A2) ∨ (◦A3) ∨ ((¬A3) → C)
...

Figure D.2: A proof of Φ2
3.

2. replace [
∨n

j=i+1 ◦Aj] ∨ ((¬An) → C) in (
∧n

i=1((◦Ai) → ([
∨n

j=i+1 ◦Aj] ∨ ((¬An) →

C))) (which is left-associated on ∨) by a right-associated (((¬An) ∧ Ul) → C) ∨

[
∧n

j=i+1 ◦Aj];

3. in (D.2), replace (¬An) → C by (Ur ∧ (¬An)) → C;

4. add Ul ∧ Ur to the left-side of the sequent.

The result is the following sequent (Φ3
n):

Ul ∧ Ur,

∧n

i=1(¬Ai),

∧n

i=1[(◦Ai) → ((((¬An) ∧ Ul) → C) ∨
∨n

j=i+1 ◦Aj)],

(
∨n

i=1 ◦Ai) ∨ ((Ur ∧ (¬An)) → C)

⊢ C ′ → (C ′′ ∨ C)

D.1. PROBLEM FAMILIES 93

Fourth Family

This is a family where negation appears only in the conclusion. The sequent to be

proved (Φ4
n) is:

n∧

i=1

(Ai),

n∧

i=1

((Ai ∨ Bi) → (◦Ai+1)), [

n∧

i=2

(◦Ai)] → An+1 ⊢ ¬¬An+1

The formulas of this family can be explained as follows. We have two formulas to

represent two types of opinion: A and B. First we assume Ai for every i from 1 to n.

Then we suppose for all j from 1 to n that (Ai ∨ Bj implies that ◦Aj+1. And finally we

assume that for every k from 2 to n the conjunction of ◦Ak’s implies An+1. It is easy to

see that from these assumptions we can deduce An+1. So we can also deduce its double

negation: ¬¬An+1.

Seventh family

The seventh family (Φ7) was designed for testing mCi provers. Notwithstanding, if

we use the definition •A
def

= ¬ ◦A, it is also valid in mbC. The sequent to be proved (Φ7
n)

is:
n∧

i=1

(Ai),
n∧

i=1

(Bi → (¬Ai)),
n∨

i=1

(◦Ai) ⊢
n∧

i=1

((•Ai) ∨ (¬Bi))

In this sequent, the
∨n

i=1(◦Ai) formula is actually not essential to arrive at the conclusion.

Therefore, we can define a variant (called Φ7′) of this family where this formula does not

appear. The Φ7 family is probably more difficult to prove because of the irrelevant premise.

Eighth family

The eighth family (Φ8) was also designed as a valid mCi problem family. This family

is not valid for mbC4. The sequent to be proved (Φ8
n) is the following:

n∨

i=1

(•Ai),
n∧

i=1

(Ai → (¬Bi)),
n∧

i=1

((¬Ai) → C(n−i+1)) ⊢
n∧

i=1

((¬Bi) ∧ C(n−i+1))

4Not even if we define the inconsistency (‘•’) connective in the standard way.

D.2. RESULTS OBTAINED 94

Ninth family

The ninth family (Φ9) is also a mCi valid family which is not mbC-valid5. The

sequent to be proved (Φ9
n) is:

n∨

i=1

(◦Ai),

n∧

i=1

(Bi → (•Ai)) ⊢

n∨

i=1

¬((◦(◦Ai)) → Bi)

We can have several valid variations of this family, for m ≥ 0 and p ≥ 0:

n∨

i=1

(¬m(◦Ai)),
n∧

i=1

(Bi → (¬m(•Ai))) ⊢
n∨

i=1

¬((◦(¬p(◦Ai))) → Bi)

where (¬1A)
def

= (¬A) and (¬nA)
def

= (¬(¬n−1A)).

D.2 Results Obtained

In this section we exhibit the results obtained by KEMS on the problem families

we just presented. All results were obtained on a Pentium IV machine with a 3.20G

Hz processor and 3775MB memory running Linux version 2.6.15-26-386. The java -jar

kems.jar command6 was issued with the -Xms200m -Xmx2048m options to set the initial

and maximum heap sizes. This allowed KEMS to use more of the computer’s main

memory than the default memory allocated by the java virtual machine.

As we have pointed out in Section C.3, the user can present to KEMS a problem and

a prover configuration. For the purpose of evaluation, we have developed a command-line

version of KEMS that accepts a sequence of problems and a set of prover configurations

to be run on the problems. The so-called sequence files used to evaluate KEMS as well

as all results obtained are available on [92].

For each prover configuration, the first two parameters are the logical system and the

analyzer. In our sequence files, the logical system could be CPL, mbC or mCi, the three

logical systems implemented in KEMS current version.

5Also not even if we give the standard definition of the inconsistency connective in mbC.
6The command used to execute kems.jar, which is the java archive that contains KEMS executable

version.

D.2. RESULTS OBTAINED 95

First, we have evaluated CPL prover configurations with all CPL problems presented

in Section D.1.1 and also with LFI problems families7 (Section D.1.2). For CPL, we had

problems written in the format defined in [38] and problems written in SATLIB SAT

Format [101]. For the format defined in [38] we used the sats5 analyzer, an analyzer

implemented using JFlex [66] for lexical analysis and CUP [62] for syntactical analysis.

And for the SATLIB SAT Format we used the satcnf2 analyzer, implemented using the

same technologies.

After that, we evaluated prover configurations for mbC and mCi with all LFI

problems families which are valid in at least one of the two logical systems. We ex-

tended the format defined in [38] to deal with LFI connectives and implemented the

satlfiinconsdef analyzer, also using JFlex and CUP.

The most important prover configuration parameters for our evaluation were the strat-

egy and the sorter. The reason is that we have noticed through our experiments that these

two are the parameters that most affect a prover configuration performance. For this rea-

son, in the following we will refer to a prover configuration as a strategy-sorter pair, or

simply a pair.

As we had a lot of problems to evaluate, we fixed the ‘number of times the prover must

run the proof search procedure with a given problem’ parameter to one, and the ‘time

limit for the proof search procedure’ parameter to three minutes or 180.000 milliseconds

(the time spent is measured by KEMS in milliseconds). We set to true the ‘save formula

origin’ option, and to false the ‘discard closed branches’ option and the ‘save discarded

branches’ option.

In the tables we display below each prover configuration will be represented by a binary

tuple:

<strategyId,sorterId>

where strategyId and sorterId can vary.

These are the ids for strategies:

SS - CPL Simple Strategy;

7Except the fifth and the sixth.

D.2. RESULTS OBTAINED 96

MSS - CPL Memory Saver Strategy;

BSS - CPL Backjumping Simple Strategy;

LS - CPL Learning Strategy;

CLS - CPL Comb Learning Strategy;

CS - CPL Configurable Strategy;

MBCSS - mbC Simple Strategy;

MBCES - mbC Extended Strategy;

MCISS - mCi Simple Strategy;

MCIES - mCi Extended Strategy.

And these are the ids for sorters:

ins - insertion order;

rev - reverse order;

and - ‘and’ connective;

or - ‘or’ connective;

imp - ‘implication’ connective;

bi-impli - ‘bi-implication’ connective;

xor - ‘exclusive or’ connective;

T - ‘true’ sign;

F - ‘false’ sign;

inc - increasing complexity;

dec - decreasing complexity;

nfo - string order;

rfo - reverse string order.

D.2.1 Gamma Family Results

The biggest Γ family instance solved within the time limit was Γ360, whose size is 3606.

In Table D.2 we can see the results obtained by some selected pairs with this instance.

The worst pair for this instance lasts approximately the same than the best ones. And

its proof size is exactly the same size of the best pairs. In fact, several pairs obtained

results similar to the time and size results obtained by the best pairs. In Table D.3 we

show two results obtained with the biggest instance solved by all pairs (Γ10, whose size

D.2. RESULTS OBTAINED 97

is 106). Several other pairs obtained results very similar to the one obtained by the best

and worst pair. It is easy to see that the differences in time (more that 150 times) and

size (more that 25 times) between the best and the worst pair are big.

Pair Time spent Proof Size Comments

<LS,inc> 166068 7926 best in time and size
<BSS,inc> 166120 7926 second best in time
<CLS,rfo> 166631 7926 third best in time
<SS,dec> 174465 7926 worst in time

Table D.2: Γ360 results table.

Pair Time spent Proof Size Comments

<BSS,T> 7 226 best in time and size
<CLS,and> 7 226 best in time and size
<CLS,imp> 7 226 best in time and size
<CS,rev> 669 3950 an intermediate result
<CS,ins> 1061 5735 worst in time and size

Table D.3: Γ10 results table.

D.2.2 H Family Results

The biggest H family instance solved within the time limit was H6 (whose size is 954)

and it was solved by all pairs. The best results were obtained by MSS pairs. In Table D.4

we can see the results obtained by some selected pairs with the biggest instance solved.

The worst pair for this instance lasts approximately two times more than the best ones.

And its size is approximately two times higher than the size of best pairs.

Pair Time spent Proof Size Comments

<MSS,F> 29313 33345 best in time and size
<MSS,ins> 29314 33345 second best in time
<MSS,dec> 29321 33345 third best in time
<CLS,rfo> 79890 75887 worst in time and size

Table D.4: H6 results table.

D.2. RESULTS OBTAINED 98

D.2.3 Statman Family Results

The biggest Statman family instance solved within the time limit was Statman29,

whose size is 3338. The best results were obtained by MSS pairs; all of them solved the

biggest solved instance. In Table D.5 we can see the results obtained by some selected

pairs with the biggest solved instance. The worst pair for this instance lasts approximately

three times more than the best ones. And the proof sizes of all pairs that solved the biggest

instance are equal. In Table D.6 we show the results obtained with the biggest instance

solved by all pairs (Statman9, whose size is 318). It is easy to see that the differences in

time (more that 600 times) and size (more that 150 times) are huge.

Pair Time spent Proof Size Comments

<MSS,F> 5838 34366 best in time and size
<MSS,or> 5840 34366 second best in time
<MSS,xor> 5859 34366 third best in time
<LS,rev> 15452 34366 worst in time

Table D.5: Statman29 results table.

Pair Time spent Proof Size Comments

<MSS,or> 37 1256 best in time and size
<MSS,xor> 37 1256 second best in time
<MSS,dec> 38 1256 third best in time
<CS,rfo> 22722 179991 worst in time
<CS,or> 21494 192983 worst in size

Table D.6: Statman9 results table.

D.2.4 PHP Family Results

The best results for the PHP6 instance (the biggest PHP instance solved within a 3-

minute time limit) were obtained by the <MSS,or> and <MSS,T> pairs, with approximately

9 seconds and a proof size of 21273. No strategy could solve PHP7 within the time limit.

PHP6 was solved by 43 pairs, 10 of each had MSS, SS, LS and SS as strategy. Only 3

pairs had CS as strategy and none had CLS as strategy. PHP4 was the biggest instance

that was solved by all pairs.

D.2. RESULTS OBTAINED 99

In Table D.7 we can see the results obtained by some selected pairs with the biggest

solved instance (PHP6, whose size is 455). The worst pair for this biggest instance lasts

ten times more than the best ones. And its proof size is approximately 7 times bigger

than the best sizes.

Pair Time spent Proof Size Comments

<MSS,or> 9067 21273 best in time and size
<MSS,T> 9086 21273 second best in time
<SS,T> 9543 21273 third best in time
<LS,xor> 101522 148743 worst in time and size

Table D.7: PHP6 results table.

We also tried PHP7 (whose size is 692) with a 20-minute time limit. The results are

presented in Table D.8. Surprisingly, the best pairs solved the biggest solved instance in

less than three minutes. Again the best pair was <MSS,or>.

Pair Time spent Proof Size Comments

<MSS,or> 150007 153988 best in time and size
<MSS,rfo> 154587 153988 second best in time and size
<SS,T> 162933 153988 third best in time and size
<BSS,T> 169517 153988 worst in time
<LS,or> 166666 181704 worst in size

Table D.8: PHP7 results table.

In Table D.9 we can see the results obtained by two pairs with the biggest instance

solved by all pairs (PHP4, whose size is 155). The worst pair for this instance lasts 43

times more than the best ones. And its proof size is approximately 13 times bigger than

the best sizes.

Pair Time spent Proof Size Comments

<BSS,or> 70 720 one of the several best in time and size
<CS,F> 3024 9689 worst in time and size

Table D.9: PHP4 results table.

D.2. RESULTS OBTAINED 100

D.2.5 U Family Results

The biggest U family instance solved within the time limit was U13 (whose size is

51). The best results were obtained by MSS pairs; all of them solved the biggest solved

instance.

In Table D.10 we can see the results obtained by some selected pairs with the biggest

solved instance. The worst pair for this instance lasts approximately 1.5 times more than

the best ones. And the proof sizes of all pairs that solved the biggest instance are equal.

In Table D.11 we show the results obtained with the biggest instance solved by all pairs

(U8, whose size is 31). It is easy to see how big are the differences in time (more than 400

times) and size (more than 18 times) between the best and worst pairs.

Pair Time spent Proof Size Comments

<MSS,bi-impli> 33686 483158 best in time and size
<MSS,rfo> 33790 483158 second best in time
<MSS,T> 33793 483158 third best in time
<SS,rev> 49541 483158 worst in time

Table D.10: U13 results table.

Pair Time spent Proof Size Comments

<MSS,inc> 314 9554 best in time and size
<MSS,F> 319 9554 second best in time
<MSS,ins> 319 9554 third best in time
<CLS,rev> 134411 174624 worst in time
<CLS,rfo> 127820 174880 worst in size

Table D.11: U8 results table.

D.2.6 Square Tseitin Family Results

The biggest ST family instance solved within the time limit was ST4, whose size is 80.

The best time results were obtained by MSS pairs. Besides that, all of them solved the

biggest solved instance. Only CLS pairs could not solve this instance.

In Table D.12 we can see the results obtained by some selected pairs with the biggest

solved instance. The worst pair for this instance lasts approximately 3 times more than

D.2. RESULTS OBTAINED 101

the best ones. And its proof size is approximately 3 times biggest than the best pair size.

In Table D.13 we show the results obtained with the biggest instance solved by all pairs

(ST3, whose size is 39). It is easy to see that the differences in time (more than 10 times)

and size (approximately 4 times) between the best and worst pairs are not so big.

Pair Time spent Proof Size Comments

<MSS,rev> 1087 13676 best in time
<MSS,inc> 1156 14661 second best in time
<CS,dec> 1454 9216 best in size
<CS,ins> 1503 12712 second best in size
<CS,rev> 3933 30690 worst in time and size

Table D.12: ST4 results table.

Pair Time spent Proof Size Comments

<BSS,T> 17 407 best in time
<BSS,F> 17 409 best in time
<BSS,ins> 17 410 best in time
<CS,dec> 22 283 best in size
<CLS,nfo> 188 1110 worst in time
<CLS,rev> 113 1123 worst in size

Table D.13: ST3 results table.

D.2.7 Backjumping Family Results

As expected, the Backjumping Simple Strategy achieved the best results with B PHP

family instances. The biggest instance solved within the time limit was B PHP3
6, whose

size is 465; no strategy could solve B PHP3
7 within the time limit. B PHP3

6 was solved by

25 pairs. Of these, in 10 pairs the strategy was the Backjumping Simple Strategy. The

other fifteen pairs had Simple Strategy, Learning Strategy and Memory Saver Strategy (5

each) as strategy. B PHP3
4 was the biggest instance that was solved by all pairs.

In Table D.14 we can see the results obtained by some selected pairs with the biggest

solved instance (B PHP3
6). And in Table D.15 we present the results obtained by some

selected pairs with the biggest instance solved by all pairs (B PHP3
4, whose size is 165).

D.2. RESULTS OBTAINED 102

It is interesting to compare these results: the worst pair that solved B PHP3
4 took more

time than the best pair for B PHP3
6 and produced a bigger proof.

Pair Time spent Proof Size Comments

<BSS,or> 11006 21291 best in time and size
<BSS,T> 11116 21296 second best in time and size
<BSS,rfo> 11705 21296 third best in time and size
<BSS,dec> 21425 39483 fourth best in time and size
<BSS,bi-impli> 105920 110306 worst in time
<LS,nfo> 99591 186361 worst in size

Table D.14: B PHP3
6 results table.

Pair Time spent Proof Size Comments

<BSS,T> 91 743 best in time
<BSS,or> 93 738 best in size
<CS,and> 3615 9702 an intermediate result
<CS,inc> 11870 26683 worst in time and size

Table D.15: B PHP3
4 results table.

It is also interesting to compare B PHP with PHP results: the results obtained by

Backjumping Simple Strategy pairs with B PHP instances were only slightly worst than

those obtained with PHP instances. But the results obtained by other strategies were

much worst (for example, the time spent by <MSS,T> with B PHP was more than four

times the time spent by the same pair with PHP).

D.2.8 Random SAT Family Results

CPL strategies were able to give an answer in the time limit only for random K-SAT

(cnf) instances 1 to 3 (see Table D.1). The results are exhibited in Table D.16. These

results are much worse than those obtained by state-of-the-art SAT solvers.

D.2. RESULTS OBTAINED 103

Instance Pair Time spent Proof size Comments
cnf1 <MSS,inc> 444 3778 best in time
cnf1 <CS,inc> 969 3698 best in size
cnf1 <CS,rfo> 1684 4654 worst in size and time

cnf2 <MSS,nfo> 8252 19438 best in size and time
cnf2 <CS,rfo> 53208 29428 worst in time and size

cnf3 <MSS,rev> 8540 19243 best in time
cnf3 <CS,nfo> 18308 19155 best in size
cnf3 <CS,rfo> 73356 31204 worst in time
cnf3 <CS,bi-impli> 60204 31988 worst in size

Table D.16: Random K-SAT results table.

D.2.9 First family results

mbC

The biggest first family (see Section D.1.2) instance solved within the time limit was

Φ1
90, whose size is 993. And this instance was solved by all pairs. In Table D.17 we can see

the results obtained by some selected pairs with the biggest solved instance. The worst

pair in time for this instance lasts approximately 1.4 times more than the best one. And

the worst pair in size (which is the best in time) has almost the same size of the best

pairs.

Pair Time spent Proof Size Comments

<MBCES,dec> 66955 58681 best in time and worst in size
<MBCSS,ins> 67258 58591 second best in time
<MBCSS,inc> 78871 58416 one of the best in size
<MBCES,nfo> 97387 58416 worst in time

Table D.17: mbC Φ1
90 results table.

mCi

The biggest instance solved by mCi pairs with first family (see Section D.1.2) instances

within the time limit was Φ1
90. And this instance was solved by all pairs. In Table D.18

we can see the results obtained by some selected pairs with the biggest solved instance.

D.2. RESULTS OBTAINED 104

The worst pair in time for this instance lasts approximately 1.4 times than the best one.

And the worst pair in size (which is the best in size) has almost the same size of the best

pairs.

Pair Time spent Proof Size Comments

<MCIES,dec> 67042 58681 best in time and worst in size
<MCISS,ins> 67145 58591 second best in time
<MCISS,and> 67199 58591 third best in time
<MCIES,nfo> 96930 58416 worst in time and one of the best in size

Table D.18: mCi Φ1
90 results table.

CPL

We also posed instances of the first family to CPL pairs. The The biggest instance

solved within the time limit was Φ1
120 (size 1083 for CPL8). And Φ1

90 (size 813 for CPL)

was the biggest instance solved within the time limit by all CPL pairs. Φ1
120 was solved by

<MSS,bi-impli> (the best pair for this instance) in 42008 milliseconds and with a proof

size of 51550. The best pair for Φ1
90 was <MSS,rfo>, which solved this instance in 12980

milliseconds and produced a proof with a size of 29209. These results make it very clear

that this family is much easier for CPL than for mbC and mCi. The same observation

applies to all other LFI families submitted to CPL pairs.

D.2.10 Second family results

mbC

The biggest second family instance solved by mbC pairs within the time limit was

Φ2
14, whose size is 472. And the biggest instance solved by all pairs was Φ2

10 (whose size is

278). In Table D.19 we can see the results obtained by the only two pairs that solved the

biggest solved instance. The interesting fact is that both use the same sorter: Reverse

Insertion Order. In Table D.20 we show some results obtained with the biggest instance

solved by all pairs (Φ2
10). The difference in time between the best and worst pairs is more

8If we define ◦X
def

= ⊤ and •X
def

= ⊥, as we have shown in Section D.1.2, CPL versions of LFI problems
have a smaller size.

D.2. RESULTS OBTAINED 105

than 12 times. And the difference in size between the best and worst pairs is more than

15 times.

Pair Time spent Proof Size Comments

<MBCSS,rev> 25213 57827 best in time
<MBCES,rev> 26297 57827 second best in time

Table D.19: mbC Φ2
14 results table.

Pair Time spent Proof Size Comments

<MBCES,rev> 2397 9769 best in time
<MBCSS,rev> 2401 9769 second best in time
<MBCSS,inc> 10984 26565 third best in time
<MBCES,and> 30573 116037 worst in time
<MBCSS,imp> 23767 149504 worst in size
<MBCES,imp> 24401 149504 worst in size

Table D.20: mbC Φ2
10 results table.

mCi

The biggest second family instance solved by mCi pairs within the time limit was

Φ2
17, whose size is 649. And the biggest instance solved by all pairs was Φ2

11 (whose size is

322). In Table D.21 we can see the results obtained by the only two pairs that solved the

biggest solved instance. The interesting fact is that both use the same sorter: Reverse

Insertion Order. In Table D.22 we show some results obtained with the biggest instance

solved by all pairs (Φ2
11). The difference in time between the best and worst pairs is more

than 19 times. And the difference in size between the best and worst pairs is more than

22 times.

Pair Time spent Proof Size Comments

<MCISS,rev> 112586 181333 best in time
<MCIES,rev> 116751 181333 second best in time

Table D.21: mCi Φ2
17 results table.

D.2. RESULTS OBTAINED 106

Pair Time spent Proof Size Comments

<MCISS,rev> 4376 15785 best in time and size
<MCIES,rev> 4550 15785 second best in time
<MCISS,inc> 27681 52226 third best in time
<MCIES,and> 86858 285642 worst in time
<MCISS,imp> 65654 360515 worst in size
<MCIES,imp> 66834 360515 worst in size

Table D.22: mCi Φ2
11 results table.

CPL

We also posed instances of the second family to CPL pairs. The biggest instance

solved within the time limit was Φ2
20 (whose size is 623), and it was solved by all pairs.

It was solved by <MSS,T> (the best pair for this instance) in 2123 milliseconds and with

a proof size of 5784.

D.2.11 Third family results

mbC

The biggest instance solved by some mbC pairs with third family instances within

the time limit was Φ3
14, whose size is 509. And the biggest instance solved by all pairs was

Φ3
11 (size 353). In Table D.23 we can see the results obtained by the only two pairs that

solved the biggest solved instance. The interesting fact is that both use the same sorter:

Reverse Insertion Order. In Table D.24 we show some results obtained with the biggest

instance solved by all pairs. The difference in time between the best and worst pairs is

more than 10 times. And the difference in size between the best and worst pairs is more

than 8 times.

Pair Time spent Proof Size Comments

<MBCSS,rev> 96055 163470 best in time and size
<MBCES,rev> 102098 163470 second best in time

Table D.23: mbC Φ3
14 results table.

D.2. RESULTS OBTAINED 107

Pair Time spent Proof Size Comments

<MBCSS,rev> 7358 21915 best in time and size
<MBCES,rev> 7798 21915 second best in time
<MBCSS,dec> 10715 27942 third best in time
<MBCES,ins> 75160 115467 worst in time
<MBCSS,imp> 49971 192386 worst in size
<MBCES,imp> 52308 192386 worst in size

Table D.24: mbC Φ3
11 results table.

mCi

The biggest instance solved by mCi pairs with third family instances. within the time

limit was Φ3
12 (size 402). And the biggest instance solved by all pairs was Φ3

10 (size 307).

In Table D.25 we can see the results obtained by some pairs that solved the biggest

solved instance. The interesting fact is that the two best pairs use the same sorter: Reverse

Insertion Order. The difference in time between the best and worst pairs is approximately

two times. And the difference in size between the best and worst pairs is less than 1.5

times.

In Table D.26 we show some results obtained with the biggest instance solved by all

pairs. The difference in time between the best and worst pairs is more than 7 times. And

the difference in size between the best and worst pairs is approximately 8 times.

Pair Time spent Proof Size Comments

<MCISS,rev> 16925 42590 best in time and in size
<MCIES,rev> 18063 42590 second best in time
<MCISS,or> 30769 54903 worst in size
<MCIES,or> 32555 54903 worst in time and in size

Table D.25: mCi Φ3
14 results table.

CPL

We also posed instances of the second family to CPL pairs. The biggest instance

solved within the time limit was Φ3
20 (size 672), and it was solved by all pairs. It was

solved by <MSS,F> (the best pair for this instance) in 2513 milliseconds and with a proof

size of 6311.

D.2. RESULTS OBTAINED 108

Pair Time spent Proof Size Comments

<MCISS,rev> 3103 11786 best in time and size
<MCIES,rev> 3338 11786 second best in time
<MCIES,T> 28029 52540 worst in time
<MCISS,imp> 19634 87029 worst in size
<MCIES,imp> 20557 87029 worst in size

Table D.26: mCi Φ3
10 results table.

D.2.12 Fourth family results

mbC

The biggest instance solved by mbC pairs with fourth family instances within the

time limit was Φ4
90 (size 1079). And the biggest instance solved by all pairs was Φ4

80 (size

959).

In Table D.27 we can see the results obtained by some pairs that solved the biggest

solved instance. In Table D.28 we show some results obtained with the biggest instance

solved by all pairs. In both cases, the best pairs’ results are only slightly better than the

worst pair results. The interesting fact is that the two best pairs use the same sorter:

Reverse String Order.

Pair Time spent Proof Size Comments

<MBCES,rfo> 55417 40142 best in time
<MBCSS,rfo> 55486 40140 second best in time and best in size
<MBCSS,dec> 74809 51202 worst in time and in size

Table D.27: mbC Φ4
90 results table.

Pair Time spent Proof Size Comments

<MBCSS,rfo> 36033 31865 best in time and in size
<MBCES,rfo> 36315 31869 second best in time
<MBCSS,imp> 57975 40480 worst in time
<MBCSS,dec> 48496 40712 worst in size

Table D.28: mbC Φ4
80 results table.

D.2. RESULTS OBTAINED 109

mCi

The biggest instance solved by mCi pairs with fourth family instances within the time

limit was Φ4
90. And the biggest instance solved by all pairs was Φ4

80.

In Table D.29 we can see the results obtained by some pairs that solved the biggest

solved instance. The interesting fact is that the two best use the same sorter: Reverse

String Order. In Table D.30 we show some results obtained with the biggest instance

solved by all pairs. In both cases, the best pairs’ results are only slightly better than the

worst pair results. The interesting fact is that the two best pairs use the same sorter:

Reverse String Order.

Pair Time spent Proof Size Comments

<MCISS,rfo> 55026 40140 best in time and size
<MCIES,rfo> 55542 40142 second best in time
<MCISS,dec> 75296 51202 worst in time and size

Table D.29: mCi Φ4
90 results table.

Pair Time spent Proof Size Comments

<MCISS,rfo> 35624 31865 best in time and size
<MCIES,rfo> 36177 31869 second best in time
<MCISS,imp> 58403 40480 worst in time
<MCISS,dec> 48500 40712 worst in size

Table D.30: mCi Φ4
80 results table.

CPL

We also posed instances of the fourth family to CPL pairs. The biggest instance

solved within the time limit was Φ4
100 (size 1000). And Φ4

90 was the biggest instance

solved within the time limit by all CPL pairs. Φ4
100 was solved by <MSS,F> (the best

pair for this instance) in 39236 milliseconds and with a proof size of 41006. The best pair

for Φ4
90 was <MSS,rfo>, which solved this instance in 26162 milliseconds and produced a

proof with a size of 33306.

D.2. RESULTS OBTAINED 110

D.2.13 Seventh family results

mbC

The biggest instance solved by mbC pairs with seventh family instances within the

time limit was Φ7
20 (size 336). And the biggest instance solved by all pairs was Φ7

7 (size

115).

In Table D.31 we can see the results obtained by some pairs that solved the biggest

solved instance. The best pair in time is more than 45 times faster than the worst pair.

And the proof produced by the worst pair is more than 35 times bigger than the proof

produced by the pair with the smallest proof.

In Table D.32 we show some results obtained with the biggest instance solved by all

pairs. Here the best pair in time is more than 1200 times faster than the worst pair.

And the proof produced by the worst pair is more than 480 times bigger than the proof

produced by the pair with the smallest proof.

Pair Time spent Proof Size Comments

<MBCES,F> 845 3524 best in time
<MBCES,and> 847 3524 second best in time
<MBCSS,nfo> 875 3504 best in size
<MBCSS,F> 951 3504 best in size
<MBCSS,and> 957 3504 best in size
<MBCES,rev> 40319 105872 worst in time and size

Table D.31: mbC Φ7
20 results table.

Pair Time spent Proof Size Comments

<MBCES,F> 30 586 best in time
<MBCES,nfo> 32 586 second best in time
<MBCES,and> 32 586 second best in time
<MBCSS,and> 33 579 best in size
<MBCSS,nfo> 34 579 best in size
<MBCSS,F> 35 579 best in size
<MBCSS,rfo> 38006 279070 worst in time and size

Table D.32: mbC Φ7
7 results table.

D.2. RESULTS OBTAINED 111

mCi

The biggest instance solved by mCi pairs with seventh family instances within the

time limit was Φ7
20. And the biggest instance solved by all pairs was Φ7

8 (size 132).

In Table D.33 we can see the results obtained by some pairs that solved the biggest

solved instance. The best pair in time is more than 45 times faster than the worst pair.

And the proof produced by the worst pair is more than 30 times bigger than the proof

produced by the pair with the smallest proof.

In Table D.34 we show some results obtained with the biggest instance solved by all

pairs. Here the best pair in time is more than 2400 times faster than the worst pair.

And the proof produced by the worst pair is more than 870 times bigger than the proof

produced by the pair with the smallest proof.

Pair Time spent Proof Size Comments

<MCIES,and> 849 3524 best in time
<MCISS,nfo> 883 3504 best in size
<MCISS,F> 963 3504 best in size
<MCISS,and> 964 3504 best in size
<MCIES,rev> 40445 105872 worst in time and size

Table D.33: mCi Φ7
20 results table.

Pair Time spent Proof Size Comments

<MCIES,F> 45 728 best in time
<MCISS,rfo> 7209 720 best in size
<MCISS,nfo> 49 720 best in size
<MCISS,F> 51 720 best in size
<MCISS,and> 51 720 best in size
<MCISS,rfo> 110192 629303 worst in time and size

Table D.34: mCi Φ7
8 results table.

CPL

We also posed instances of the second family to CPL pairs. The biggest instance

solved within the time limit was Φ7
25 (size 272), and it was solved by all pairs. It was

D.2. RESULTS OBTAINED 112

solved by <MSS,or> (the best pair for this instance) in 317 milliseconds and with a proof

size of 3246.

D.2.14 Eighth family results

mbC

As all eighth family instances are not valid for mbC, the biggest instance we submitted

for mbC pairs was Φ8
10 (size 186). This was found to be not valid by all pairs. All proofs

took approximately the same time and have almost the same size. The best result for the

biggest instance was obtained by the <MBCSS,dec> pair which took 148 milliseconds and

produced a refutation of size 1257.

mCi

The biggest instance solved by mCi pairs with eighth family instances within the time

limit was Φ8
50 (size 946). And the biggest instance solved by all pairs was Φ8

7 (size 129).

In Table D.35 we can see the results obtained by some pairs that solved the biggest

solved instance. The time and size of best and worst pairs are almost the same.

In Table D.36 we show some results obtained with the biggest instance solved by all

pairs. Here the best pair in time is more than 2000 times faster than the worst pair.

And the proof produced by the worst pair is more than 530 times bigger than the proof

produced by the pair with the smallest proof.

Pair Time spent Proof Size Comments

<MCISS,or> 18430 25407 best in time and in size
<MCISS,dec> 18442 25407 second best in time
<MCIES,or> 18635 25507 worst in size
<MCIES,dec> 18969 25507 worst in time and size

Table D.35: mCi Φ8
50 results table.

D.2. RESULTS OBTAINED 113

Pair Time spent Proof Size Comments

<MCISS,or> 39 682 best in time and in size
<MCISS,dec> 40 682 second best in time and best in size
<MCIES,dec> 41 696 third best in time
<MCIES,and> 78662 365630 worst in time and one of the worst in size

Table D.36: mCi Φ8
7 results table.

CPL

We also posed instances of the eighth family to CPL pairs. The biggest instance we

submitted was Φ8
10 (size 166), and it was solved by all pairs. It was solved by <MSS,rev>

(the best pair for this instance) in 17 milliseconds and with a proof size of 1006.

D.2.15 Ninth family results

mbC

As all ninth family instances are not valid for mbC, the biggest instance we submitted

for mbC pairs was Φ9
25 (size 397). This was found to be not valid by all pairs. All proofs

took approximately the same time and have almost the same size. The best result in

time for the biggest instance was obtained by the <MBCSS,nfo> pair which took 1807

milliseconds and produced a refutation of size 6219. And the best result in size for the

biggest instance was obtained by the <MBCES,or> pair which took 1897 milliseconds and

produced a refutation of size 5740.

mCi

The biggest instance solved by mCi pairs with ninth family instances within the time

limit was Φ9
75 (size 1197). And the biggest instance solved by all pairs was Φ9

40 (size 637).

In Table D.37 we can see the results obtained by some pairs that solved the biggest

solved instance. The size of best and worst pairs are almost the same, but the time taken

to finish the worst pair was approximately 1.6 higher than the time taken by the best

pair.

In Table D.38 we show some results obtained with the biggest instance solved by all

D.2. RESULTS OBTAINED 114

pairs. Here the best pair in time is more than 9 times faster than the worst pair. And

the proof produced by the worst pair is approximately 1.8 times bigger than the proof

produced by the pair with the smallest proof.

Pair Time spent Proof Size Comments

<MCIES,inc> 59644 47691 best in time and size
<MCIES,imp> 59818 47691 second best in time
<MCISS,rev> 100869 48142 worst in time and size

Table D.37: mCi Φ9
75 results table.

Pair Time spent Proof Size Comments

<MCIES,imp> 7547 14231 best in time and size
<MCIES,inc> 7549 14231 second best in time
<MCIES,rev> 68886 25534 worst in time and size

Table D.38: mCi Φ9
40 results table.

CPL

We also posed instances of the second family to CPL pairs. The biggest instance we

submitted was Φ9
25 (size 272), and it was solved by all pairs. It was solved by <MSS,T>

(the best pair for this instance) in 209 milliseconds and with a proof size of 3246.

Apêndice E

Conclusion

E.1 Test Conclusions

Let us discuss the results presented in Section D.2. First let us state that no KEMS

prover configuration obtained incorrect results with the evaluation problem instances.

Some of these instances, such as the ones from PHP and ST families, were very difficult

to prove. That is, the proof search procedure for some very small instances did not finish

for any strategy-sorter pair. Some other families were difficult only for some strategy-

sorter pairs.

For CPL tests, a pair with Memory Saver Strategy (MSS) as the strategy achieved the

best time results for all problem families except for Γ and B PHP families (see Table E.1).

The best pair for Γ had Learning Strategy (LS) as the strategy, but several other pairs

had equally good results. And the best pair for B PHP used, as expected, Backjumping

Simple Strategy (BSS). Therefore, in general our first option when choosing a strategy

should be Memory Saver Strategy.

The results for sorters were not as conclusive. We can see in Table E.1 that almost

all sorters were present in a best pair for some family. Thus, the choice of the best sorter

to run a problem with will depend on the problem being tackled. If we already know the

the problem belongs to a given family, we can choose a sorter that worked well for that

family. Otherwise, we cannot suggest any sorter.

Now let us analyse mbC and mCi tests. Both mbC strategies, mbC Simple Strategy

E.1. TEST CONCLUSIONS 116

(MBCSS) and mbC Extended Strategy (MBCES), achieved equivalent results with valid

problems (see Table E.2)1. MBCSS was slightly better with non-valid problem families.

And for the other implemented LFI, mCi Simple Strategy (MCISS) and mCi Extended

Strategy (MCIES) also achieved comparable results (see Table E.3). Therefore, if we

are going to run a problem that does not belong to one of the families we have used for

evaluating KEMS, we cannot indicate a specific strategy to be tried first. Nor any sorter.

In all LFI tests the sorter in the best pairs varied according to the problem family.

And it was interesting to notice that for some families the sorter choice was almost as

important as the strategy choice. For instance, with second family instances only one

sorter was able to prove the biggest problem solved, independently of the strategy.

These results we obtained by KEMS with the LFI families are the first benchmark

results for these families. All results obtained with the three logical systems can be

compared with other provers for these logics and are available at [92].

Bigger instance solved Problem size Best time pair Best size pair

Γ360 3606 <LS,inc> <LS,inc>

H6 959 <MSS,F> <MSS,F>

Statman29 3338 <MSS,F> <MSS,F>

PHP7 692 <MSS,or> <MSS,or>

U13 51 <MSS,bi-impli> <MSS,bi-impli>

ST4 80 <MSS,rev> <CS,dec>

B PHP3
6 465 <BSS,or> <BSS,or>

cnf2 526 <MSS,nfo> <MSS,nfo>

Φ1
130 1173 <MSS,F> <MSS,rfo>

Φ2
20 623 <MSS,T> <CS,rfo>

Φ3
20 672 <MSS,F> <CS,or>

Φ4
100 1000 <MSS,F> <MSS,F>

Φ7
20 296 <MSS,xor> <MSS,xor>

Φ8
10 166 <MSS,and> <MSS,and>

Φ9
25 272 <MSS,T> <MSS,T>

Table E.1: Best CPL strategy-sorter pairs.

1Actually this is not clear in the table, where we show only one of the best when more than one pair
tied, but can be seen when we examine the evaluation files produced by KEMS.

E.2. THESIS CONCLUSIONS AND CONTRIBUTIONS 117

Bigger instance solved Problem size Best time pair Best size pair

Φ1
90 993 <MBCES,dec> <MBCSS,inc>

Φ2
14 472 <MBCSS,rev> <MBCSS,rev>

Φ3
14 509 <MBCSS,rev> <MBCSS,rev>

Φ4
90 1079 <MBCES,rfo> <MBCSS,rfo>

Φ7
20 336 <MBCES,F> <MBCSS,nfo>

Table E.2: Best mbC strategy-sorter pairs.

Bigger instance solved Problem size Best time pair Best size pair

Φ1
90 993 <MCIES,dec> <MCISS,inc>

Φ2
17 649 <MCISS,rev> <MCISS,rev>

Φ3
12 402 <MCISS,rev> <MCISS,rev>

Φ4
90 1079 <MCISS,rfo> <MCISS,rfo>

Φ7
20 336 <MCIES,and> <MCISS,nfo>

Φ8
50 946 <MCISS,or> <MCISS,or>

Φ9
75 1197 <MCIES,inc> <MCIES,inc>

Table E.3: Best mCi strategy-sorter pairs.

E.2 Thesis Conclusions and Contributions

We succeeded in developing a multi-strategy theorem prover where we can vary the

strategy without modifying the core of the implementation. KEMS allows us to describe

several proof strategies for the same logical system, and to implement different logical

systems.

We list below some of the contributions of this work:

• an analytic, correct and complete KE system for mbC;

• a correct and complete KE system for mCi;

• a multi-strategy prover with the following characteristics:

– accepts problems in three logical systems: CPL, mbC and mCi2;

– has 6 implemented strategies for CPL, 2 for mbC and 2 for mCi;

– has 13 sorters to be used alongside with the strategies;

– implements simplification rules of CPL;

2We know of no other prover for mbC and mCi.

E.3. FUTURE WORKS 118

– provides a proof viewer with a graphical user interface;

– it is open source and available at [92].

• benchmark results obtained by KEMS comparing its CPL strategies with several

problem families;

• seven problem families designed to evaluate LFI provers;

• the first benchmark results for LFI families obtained with several KEMS mbC,

mCi and CPL strategies.

E.3 Future Works

On the logical side, it would be useful to have a general procedure for automatically

generating correct and complete KE systems for LFIs and other logical systems, similar

to the procedure for generating tableau systems presented in [11]. This could help us to

extend KEMS to other logical systems. Marcelo Coniglio (one of the authors of [11])

informed us that they have already thought of adapting their method that obtains what

we called here C3M systems (which for LFIs are a kind of mixture of AT and KE) to

be able to produce KE systems.

On the implementation side, from the results we have obtained3, we can see that it

would be very useful to have an adaptive strategy that changes its behavior according to

features of the problem presented to it. This strategy can behave as other implemented

strategies and it will be able to vary its actions not only for different problems but also

for different subproblems of the same problem given as input.

Next, we plan to implement new strategies making heavy use of Aspect Orientation.

The objective is to easily mix strategy features to produce new strategies. For instance,

we have a Backjumping Simple Strategy for CPL but not for LFIs. Without using

aspect orientation, in KEMS we would have to create a new class for implementing a

Backjumping Simple Strategy for LFIs. If we use aspects we could have strategies for

3That is, from the conclusion that there is no strategy-sorter pair which is the best for every problem
family.

E.3. FUTURE WORKS 119

CPL, mbC, and mCi and we would be able to obtain Backjumping versions of them by

implementing a Backjumping Aspect that changes the behavior of these strategies.

An obvious KEMS extension is to develop strategies for C1, the simplest in da Costa’s

Cn hierarchy of paraconsistent logics [27]. To achieve this, we first have to provide a KE

system for C1. We have already developed the rules of this system and soon we will publish

them and prove that this C1 KE system is correct and complete. Another possible future

work is to develop strategies for the other LFIs presented in [18]. Several LFIs are built

there by adding/removing axioms to other LFIs. It does not seem to be difficult to

implement a module in KEMS where we could build a particular LFI by choosing some

features and then adapt some general predefined LFI strategies for this specific system.

To evaluate strategies for these LFIs we would have to design new problem families which

are valid in these logics.

Another extension would be to implement some restricted simplification rules for LFIs

to obtain more efficient strategies. KEMS could also be improved by developing strategies

for other propositional logics that have KE systems. It would be interesting to extend

KEMS to first-order logics and then use some of the ideas described in [72] to vary

strategies.

Logical systems for approximate reasoning are presented in [48, 49, 50], and in [47] the

relationship between some of these systems and paraconsistency is discussed. It would be

interesting to try to implement these logical systems in KEMS to evaluate how easy is

to adapt KEMS to other logics. We know that it is not so easy to implement different

logical systems in KEMS, therefore in the future we plan to document how this can be

done.

Finally, we plan to implement in KEMS a probabilistic strategy such as GSAT [105].

This strategy, given a valid problem, would not always find a KE proof. However, it

would be able in most cases to find fast valuations for satisfiable problems. Yet another

idea is to allow the dynamic building of strategies either from some predefined options or

from some strategy-definition language, in a way which is similar to what is done in [37].

Apêndice F

Brief User Manual

Here we present a simple user manual. Firstly we show its installation procedure. After

that we describe some scenarios for using KEMS, where we will see its functionalities.

F.1 Installation

As KEMS was implemented in Java, it can be run on any platform for which there

is a Java Runtime Environment (JRE), version 5.0. Therefore the only requirement is

to have a JRE installed on your computer. The JRE is available for several operating

systems (see [80] for more details on how to install a JRE for a specific system).

The following instructions are specific for the Linux platform, but it is easy to adapt

them for Windows and other operating systems. First we assume you have placed the

kems.zip file (available at [92]) in the directory /home. Unzip the file with the

unzip kems.zip

command. The kems.export directory should be created. Henceforth we refer to

/home/kems.export

as KEMS.HOME.

If the JRE is in the PATH1 and you are in KEMS.HOME, then you can issue the

1The JRE installation should put the JRE directory ($JAVA HOME/bin) in the PATH, but if that is not
the case you can see how to set the JAVA HOME and PATH environment variables in [80].

F.2. SCENARIOS 121

java -jar kems.jar

command. This is going to start KEMS graphical interface. If you want to determine

the amount of heap memory to be used by KEMS2, you can issue the

java -Xms size -Xmx size -jar kems.jar

command. ‘-Xmx’ and ‘-Xms’ are java command options. The -Xmx size option sets the

maximum heap size to size. Kilobytes are indicated by the letters k or K and megabytes

by m or M. Similarly, -Xms size determines the initial heap size. For instance,

java -Xms200m -Xmx800m -jar kems.jar

sets the minimum heap size to 200 megabytes and the maximum heap size to 800 megabytes.

F.2 Scenarios

Here we will present some scenarios for using KEMS. Let us enumerate the main

ones:

1. configure the prover;

2. run a problem (that is in a file) with one prover configuration;

3. edit a problem and run it with one prover configuration;

4. run a sequence of problems with a list of prover configurations.

F.2.1 Configuring the Prover

Several scenarios require the prover to be previously configured. To configure the

prover we need to:

1. open the Prover Configurator (see Figure F.2) by choosing on main window (see

Figure F.1) menu bar the Configure option and then clicking on the Prover option;

2This can be necessary to run some difficult problems.

F.2. SCENARIOS 122

2. choose a logical system;

3. choose a strategy;

4. set the number of times to run each problem;

5. set the maximum number of minutes to run each problem (with a prover configura-

tion);

6. choose the analyzer name;

7. choose a sorter;

8. mark/unmark the ‘save formula origin’, ‘discard closed branches’, and ‘save dis-

carded branches’ options.

Figure F.1: KEMS main window.

Figure F.2: Prover Configurator window.

F.2. SCENARIOS 123

F.2.2 Choosing and Running a Problem

To run the first scenario (run a problem that is in a file with one prover configuration)

you must first configure the prover. After that you must choose on main window menu bar

the Problem option and then click on the Instance - Choose, Run and View Proof of

a Problem Instance option. Next you perform the following actions:

1. choose a problem file (you can browse directories on the Open window until you find

the desired file);

2. run the problem (by clicking on the Run button);

3. browse the proof.

Later we will describe how the user can browse the proof.

F.2.3 Editing and Running a Problem

The second scenario, edit a problem and run it with one prover configuration, com-

prises the following:

1. open the Problem Editor (see Figure F.3) by choosing main window menu bar

Problem option and after that clicking on Editor;

2. type the problem on (or load it from a file to) the Problem Editor window;

3. configure the prover;

4. run the problem (choose Problem Editor menu bar Run option and after that click

on Run this problem);

5. browse the proof.

The user can enter a problem either using SATLIB CNF format [101] or in an extension

of the format used in [38]. To enter a problem (either in the Problem Editor window or

when editing a problem file in any text editor) using the extension of the format of [38],

one must provide a list of signed formulas. Each line can contain at most one s-formula.

F.2. SCENARIOS 124

Comment lines start with a #. A signed formula is a sign followed by a formula. The

allowed signs are T (true) and F (false).

Formulas can be atomic or composite. An atomic formula is a string of letters and

numbers initiated by a letter. Composite formulas have a connective and zero, one or two

subformulas (which are themselves formulas). The notation for composite formulas is the

common infix notation. For zeroary connectives, a formula is its Connective. For unary

connectives, Connective Formula. And for binary connectives, Formula Connective

Formula. Parentheses are used when necessary to establish precedence.

The allowed connectives are:

zeroary - TOP and BOTTOM;

unary - ! (not), @ (consistency) and * (inconsistency);

binary - & (and), | (or), -> (implication), <=> (bi-implication) and + (exclusive or).

The following is an example of a CPL problem:

T A <=> (B&!C)

T TOP-> !(A|D)

F BOTTOM | (!D)

And here we can see an example of a LFI problem:

T A <=> @(B&!*C)

T TOP-> !(A|@D)

F BOTTOM | @(!D)

In mbC and mCi, ‘*A’ is translated into ‘!@A’. The previous problem can also be

submitted to a CPL strategy: ‘@A’ formulas will be translated into ‘TOP’ and ‘*A’ into

‘BOTTOM’.

F.2.4 Running a Problem Sequence

For the third scenario, running a sequence of problems with a list of prover configura-

tions, we have the following steps:

F.2. SCENARIOS 125

Figure F.3: Problem Editor.

1. configure the prover (here it is sometimes useful to create a list of prover configura-

tions in the bottom part of the Prover Configurator window3);

2. open the Several Problems Runner window (see Figure F.4) by choosing main win-

dow menu bar Problem option and after that clicking on Several - Choose and

Run Several Problems;

3. choose problem files (see below) one or more times;

4. run the problem sequence (choose Several Problems Runner menu bar Run option

and after that click on Run problems);

5. wait until KEMS finishes all problems with all selected prover configurations4.

The results window show some extra information about the proof such as proof size,

time spent, proof tree height and problem size.

To choose one or more problem files you must:

1. click on the Choose one or more problem instances button;

3For other scenarios only the currently selected prover configuration (PC) is used — the list of PCs is
not taken into consideration.

4You can also choose Several Problems Runner menu bar Results window option and after that click
on Show current results option to show a partial results window (more recent results appear on the
top) that will be updated as new results are obtained.

F.2. SCENARIOS 126

Figure F.4: Several Problems Runner window.

2. browse directories on the Open window until you find the desired files. If you hold

the ctrl key you can choose more than one file;

3. click on the Choose button to add the selected files to the problem list.

F.2.5 Browsing a Proof

After a proof is obtained, a window such as the one in Figure F.5 is opened. On the

left side there is an interactive proof viewer. On the right side we have a graphical proof

viewer.

Interactive Proof Viewer

The interactive proof viewer (IPV) allows the user to see one branch at a time. The

IPV shows a list of signed formulas. The currently selected branch is highlighted in the

graphical proof viewer and identified in a button on the top of this list. By clicking on

this button it one can see more information about the branch.

The window that is opened to show more information about the currently selected

branch displays the prover configuration used to run the problem, a valuation (when the

proof tree is open), and statistics about the proof.

If the user clicks with the left mouse button on one signed formula button, that s-

formula is highlighted as well as all other s-formulas that gave origin to that s-formula. If

the user clicks with the right mouse button on one signed formula button that s-formula’s

immediate origin (rule, major premise and minor premise) is shown.

Whenever there is a (PB) rule application, instead of one s-formula button, two s-

formula buttons appear on one line: one for each (PB) s-formula. One of the two s-

formula buttons is highlighted – the one which is in current branch – and the other is not

F.2. SCENARIOS 127

highlighted. If the user clicks on the unselected s-formula button, the IPV then shows the

leftmost branch that includes that s-formula.

Whenever IPV shows a closed branch, a button that shows an ‘×’ symbol is included

as the last button of the list of s-formula buttons of that branch.

Graphical Proof Viewer

The graphical proof viewer (GPV) starts by showing a graphical representation of the

proof. Initially, circles are presented in the place of s-formulas. This graphic gives us

an idea of the proof form, how many applications of (PB) were necessary, how many s-

formulas were included in the proof, and so on. The ‘×’, ‘�’ and ‘�’ symbols that appear

in the end of every branch denotate, respectively, that a branch is either ‘closed’, ‘open

and completed’, or ‘open and not completed’.

If the user clicks on GPV’s area with the right mouse button a menu will appear

allowing the user to set or unset some options and to perform one action:

• if the ‘show circles’ option is set, GPV shows circles as elements of tableau tree

nodes. If it is unset, GPV shows s-formulas;

• if the ‘show circles’ option is unset and the ‘show numbers’ option is set, a unique

sequential number is assigned to each s-formula (and show at the right of the s-

formula);

• if the ‘show circles’ option is unset, the ‘show sign marking used formulas’ option

is set, and the tableau is closed, a ‘*’ sign is assigned to each s-formula effectively

used to close the tableau (and displayed at the right of the s-formula);

• if the ‘change parameters’ action is selected, a window with some GPV and IPV pa-

rameters is exhibited. If the user changes some parameter(s) and clicks the ‘Update’

button, both viewers are refreshed with the new values for the changed parameters.

After setting parameters the user can scroll the proof using the horizontal and vertical

scroll bars (that appear in GPV depending on GPV’s width and height parameter val-

ues). It would be interesting if these parameters could automatically adjust themselves

F.2. SCENARIOS 128

according to the proof object and other GPV parameters, but that does not seem to be

a trivial task and was not implemented in KEMS current version.

Figure F.5: A Proof Viewer window.

F.2.6 Command-line Sequence Runner

We will not describe in detail here but it is possible to run a sequence of problems

from command line without opening KEMS graphical interface. A sequence file such as

the following must be given as input:

parser=sats5

saveOrigin=false

discardClosedBranches=true

saveDiscardedBranches=false

times=1

F.2. SCENARIOS 129

timeLimit=3

problems=

problems/generated/cpl/php_several_formulas/PHP_08.prove

problems/generated/cpl/php_several_formulas/PHP_09.prove

problems/generated/cpl/php_several_formulas/PHP_10.prove

strategies=

MemorySaverStrategy

SimpleStrategy

#BackjumpingSimpleStrategy

comparators=

ReverseInsertionOrderComparator

OrComparator

TrueComparator

run

The sequence file above tells KEMS to run 3 PHP instances with 6 strategy-sorter

pairs (all possible combinations of the 2 strategies and 3 comparators listed). One strategy

name has a ‘#’ character before it. This character is used to mark a comment so this

strategy name will not be used by KEMS.

Referências Bibliográficas

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An

exponential separation between regular and general resolution. In STOC ’02: Pro-

ceedings of the thirty-fourth annual ACM symposium on Theory of computing, pages

448–456, New York, NY, USA, 2002. ACM Press.

[2] Noriko Arai, Toniann Pitassi, and Alasdair Urquhart. The complexity of analytic

tableaux. In STOC ’01: Proceedings of the thirty-third annual ACM symposium on

Theory of computing, pages 356–363. ACM Press, 2001.

[3] Bernhard Beckert, Richard Bubel, Elmar Habermalz, and Andreas Roth. jTAP

- a Tableau Prover in Java, February 1999. Universitat Karlsruhe. Available at

http://i12www.ira.uka.de/∼aroth/jTAP/. Last accessed, November 2006.

[4] Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-based deduction.

Journal of Automated Reasoning, 15(3):339–358, 1995.

[5] Evert W. Beth. The Foundations of Mathematics. North-Holland Publishing Com-

pany, Amsterdam, 1959.

[6] Maria Paola Bonacina and Thierry Boy de la Tour. Fifth Workshop

on Strategies in Automated Deduction - Workshop Programme, 2004.

http://tinyurl.com/y8dkbj. Last accessed, November 2006.

[7] Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for re-

solution and polynomial calculus. In FOCS ’99: Proceedings of the 40th Annual

http://i12www.ira.uka.de/~aroth/jTAP/
http://tinyurl.com/y8dkbj

REFERÊNCIAS BIBLIOGRÁFICAS 131

Symposium on Foundations of Computer Science, page 422, Washington, DC, USA,

1999. IEEE Computer Society.

[8] Krysia Broda, Marcello D’Agostino, and Marco Mondadori. A Solution to

a Problem of Popper. In The Epistemology of Karl Popper. Kluwer, 1995.

http://citeseer.nj.nec.com/broda95solution.html. Last accessed, November

2006.

[9] S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal

of Symbolic Logic, 52:916–927, 1987.

[10] Liming Cai. Nondeterminism and optimization. PhD thesis, Texas A&M University,

USA, 1994.

[11] Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and Joao Marcos. Two’s

company: “The humbug of many logical values”. In Logica Universalis, pa-

ges 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005. Pre-print available at

http://tinyurl.com/yb5qbz. Last accessed, November 2006.

[12] Alessandra Carbone and Stephen Semmes. Graphic Apology for Symmetry and

Implicitness. Oxford University Press, 2000.

[13] W. A. Carnielli. Systematization of the finite many-valued logics through the

method of tableaux. The Journal of Symbolic Logic, 52:473–493, 1987.

[14] W.A. Carnielli and J. Marcos. Ex Contradictione Non Sequitur Quodlibet. Bulletin

of Advanced Reasoning and Knowledge, 1:89–109, 2001.

[15] W.A. Carnielli and J. Marcos. Tableau systems for logics of formal inconsistency.

Proceedings of the International Conference on Artificial Intelligence (IC-AI’2001),

pages 848–852, 2001.

[16] Walter Carnielli. How to build your own paraconsistent logic: an introduction to the

Logics of Formal (In)Consistency. Proceedings of the Workshop on Paraconsistent

Logic (WoPaLo), 2002.

http://citeseer.nj.nec.com/broda95solution.html
http://tinyurl.com/yb5qbz

REFERÊNCIAS BIBLIOGRÁFICAS 132

[17] Walter Carnielli, Marcelo Coniglio, and Ricardo Bianconi. Logic and Applications:

Mathematics, Computer Science and Philosophy (in Portuguese). Unpublished,

2005. Preliminary version. Chapters 1 to 5.

[18] Walter Carnielli, Marcelo E. Coniglio, and Joao Marcos. Logics of Formal Inconsis-

tency. In Handbook of Philosophical Logic, volume 12. Kluwer Academic Publishers,

2005. To appear. Pre-print available at http://tinyurl.com/ybn4yw. Last acces-

sed, November 2006.

[19] Walter A. Carnielli and Richard L. Epstein. Computabilidade – Funções Com-

putáveis, Lógica e os Fundamentos da Matemática. Editora da Unesp, 2006.

[20] Stephen Cook. The P versus NP problem, 2000. http://tinyurl.com/n5thm. Last

accessed, May 2005.

[21] Stephen Cook. The importance of the P versus NP question. J. ACM, 50(1):27–29,

2003.

[22] Stephen Cook and Robert Reckhow. On the lengths of proofs in the propositional

calculus (preliminary version). In STOC ’74: Proceedings of the sixth annual ACM

symposium on Theory of computing, pages 135–148, New York, NY, USA, 1974.

ACM Press.

[23] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71:

Proceedings of the third annual ACM symposium on Theory of computing, pages

151–158, New York, NY, USA, 1971. ACM Press.

[24] Stephen A. Cook. A short proof of the pigeon hole principle using extended resolu-

tion. SIGACT News, 8(4):28–32, 1976.

[25] W. Cook, C. R. Coullard, and G. Turán. On the complexity of cutting-plane proofs.

Discrete Appl. Math., 18(1):25–38, 1987.

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms - Second Edition. MIT Press, 2001.

http://tinyurl.com/ybn4yw
http://tinyurl.com/n5thm

REFERÊNCIAS BIBLIOGRÁFICAS 133

[27] Newton C. A. da Costa, Décio Krause, and Otávio Bueno. Paraconsistent logics

and paraconsistency: Technical and philosophical developments. CLE e-prints (Sec-

tion Logic), 4(3), 2004. Pre-print available at http://tinyurl.com/yxhon7. Last

accessed, November 2006.

[28] Marcello D’Agostino. Are Tableaux an Improvement on Truth-

Tables? Cut-Free proofs and Bivalence, 1992. Available at

http://citeseer.nj.nec.com/140346.html. Last accessed, May 2005.

[29] Marcello D’Agostino. Tableau methods for classical propositional logic. In Mar-

cello D’Agostino et al., editor, Handbook of Tableau Methods, chapter 1, pages 45–

123. Kluwer Academic Press, 1999.

[30] Marcello D’Agostino, Dov Gabbay, and Krysia Broda. Tableau methods for subs-

tructural logics. In Marcello D’Agostino et al., editor, Handbook of Tableau Methods,

chapter 6, pages 397–467. Kluwer Academic Press, 1999.

[31] Marcello D’Agostino and Marco Mondadori. The taming of the cut: Classical

refutations with analytic cut. Journal of Logic and Computation, pages 285–319,

1994.

[32] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[33] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.

J. ACM, 7(3):201–215, 1960.

[34] Sandra de Amo, Walter Carnielli, and João Marcos. A Logical Framework for

Integrating Inconsistent Information in Multiple Databases. In Thomas Eiter and

Klaus-Dieter Schewe, editors, Lecture Notes in Computer Science, volume 2284,

pages 67–84. Springer-Verlag, Berlim., 2002.

[35] Eleonora de Moraes. Lista de discussão gestar bem interior-sp, 2004.

http://br.groups.yahoo.com/group/gestarbeminterior-sp. Last accessed,

December 2006.

http://tinyurl.com/yxhon7
http://citeseer.nj.nec.com/140346.html
http://br.groups.yahoo.com/group/gestarbeminterior-sp

REFERÊNCIAS BIBLIOGRÁFICAS 134

[36] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[37] Luis Fariñas del Cerro, David Fauthoux, Olivier Gasquet, Andreas Herzig, Domi-

nique Longin, and Fabio Massacci. Lotrec: The generic tableau prover for modal

and description logics. In IJCAR ’01: Proceedings of the First International Joint

Conference on Automated Reasoning, pages 453–458. Springer-Verlag, 2001.

[38] Wagner Dias. Tableaux implementation for approximate reasoning (in portuguese).

Master’s thesis, Computer Science Department, Institute of Mathematics and Sta-

tistics, University of São Paulo, 2002.

[39] Simone Grilo Diniz and Ana Cristina Duarte. Parto normal ou cesárea? O que toda

mulher deve saber (e todo homem também). Editora da Unesp, São Paulo, 2004.

[40] Heidi Dixon. Automating Pseudo-Boolean Inference Within a DPLL Fra-

mework. PhD thesis, University of Oregon, USA, Dec 2004. Available at

http://www.cirl.uoregon.edu/dixon/dixonDissertation.pdf. Last accessed,

August 2005.

[41] Amigas do Parto. Lista de discussão Parto Nosso, 2003.

br.groups.yahoo.com/group/partonosso. Last accessed, December 2006.

[42] Itala M. Loffredo D’Ottaviano and Milton Augustinis de Castro. Analytical Table-

aux for da Costa’s Hierarchy of Paraconsistent Logics Cn, 1 ≤ n ≤ ω. Journal of

Applied Non-Classical Logics, 15(1):69–103, 2005.

[43] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-Oriented Programming.

Communications of the ACM, 44, 2001.

[44] M. Enkin, M. Skiers, J. Nelson, C. Crowder, L. Duly, and E. Hodnett. A guide

to effective care during pregnancy and childbirth. Oxford, UK: Oxford University

Press, 2000.

[45] Fadynha. Lista de discussão partonatural, 1999.

br.groups.yahoo.com/group/partonatural. Last accessed, December 2006.

http://www.cirl.uoregon.edu/dixon/dixonDissertation.pdf
br.groups.yahoo.com/group/partonosso
br.groups.yahoo.com/group/partonatural

REFERÊNCIAS BIBLIOGRÁFICAS 135

[46] Luis Fariñas del Cerro, David Fauthoux, Olivier Gasquet, Andreas Herzig, Domi-

nique Longin, and Fabio Massacci. Lotrec: the generic tableau prover for modal

and description logics. In International Joint Conference on Automated Reasoning,

LNCS, page 6. Springer Verlag, 18-23 juin 2001.

[47] M. Finger and R. Wassermann. Approximate Reasoning and Paraconsistency-

Preliminary Report. Proceedings of the Eigth Workshop on Logic, Language, In-

formation and Comunication (WoLLIC), Braslia, Brazil, 2001.

[48] M. Finger and R. Wassermann. The universe of approximations. Electronic Notes

in Theoretical Computer Science, 84:1–14, 2003.

[49] M. Finger and R. Wassermann. Anytime Approximations of Classical Logic from

Above. Journal of Logic and Computation, 2006.

[50] M. Finger and R. Wassermann. The universe of propositional approximations. The-

oretical Computer Science, 355(2):153–166, 2006.

[51] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-

Verlag New York, Inc., 1996.

[52] Melvin Fitting. Introduction. In Marcello D’Agostino et al., editor, Handbook of

Tableau Methods, chapter 1, pages 1–43. Kluwer Academic Press, 1999.

[53] Zhaohui Fu, Yogesh Mahajan, and Sharad Malik. New Features of the SAT’04

versions of zChaff, 2004. http://www.princeton.edu/∼chaff/zchaff/sat04.pdf.

Last accessed, September 2005.

[54] Dov M. Gabbay. Labelled Deductive Systems, Volume 1. Oxford University Press,

Oxford, 1996.

[55] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Adisson-Wesley, 1994.

http://www.princeton.edu/~chaff/zchaff/sat04.pdf

REFERÊNCIAS BIBLIOGRÁFICAS 136

[56] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo,

editor, The Collected Works of Gerhard Gentzen, pages 68–131. North-Holland,

Amsterdam, 1969.

[57] J. Gosling, B. Joy, and G. Steele. The Java Programming Language. Addison-

Wesley, Reading, MA, 1996.

[58] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308,

1985.

[59] Klaus Havelund and Natarajan Shankar. Experiments in theorem proving and model

checking for protocol verification. In FME ’96: Proceedings of the Third Internati-

onal Symposium of Formal Methods Europe on Industrial Benefit and Advances in

Formal Methods, pages 662–681. Springer-Verlag, 1996.

[60] J. Hintikka. Form and content in quantification theory. Acta Philosophica Fennica,

8:7–55, 1955.

[61] Jan Holub and Borivoj Melichar. Implementation of nondeterministic finite au-

tomata for approximate pattern matching. In WIA ’98: Revised Papers from the

Third International Workshop on Automata Implementation, pages 92–99. Springer-

Verlag, 1999.

[62] Scott E. Hudson, Frank Flannery, C. Scott Anaian, Dan Wang, and Andrew Appel.

CUP Parser Generator for Java, 1999. http://www2.cs.tum.edu/projects/cup.

Last accessed, November 2006.

[63] Ullrich Hustadt and Renate A. Schmidt. Simplification and backjumping in modal

tableau. In Lecture Notes in Computer Science, volume 1397 of Lecture Notes in

Computer Science, pages 187–201, 1998.

[64] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and Wil-

liam G. Griswold. Getting Started with AspectJ. Communications of the ACM,

44:59–65, 2001.

http://www2.cs.tum.edu/projects/cup

REFERÊNCIAS BIBLIOGRÁFICAS 137

[65] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and Wil-

liam G. Griswold. An overview of AspectJ. Lecture Notes in Computer Science,

2072:327–355, 2001.

[66] Gerwin Klein. JFlex: the fast lexical analyzer generator for Java, 1998.

http://jflex.de. Last accessed, November 2006.

[67] S. Kundu and J. Chen. Fuzzy logic or Lukasiewicz logic: A clarification. Fuzzy Sets

and Systems, 95(3):369–379, 1998.

[68] L. Di Lascio. Analytic fuzzy tableaux. Soft Computing - A Fusion of Foundations,

Methodologies and Applications, 5(6):434–439, Dec 2001.

[69] D. W. Loveland. Automated deduction: Some achievements and future di-

rections. Technical report, National Science Foundation, 1997. Available at

http://tinyurl.com/y7mb6p. Last accessed, May 2005.

[70] D. W. Loveland. Automated deduction: achievements and future directions. Com-

mun. ACM, 43(11es):10, 2000.

[71] Wendy MacCaull. Tableau method for residuated logic. Fuzzy Sets Syst., 80(3):327–

337, 1996.

[72] Alistair Manning, Andrew Ireland, and Alan Bundy. Increasing the Versatility of

Heuristic Based Theorem Provers. In LPAR’93, 1993.

[73] Heiko Mantel and Jens Otten. lintap: A tableau prover for linear logic. In TABLE-

AUX ’99: Proceedings of the International Conference on Automated Reasoning

with Analytic Tableaux and Related Methods, pages 217–231, London, UK, 1999.

Springer-Verlag.

[74] João Marcos. Personal communication by email, October 2006.

[75] Fabio Massacci. Simplification: A general constraint propagation technique for

propositional and modal tableaux. In TABLEAUX ’98: Proceedings of the Inter-

http://jflex.de
http://tinyurl.com/y7mb6p

REFERÊNCIAS BIBLIOGRÁFICAS 138

national Conference on Automated Reasoning with Analytic Tableaux and Related

Methods, pages 217–231. Springer-Verlag, 1998.

[76] Fabio Massacci. The proof complexity of analytic and clausal tableaux. Theor.

Comput. Sci., 243(1-2):477–487, 2000.

[77] William McCune and Larry Wos. Otter - The CADE-13 Competition Incarnations.

J. Autom. Reason., 18(2):211–220, 1997.

[78] Elliott Mendelson. Introduction to Mathematical Logic. Chapman & Hall, London,

UK, fourth edition, 1997.

[79] Paulo Blauth Menezes. Linguagens Formais e Autômatos. Instituto de Informática

da UFRGS : Editora Sagra Luzzatto, Porto Alegre, 232p., 2005.

[80] Sun Microsystems. Java Runtime Environment (JRE) 5.0 Installation Notes, 2006.

http://java.sun.com/j2se/1.5.0/jre/install.html. Last accessed, November

2006.

[81] S. H. Mirian and M. Mousavi. Nondeterminism in set-theoretic specifications (in per-

sian). In Proceedings of Iranian Computer Society Annual Conference (CSICC’02),

feb 2002.

[82] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy distributi-

ons for SAT problems. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings

of the Tenth National Conference on Artificial Intelligence, pages 459–465, Menlo

Park, California, 1992. AAAI Press.

[83] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference

(DAC’01), June 2001.

[84] John K. Myers. An introduction to planning and meta-decision-making with uncer-

tain nondeterministic action using 2nd-order probabilities. In Proceedings of the first

http://java.sun.com/j2se/1.5.0/jre/install.html

REFERÊNCIAS BIBLIOGRÁFICAS 139

international conference on Artificial intelligence planning systems, pages 297–298.

Morgan Kaufmann Publishers Inc., 1992.

[85] Adolfo Neto. An Object-Oriented Implementation of a KE Tableau Prover, nov

2003. Avaliable at http://tinyurl.com/y3qmkx. Last accessed, November 2006.

[86] Adolfo Neto. Modifications on the implementation of a framework for tableau

methods, jul 2003. Avaliable at http://tinyurl.com/yjgjnq. Last accessed, No-

vember 2006.

[87] Adolfo Neto and Marcelo Finger. A Multi-Strategy Tableau Prover. In I Simpósio

de Iniciação Cient́ıfica e Pós-Graduação do IME-USP. University of São Paulo,

2005. Available at http://tinyurl.com/tbdd6. Last accessed, November 2006.

[88] Adolfo Neto and Marcelo Finger. A Multi-Strategy Tableau Prover. In

SeMe-2005. Workshop “Semantics and Meaning”, IFIP International Federa-

tion for Information Processing. Unicamp. Campinas-SP., 2005. Available at

http://tinyurl.com/yzx8ve. Last accessed, November 2006.

[89] Adolfo Neto and Marcelo Finger. Implementing a multi-strategy theorem prover.

In Ana Cristina Bicharra Garcia and Fernando Santos Osório, editors, Proceedings

of the V ENIA (Encontro Nacional de Inteligência Artificial), held in São Leopoldo-

RS, Brazil, July 22-29 2005, 2005. Available at http://tinyurl.com/yd6n6n. Last

accessed, November 2006.

[90] Adolfo Neto and Marcelo Finger. Using Aspect-Oriented Programming in the

Development of a Multi-Strategy Theorem Prover. In Anais da II Jornada

do Conhecimento e da Tecnologia do Univem, Maŕılia-SP, 2005. Available at

http://www.ime.usp.br/∼adolfo/trabalhos/jornada2005.pdf. Last accessed,

November 2006.

[91] Adolfo Neto and Marcelo Finger. Effective Prover for Minimal Inconsistency Lo-

gic. In Artificial Intelligence in Theory and Practice, IFIP International Federation

for Information Processing, pages 465–474. Springer Verlag, 2006. Available at

http://tinyurl.com/y3qmkx
http://tinyurl.com/yjgjnq
http://tinyurl.com/tbdd6
http://tinyurl.com/yzx8ve
http://tinyurl.com/yd6n6n
http://www.ime.usp.br/~adolfo/trabalhos/jornada2005.pdf

REFERÊNCIAS BIBLIOGRÁFICAS 140

http://www.springerlink.com/content/b80728w7m6885765. Last accessed, No-

vember 2006.

[92] Adolfo Neto and Marcelo Finger. KEMS - A KE Multi-Strategy Tableau Prover,

2006. http://kems.iv.fapesp.br. Last accessed, November 2006.

[93] Michel Odent. The Caesarean. Free Association Books, 2004.

[94] Lawrence C. Paulson. Handbook of logic in computer science (vol. 2): background:

computational structures, chapter Designing a theorem prover, pages 415–475. Ox-

ford University Press, Inc., 1992.

[95] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers.

J. Autom. Reason., 2(2):191–216, 1986.

[96] J. V. Pitt and R. J. Cunningham. Theorem proving and model building with the

calculus ke. Journal of the IGPL, 4(1):129–150, 1996.

[97] Awais Rashid and Lynne Blair. Editorial: Aspect-oriented Programming and Se-

paration of Crosscutting Concerns. The Computer Journal, 46(5):527–528, 2003.

[98] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (system description). In

IJCAR ’01: Proceedings of the First International Joint Conference on Automated

Reasoning, pages 376–380. Springer-Verlag, 2001.

[99] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,

62(1):107–136, 2006.

[100] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,

12(1):23–41, 1965.

[101] Satisfiability suggested format, 1993. http://www.satlib.org. Last accessed,

March 22, 2005.

[102] Satisfiability library, 2003. http://www.satlib.org. Last accessed, March 22, 2005.

http://www.springerlink.com/content/b80728w7m6885765
http://kems.iv.fapesp.br
http://www.satlib.org
http://www.satlib.org

REFERÊNCIAS BIBLIOGRÁFICAS 141

[103] N. Scharli, S. Ducasse, O. Nierstrasz, and A.P. Black. Traits: Composable units of

behaviour. Proc. of ECOOP, 2743:248–274, 2003.

[104] J. Schumann. Tableau-based theorem provers: Systems and imple-

mentations. Journal of Automated Reasoning, 13(3):409–421, 1994.

http://www.springerlink.com/content/k182u80451306371. Last accessed,

November 4th, 2006.

[105] Bart Selman, Hector J. Levesque, and D. Mitchell. A New Method for Solving

Hard Satisfiability Problems. In Paul Rosenbloom and Peter Szolovits, editors,

Proceedings of the Tenth National Conference on Artificial Intelligence, pages 440–

446, Menlo Park, California, 1992. AAAI Press.

[106] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, 1968.

[107] Sérgio Soares and Paulo Borba. AspectJ - Programação orientada a aspectos em

Java. Tutorial no SBLP 2002, 6o. Simpósio Brasileiro de Linguagens de Pro-

gramação. 5 a 7 de Junho, PUC-Rio, Rio de Janeiro, Brasil, pages 39–55, 2002.

[108] R. Statman. Bounds for proof-search and speed-up in the predicate calculus. Annals

of Mathematical Logic, pages 225–287, 1978.

[109] Friedrich Steimann. The paradoxical success of aspect-oriented programming. SIG-

PLAN Not., 41(10):481–497, 2006.

[110] Geoff Sutcliffe. An overview of automated theorem proving, 2001.

http://www.cs.miami.edu/∼tptp/OverviewOfATP.html. Last accessed, March

2005.

[111] Geoff Sutcliffe. Thousands of problems for theorem provers, 2001.

http://www.cs.miami.edu/∼tptp. Last accessed, March 2005.

[112] Geoff Sutcliffe and Christian Suttner. The CADE ATP System Competition, 2003.

http://www.cs.miami.edu/∼tptp/CASC. Last accessed, March 2005.

[113] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

http://www.springerlink.com/content/k182u80451306371
http://www.cs.miami.edu/~tptp/OverviewOfATP.html
http://www.cs.miami.edu/~tptp
http://www.cs.miami.edu/~tptp/CASC

REFERÊNCIAS BIBLIOGRÁFICAS 142

[114] Marian Vittek. A compiler for nondeterministic term rewriting systems. In RTA

’96: Proceedings of the 7th International Conference on Rewriting Techniques and

Applications, pages 154–167. Springer-Verlag, 1996.

[115] Wikipedia. Nondetermnistic algorithm, 2007.

http://en.wikipedia.org/wiki/Nondeterministic. Last accessed, Febru-

ary 2007.

http://en.wikipedia.org/wiki/Nondeterministic

	Um Provador de Teoremas Multi-Estratégia
	Motivação
	Um Exemplo de Aplicação de Lógicas de Inconsistência Formal

	Apresentação e Resumo dos Apêndices
	Tablôs para Lógica Clássica e Lógicas Paraconsistentes
	Projeto e Implementação do KEMS
	Avaliação do KEMS
	Conclusão
	Manual do Usuário Simplificado

	Contribuições
	Publicações e Submissões

	Introduction
	Overview

	Tableaux for Classical and Paraconsistent Logics
	Logical Systems
	Classical Propositional Logic
	Logics of Formal Inconsistency
	mbC, A Fundamental LFI
	The mCi Logic

	Tableau Systems
	Analytic Tableaux for CPL
	A KE System for CPL
	A KE System for mbC
	A KE System for mCi

	Complexity of Logical Systems
	Complexity of Decision Problems
	Complexity of Theorem-Proving Procedures

	KEMS Design and Implementation
	Tableau Provers
	KEMS---A Multi-Strategy Tableau Prover
	KE Proof Search Procedure
	Extended CPL KE System
	Simplification Rules
	Extended mbC and mCi KE Systems

	System Description
	Class Diagrams
	Programming Languages Used

	Strategies
	Strategy Implementation
	Sorters
	CPL Strategies
	mbC Strategies
	mCi Strategies

	Conclusion

	KEMS Evaluation
	Problem Families
	CPL Problem Families
	LFI Problem Families

	Results Obtained
	Gamma Family Results
	H Family Results
	Statman Family Results
	PHP Family Results
	U Family Results
	Square Tseitin Family Results
	Backjumping Family Results
	Random SAT Family Results
	First family results
	Second family results
	Third family results
	Fourth family results
	Seventh family results
	Eighth family results
	Ninth family results

	Conclusion
	Test Conclusions
	Thesis Conclusions and Contributions
	Future Works

	Brief User Manual
	Installation
	Scenarios
	Configuring the Prover
	Choosing and Running a Problem
	Editing and Running a Problem
	Running a Problem Sequence
	Browsing a Proof
	Command-line Sequence Runner

